A smoking gun signature of 3HDM

Atri Dey

<ロ > → □ > → □ > → 正 > 正 □ ● つ へ ○

In collaboration with

V. Keus & S. Moretti & C. Shepherd-Themistocleous

Based on

work in progress and arXiv: 2309.XXXX

Scalars2023

13-16 September 2023 University of Warsaw, Faculty of Physics

Table of Contents

Introduction

Introduction

- Motivation
- 2 3-Higgs Doublet Models (3HDM) DM candidates and CP-conservation LHC bounds
- 3 Srearch for signal

The $\not \! E_T + 4I$ signature at the LHC **Benchmark**

- 4 Collider Analysis: Cut based Signal and backgrounds Results
- **5** Summary and Conclusion

The Standard Model and its shortcomings

- A Higgs boson discovered
- No significant deviation from the SM
- No signs of new physics

But no explanation for

The Standard Model and its shortcomings

- A Higgs boson discovered
- No significant deviation from the SM
- No signs of new physics

But no explanation for

- Extra sources of CPV
- Fermion mass hierarchy
- Vacuum stability
- Dark Matter & ...

The Standard Model and its shortcomings

- A Higgs boson discovered
- No significant deviation from the SM
- No signs of new physics

But no explanation for

- Extra sources of CPV
- Fermion mass hierarchy
- Vacuum stability
- Dark Matter & ...
 - The recently discovered 125-GeV scalar can be a portal to the dark sector.

The Standard Model and its shortcomings

- A Higgs boson discovered
- No significant deviation from the SM
- No signs of new physics

But no explanation for

- Extra sources of CPV
- Fermion mass hierarchy
- Vacuum stability
- Dark Matter & ...

The recently discovered 125-GeV scalar can be a portal to the dark sector.

problem: Current direct and indirect detection as well as relic density bound strongly constrain the simplistic possibilities.

Summary and Conclusion

BSMs to the rescue

Scalar extensions with a \mathbb{Z}_2 symmetry: 3HDM: SM + 2 scalar doublets

CP-conserving I(2+1)HDM

$$\phi_1,\phi_2,\phi_3$$
 $g_{Z_2}= extit{diag}(-1,-1,+1)$ $VEV=(0,0,v)$

[JHEP1401(2014)052], [Phys.Rev.D90, 075015(2014)], [arXiV: 1907.12522]

The scalar potential with explicit CPC

$$V_{3HDM} = V_{0} + V_{Z_{2}}$$

$$V_{0} = \sum_{i}^{3} \left[-\mu_{i}^{2}(\phi_{i}^{\dagger}\phi_{i}) + \lambda_{ii}(\phi_{i}^{\dagger}\phi_{i})^{2} \right]$$

$$+ \sum_{i,j}^{3} \left[\lambda_{ij}(\phi_{i}^{\dagger}\phi_{i})(\phi_{j}^{\dagger}\phi_{j}) + \lambda'_{ij}(\phi_{i}^{\dagger}\phi_{j})(\phi_{j}^{\dagger}\phi_{i}) \right]$$

$$V_{Z_{2}} = -\mu_{12}^{2}(\phi_{1}^{\dagger}\phi_{2}) + \lambda_{1}(\phi_{1}^{\dagger}\phi_{2})^{2} + \lambda_{2}(\phi_{2}^{\dagger}\phi_{3})^{2} + \lambda_{3}(\phi_{3}^{\dagger}\phi_{1})^{2} + h.c.$$

The Z_2 symmetry

$$\phi_1 \rightarrow -\phi_1$$
, $\phi_2 \rightarrow -\phi_2$, $\phi_3 \rightarrow \phi_3$, SM fields \rightarrow SM fields

[Phys.Lett.B695(2011)459 - 462]

Parameters of the model

- All parameters of the potential to be real
- "dark" parameters $\lambda_1, \lambda_{11}, \lambda_{22}, \lambda_{12}, \lambda'_{12}$ (values have been fixed in agreement with the theoretical constraints.)
- $\mu_1^2 = n\mu_2^2$, $\lambda_3 = n\lambda_2$, $\lambda_{31} = n\lambda_{23}$, $\lambda'_{31} = n\lambda'_{23}$
- fixed by the Higgs mass $\mu_3^2 = v^2 \lambda_{33} = m_h^2/2$

6 important parameters

- Mass splittings μ_{12}^2 , λ_2
- Higgs-DM coupling $\lambda_2, \lambda_{23}, \lambda'_{23}$
- Mass scale of inert particles μ_2^2

[Eur. Phys. J. C80(2020)2, 135]

The mass eigenstates

Introduction

DM

The doublet compositions

$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{\mu_1^0 + iA_1^0}{\sqrt{2}} \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{\mu_2^0 + iA_2^0}{\sqrt{2}} \end{pmatrix}, \quad \phi_3 = \begin{pmatrix} G^+ \\ \frac{v + h + iG^0}{\sqrt{2}} \end{pmatrix}$$

The mass eigenstates

$$\begin{split} & H_1 = \cos\theta_h H_1^0 + \sin\theta_h H_2^0, \quad A_1 = \cos\theta_a A_1^0 + \sin\theta_a A_2^0 \\ & H_2 = \cos\theta_h H_2^0 - \sin\theta_h H_1^0, \quad A_2 = \cos\theta_a A_2^0 - \sin\theta_a A_1^0 \\ & H_1^{\pm} = \cos\theta_c \phi_1^{\pm} + \sin\theta_c \phi_2^{\pm}, \quad H_2^{\pm} = \cos\theta_c \phi_2^{\pm} - \sin\theta_c \phi_1^{\pm} \end{split}$$

 H_1 is assumed to be the DM candidate

• Input parameters:

DM mass m_{H_1} , Mass of second CP-even scalar m_{H_2} ,

Higgs-DM coupling $g_{H_1H_1h}$, angles θ_c , θ_a and n.

Constraints

- Vacuum stability: scalar potential V bounded from below
- **Perturbative unitarity**: eigenvalues Λ_i of the high-energy scattering matrix fulfill the condition $|\Lambda_i| < 8\pi$
- Collider: bounds on masses of the scalars
 - Limits from gauge bosons width:

$$m_{H_i} + m_{H_j^{\pm}} \geq m_W, \ m_{A_i} + m_{H_j} \geq m_Z, \ 2 \, m_{H_{1,2}^{\pm}} \geq m_Z$$

• Limits on charged scalar mass and lifetime:

$$m_{H_i^{\pm}} \geq 70 \text{ GeV}, \quad \tau \leq 10^{-7} \text{ s} \rightarrow \Gamma_{\text{tot}} \geq 10^{-18} \text{ GeV}$$

- ullet Allowed by Higgs invisible branching ratio, Br(h o inv.) < 19%
- \bullet Allowed by Higgs total decay width, $\mu^{tot}(h)$ as well as Higgs signal strength data.
- DM constraints: Relic density, Direct and indirect detection bounds.

Relevant DM scenario

In the low mass region $(m_{H_1} < m_Z)$

We can have multiple scenarios but we are interested in

• Scenario I: coannihilation with H_2 , $A_{1,2}$:

$$M_{H_1} \approx M_{A_1} \approx M_{H_2} \approx M_{A_2} < M_{H_1^{\pm}, H_2^{\pm}}$$

[JHEP09(2018)059]

DM at the LHC

CPC DM at the LHC

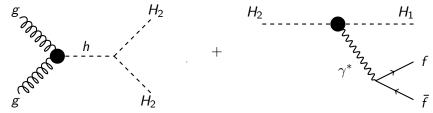
Looking for a **smoking-gun** signal of the 3HDM which is not allowed in the 2HDM with one inert doublet.

The $\not\!\!E_T + 4I$ signature at the LHC

Introduction

Smoking gun Signal

We focused on.



signature is

$$gg \to h \to H_2H_2 \to H_1H_1\gamma^* \to H_1H_1I^+I^-I^+I^-,$$

where the off-shell γ^* splits into I^+I^- and the H_1 states escape detection and will give $\not\!\!E_{T}$.

The $\not\!\!E_T + 4I$ signature at the LHC

Smoking gun Signal

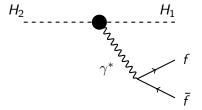


Figure: Radiative decay of the heavy neutral particle $H_2 \to H_1 \gamma^* \to H_1 I^+ I^-$.

Smoking gun Signal

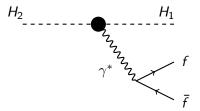
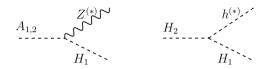


Figure: Radiative decay of the heavy neutral particle $H_2 \to H_1 \gamma^* \to H_1 I^+ I^-$.

- $m_{H_2} m_{H_1}$ is very small
- H_2 , into the lightest inert state, H_1 , and a virtual photon, which then would split into a light $I\bar{I}$ pair.

Inert cascade decays at the LHC

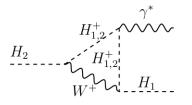
When there is a large mass splitting between DM and other inert particles:

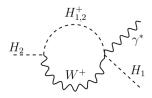


It can give the tree level process $E_{miss}^{T} + I^{+}I^{-}I^{+}I^{-}$: $pp \to H_{2}H_{2}/A_{1,2}A_{1,2} \to H_{1}H_{1}Z^{*}Z^{*} \to H_{1}H_{1}I^{+}I^{-}I^{+}I^{-}$

Inert cascade decays at the LHC

When there is a small mass splitting between DM and other inert particles (winning scenarios):





It can give the loop level process $E_{miss}^T + I^+I^-I^+I^-$:

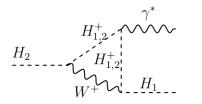
$$pp \to H_2H_2/A_{1,2}A_{1,2} \to H_1H_1\gamma^*\gamma^* \to H_1H_1I^+I^-I^+I^-$$

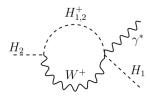
The $\not\!\!E_T$ + 4/ signature at the LHC

Introduction

Inert cascade decays at the LHC

When there is a small mass splitting between DM and other inert particles (winning scenarios):





It can give the loop level process $E_{miss}^T + I^+I^-I^+I^-$:

$$pp \to H_2 H_2 / A_{1,2} A_{1,2} \to H_1 H_1 \gamma^* \gamma^* \to H_1 H_1 I^+ I^- I^+ I^-$$

The **smoking gun** channel

Benchmark

• We are looking for Benchmarks with small mass gap (Δm) between H_2 and H_1

BPs	m_{H_1}	m_{H_2}	Δm	n	g _{H1} H₁h	θ_h	$\sigma(pp o H_1H_12\mu^+2\mu^-)$
BP1 : I ₅ ⁵⁰	50	55	5	0.83	0.01	0.105	6.923 fb
$BP2: I_{10}^{50}$	50	60	10	0.70	0.01	0.103	4.0 fb

Table: Parameter choices of our Benchmark points (BPs)

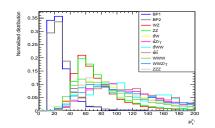
Signal and backgrounds

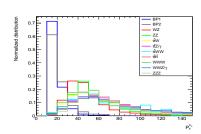
Signal and backgrounds

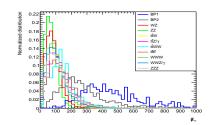
Signal and backgrounds

- Signal: At least 3-muon with at least one pair of Opposite sign μ + **⊭**τ.
 - **Backgrounds:** 1) **Di-boson**, $VV(V:W,Z,\gamma)$: Mainly WZ/γ and ZZ have large contribution where both V can decay leptonically.
 - 2) **Tri-boson**, $VVV(V:W,Z,\gamma)$: Mainly consider WWZ/γ , WWW and ZZZ. All vector bosons are supposed to decay leptonically.
 - 3) $t\bar{t}X_{1}(X; W, Z, \gamma, WW, t\bar{t})$: The fully leptonic decay mode of $t\bar{t}X$ can give us at last three lepton with at least one pair of μ with opposite charge.

Distributions



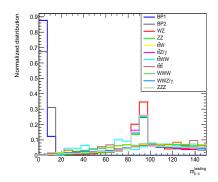




oduction 3HDM Srearch for signal Collider Analysis Summary and Conclusion

Signal and backgrounds

Distributions



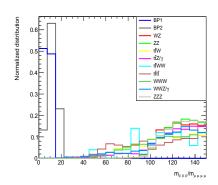


Figure: Normalized distribution of invariant mass of two leading muons and invariant mass of all muons fir signal BPs and backgrounds.

Results

Results

Cuts:

1) **Pre-selection Cut**: We are looking for events where we can have at least three or four muons in final state with no b - jet.

2) Cut-A:

- $m_{\mu\mu}^{leading}$ and $m_{\mu\mu}^{\Delta R_{min}}$ has to be less than 50 GeV.
- $m_{\mu\mu\mu}/m_{\mu\mu\mu\mu}$ has to be less than 70 GeV.

3) **Cut-B**:

- $m_{\mu\mu}^{leading}$ and $m_{\mu\mu}^{\Delta R_{min}}$ has to be less than 20 GeV.
- $m_{\mu\mu\mu}/m_{\mu\mu\mu\mu}$ has to be less than 30 GeV.
- $\Delta R_{\mu\mu}^{leading,sub-leading} < 1.0$ and $\Delta R_{\mu\mu}^{leading,sub-sub-leading} < 1.2$.
- ullet $\Delta\eta_{\mu\mu}^{leading,sub-leading} < 1.0$ and $\Delta\eta_{\mu\mu}^{leading,sub-sub-leading} < 1.0$.

duction 3HDM Srearch for signal Collider Analysis Summary and Conclusion

Results

Results

Datasets	Cross-section (fb)	Pre-selection Cut	Cut – A	Cut – B
BP1	6.961	17	16	16
BP2	3.733	59	58	58
WZ	163.4068	97691	9	0
ZZ	16.554	22614	2	0
WWW	0.248862	185	3	0
WWZ/γ	0.04978	96	1	0
ZZZ	9.3516×10^{-3}	16	0	0
t₹W	0.606	114	2	0
$t\bar{t}Z/\gamma$	0.3045	136	1	0
t₹WW	1.279×10^{-3}	0	0	0
tītī	1.51359×10^{-3}	0	0	0

Results

Introduction

Significance

• we calculated the projected significance (\mathcal{S}) in the $3\mu + \not\!\!\!E_T$ channel for each benchmark point, for **14 TeV LHC** with **3000 fb**⁻¹. The significance \mathcal{S} is defined as follows:

$$S = \sqrt{2[(S+B)\log(1+\frac{S}{B}) - S]}$$

The' AsimovPaper' (Cowan, Cranmer, Gross, Vitells, EPJC71 (2011) 1 - 19

Results

Significance

• we calculated the projected significance (\mathcal{S}) in the $3\mu + \not\!\!\!E_T$ channel for each benchmark point, for **14 TeV LHC** with **3000 fb**⁻¹. The significance \mathcal{S} is defined as follows:

$$S = \sqrt{2[(S+B)\log(1+\frac{S}{B}) - S]}$$

The'AsimovPaper' (Cowan, Cranmer, Gross, Vitells, EPJC71(2011)1 - 19

BP	S(Pre-selection)	$\mathcal{S}(Cut - A)$
BP1	0.05 σ	3.77 σ
BP2	0.17 σ	13.67σ

- with Cut B we will end up with signal only events
- $L = 300 \text{ fb}^{-1}$ also can give us fully background elimaned signals after Cut A itself.

Summary

Introduction

- Inert Doublet Model
 - a good DM model with rich phenomenology, however, very constrained.
- CP-Conserving in I(2+1)HDM
 - SM-like active sector: $H_3 \equiv h^{SM}$
 - The inert sector: $H_{1,2}, A_{1,2}, H_{1,2}^{\pm}, H_1 \to DM$
 - less constrained DM sector with low mass DM particle
 - New **Smoking-gun** signature at the LHC: m_{H_2} and m_{H_1} are close
 - Good signal significance in $3\mu + \not\!\! E_T$ channel over backgrounds at HL-LHC.

Thank you for your attaintion....

Summary and Conclusion

Back-up slides

BSMs to the rescue

Solution: Scalar extensions with a \mathbb{Z}_2 symmetry:

- 2HDM: SM + scalar doublet
 - Type-I, Type-II, ...: $\phi_1, \phi_2 \Rightarrow CPV, DM$
 - IDM I(1+1)HDM: ϕ_1 , $\phi_2 \Rightarrow DM$, CPV
- 3HDM: SM + 2 scalar doublets
 - Weinberg model: $\phi_1, \ \phi_2, \ \phi_3 \ \Rightarrow \ \mathsf{CPV}, \ \mathsf{DM}$
 - I(1+2)HDM: ϕ_1 , ϕ_2 , $\phi_3 \Rightarrow DM$, CPV
 - I(2+1)HDM: ϕ_1 , ϕ_2 , $\phi_3 \Rightarrow \text{CPV}$, DM

Dark Matter (DM)

around 25 % of the Universe is:

- cold
- non-baryonic
- neutral
- very weakly interacting
 - ⇒ Weakly Interacting Massive Particle
- stable due to the discrete symmetry

$$\underbrace{\text{DM DM} \rightarrow \text{SM SM}}_{\text{pair annihilation}}, \underbrace{\text{DM} \not\rightarrow \text{SM}, \dots}_{\text{stable}}$$

Higgs-portal DM

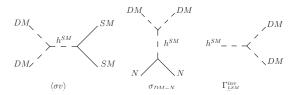
Simplest realisation: the SM with $\Phi_{SM} + Z_2$ -odd scalar S:

$$S \to -S$$
, SM fields \to SM fields

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}(\partial S)^{2} - \frac{1}{2}m_{DM}^{2}S^{2} - \lambda_{DM}S^{4} - \lambda_{hDM}\Phi_{SM}^{2}S^{2}$$

Higgs-portal interaction:

$\mathsf{SM}\ \mathsf{sector} \overset{\mathrm{Higgs}}{\longleftrightarrow} \mathsf{DM}\ \mathsf{sector}$



given by the same coupling

2HDM with CP-violation (DM)

The general scalar potential

$$V = \mu_{1}^{2}(\phi_{1}^{\dagger}\phi_{1}) + \mu_{2}^{2}(\phi_{2}^{\dagger}\phi_{2}) - \left[\mu_{3}^{2}(\phi_{1}^{\dagger}\phi_{2}) + h.c.\right]$$

$$+ \frac{1}{2}\lambda_{1}(\phi_{1}^{\dagger}\phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\phi_{2}^{\dagger}\phi_{2})^{2} + \lambda_{3}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{4}(\phi_{1}^{\dagger}\phi_{2})(\phi_{2}^{\dagger}\phi_{1})$$

$$+ \left[\frac{1}{2}\lambda_{5}(\phi_{1}^{\dagger}\phi_{2})^{2} + \lambda_{6}(\phi_{1}^{\dagger}\phi_{1})(\phi_{1}^{\dagger}\phi_{2}) + \lambda_{7}(\phi_{2}^{\dagger}\phi_{2})(\phi_{1}^{\dagger}\phi_{2}) + h.c.\right].$$

$$Z_{2} \text{ symmetry } \Rightarrow \lambda_{6} = \lambda_{7} = 0$$

The doublets composition with $\tan \beta = v_2/v_1$

$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{\nu_1 + h_1^0 + i a_1^0}{\sqrt{2}} \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{\nu_2 + h_2^0 + i a_2^0}{\sqrt{2}} \end{pmatrix}$$

CP-mixed mass eigenstates

2 × 2 charged mass-squared matrix

$$\left(\begin{array}{c} \phi_1^{\pm} \\ \phi_2^{\pm} \end{array}\right) \Rightarrow \left(\begin{array}{c} G^{\pm} \\ H^{\pm} \end{array}\right)$$

4 × 4 neutral mass-squared matrix

$$\begin{pmatrix} a_1^0 \\ h_1^0 \\ a_2^0 \\ h_2^0 \end{pmatrix} \Rightarrow \begin{pmatrix} G^0 \\ H_1 \\ H_2 \\ H_3 \end{pmatrix}$$

CPV severely constrained from SM data

The Inert Doublet Model (CPV)

Scalar potential V invariant under a \mathbb{Z}_2 -transformation:

$$Z_2: \phi_1 \to \phi_1, \phi_2 \to -\phi_2, \text{ SM fields} \to \text{SM fields}$$

$$\begin{split} V &= -\frac{1}{2} \left[m_{11}^2 \phi_1^\dagger \phi_1 + m_{22}^2 \phi_2^\dagger \phi_2 \right] + \frac{1}{2} \left[\lambda_1 \left(\phi_1^\dagger \phi_1 \right)^2 + \lambda_2 \left(\phi_2^\dagger \phi_2 \right)^2 \right] \\ &+ \lambda_3 \left(\phi_1^\dagger \phi_1 \right) \left(\phi_2^\dagger \phi_2 \right) + \lambda_4 \left(\phi_1^\dagger \phi_2 \right) \left(\phi_2^\dagger \phi_1 \right) + \frac{1}{2} \lambda_5 \left[\left(\phi_1^\dagger \phi_2 \right)^2 + \left(\phi_2^\dagger \phi_1 \right)^2 \right] \end{split}$$

- All parameters are real → no CP violation
- Only ϕ_1 couples to fermions
- The whole Lagrangian is explicitly Z_2 -symmetric

DM in the IDM

The Inert minimum

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v \end{array} \right), \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

Z₂-symmetry survives the EWSB

$$g_{Z_2} = diag(+1, -1)$$

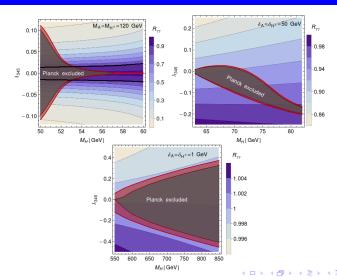
 $VEV = (v, 0)$

- ϕ_1 is active (plays the role of the SM-Higgs)
- ϕ_2 is "dark" or inert (with 4 dark scalars H, A, H^{\pm})

→ the lightest scalar is a candidate for the DM

$h ightarrow \gamma\gamma$ signal strength

(JHEP 09 (2013) 055)



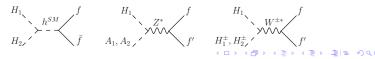
CP-conserving I(2+1)HDM

Dark Matter Annihilation

• annihilation through Higgs into fermions; dominant channel for $M_{DM} < M_h/2$

annihilation to gauge bosons; crucial for heavy masses

• coannihilation; when particles have similar masses



DM Annihilation Scenarios

(A) no coannihilation effects:

$$M_{H_1} < M_{H_2,A_1,A_2,H_1^{\pm},H_2^{\pm}}$$

(I) coannihilation with H_2 , $A_{1,2}$:

$$M_{H_1} pprox M_{A_1} pprox M_{H_2} pprox M_{A_2} < M_{H_1^{\pm}, H_2^{\pm}}$$

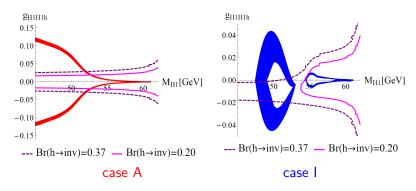
(G) coannihilation with H_2 , $A_{1,2}$, $H_{1,2}^{\pm}$:

$$M_{H_1} pprox M_{A_1} pprox M_{H_2} pprox M_{A_2} pprox M_{H_1^{\pm}, H_2^{\pm}}$$

(H) coannihilation with A_1, H_1^{\pm} :

$$M_{H_1} \approx M_{A_1} \approx H_1^{\pm} < M_{H_2,A_2,H_2^{\pm}}$$

LHC vs Planck $M_{DM} < M_h/2$



- $Br(h \rightarrow inv) < 37\% \& \Omega_{DM}h^2 \Rightarrow$
 - Case A: $M_{DM} \gtrsim 53 \,\text{GeV}$ Case I: most masses are OK

Masses and mixing angles

The CP-even neutral inert fields

The pair of inert neutral scalar gauge eigenstates, H_1^0, H_2^0 , are rotated by

$$R_{\theta_h} = \begin{pmatrix} \cos \theta_h & \sin \theta_h \\ -\sin \theta_h & \cos \theta_h \end{pmatrix}, \text{ with } \tan 2\theta_h = \frac{2\mu_{12}^2}{\mu_1^2 - \Lambda_{\phi_1} - \mu_2^2 + \Lambda_{\phi_2}}$$

into the mass eigenstates, H_1 , H_2 , with squared masses

$$\begin{split} m_{H_1}^2 &= \left(-\mu_1^2 + \Lambda_{\phi_1} \right) \cos^2 \theta_h + \left(-\mu_2^2 + \Lambda_{\phi_2} \right) \sin^2 \theta_h - 2\mu_{12}^2 \sin \theta_h \cos \theta_h, \\ m_{H_2}^2 &= \left(-\mu_1^2 + \Lambda_{\phi_1} \right) \sin^2 \theta_h + \left(-\mu_2^2 + \Lambda_{\phi_2} \right) \cos^2 \theta_h + 2\mu_{12}^2 \sin \theta_h \cos \theta_h, \\ \text{where} \quad \Lambda_{\phi_1} &= \frac{1}{2} \big(\lambda_{31} + \lambda_{31}' + 2\lambda_3 \big) v^2, \quad \Lambda_{\phi_2} &= \frac{1}{2} \big(\lambda_{23} + \lambda_{23}' + 2\lambda_2 \big) v^2. \end{split}$$

Masses and mixing angles

The charged inert fields

The pair of inert charged gauge eigenstates, ϕ_1^\pm,ϕ_2^\pm , are rotated by

$$R_{\theta_c} = \begin{pmatrix} \cos\theta_c & \sin\theta_c \\ -\sin\theta_c & \cos\theta_c \end{pmatrix}, \text{ with } \tan 2\theta_c = \frac{2\mu_{12}^2}{\mu_1^2 - \Lambda'_{\phi_1} - \mu_2^2 + \Lambda'_{\phi_2}}$$

into the mass eigenstates, H_1^\pm, H_2^\pm , with squared masses

$$\begin{split} m_{H_1^\pm}^2 &= \left(-\mu_1^2 + \Lambda_{\phi_1}'\right)\cos^2\theta_c + \left(-\mu_2^2 + \Lambda_{\phi_2}'\right)\sin^2\theta_c - 2\mu_{12}^2\sin\theta_c\cos\theta_c,\\ m_{H_2^\pm}^2 &= \left(-\mu_1^2 + \Lambda_{\phi_1}'\right)\sin^2\theta_c + \left(-\mu_2^2 + \Lambda_{\phi_2}'\right)\cos^2\theta_c + 2\mu_{12}^2\sin\theta_c\cos\theta_c,\\ \text{where} \quad \Lambda_{\phi_1}' &= \frac{1}{2}(\lambda_{31})v^2, \quad \Lambda_{\phi_2}' &= \frac{1}{2}(\lambda_{23})v^2. \end{split}$$

Masses and mixing angles

The CP-odd neutral inert fields

The pair of inert pseudo-scalar gauge eigenstates, A_1^0 , A_2^0 , are rotated by

$$R_{\theta_a} = \begin{pmatrix} \cos \theta_a & \sin \theta_a \\ -\sin \theta_a & \cos \theta_a \end{pmatrix}, \text{ with } \tan 2\theta_a = \frac{2\mu_{12}^2}{\mu_1^2 - \Lambda_{\phi_1}'' - \mu_2^2 + \Lambda_{\phi_2}''},$$

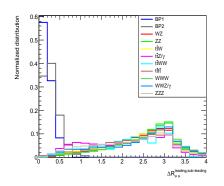
into the mass eigenstates, A_1, A_2 , with squared masses

$$\begin{split} m_{A_1}^2 &= \left(-\mu_1^2 + \Lambda_{\phi_1}''\right)\cos^2\theta_a + \left(-\mu_2^2 + \Lambda_{\phi_2}''\right)\sin^2\theta_a - 2\mu_{12}^2\sin\theta_a\cos\theta_a, \\ m_{A_2}^2 &= \left(-\mu_1^2 + \Lambda_{\phi_1}''\right)\sin^2\theta_a + \left(-\mu_2^2 + \Lambda_{\phi_2}''\right)\cos^2\theta_a + 2\mu_{12}^2\sin\theta_a\cos\theta_a, \\ \text{where} \quad \Lambda_{\phi_1}'' &= \frac{1}{2}(\lambda_{31} + \lambda_{31}' - 2\lambda_3)v^2, \quad \Lambda_{\phi_2}'' &= \frac{1}{2}(\lambda_{23} + \lambda_{23}' - 2\lambda_2)v^2. \end{split}$$

Dependent parameters in terms of input parameters

$$\begin{split} &\Lambda_{\phi_2} = \frac{v^2 g_{H_1 H_1 h}}{4 (\sin^2 \theta_h + n \cos^2 \theta_h)}, \\ &\Lambda'_{\phi_2} = \frac{2 \mu_{12}^2}{(1-n) \tan 2 \theta_c} + \mu_2^2, \\ &\Lambda''_{\phi_2} = \frac{2 \mu_{12}^2}{(1-n) \tan 2 \theta_a} + \mu_2^2, \\ &\mu_2^2 = \Lambda_{\phi_2} - \frac{m_{H_1}^2 + m_{H_2}^2}{1+n}, \\ &\mu_{12}^2 = \frac{1}{2} \sqrt{(m_{H_1}^2 - m_{H_2}^2)^2 - (-1+n)^2 (\Lambda_{\phi_2} - \mu_2^2)^2}, \\ &\lambda_2 = \frac{1}{2 v^2} (\Lambda_{\phi_2} - \Lambda''_{\phi_2}), \\ &\lambda_{23} = \frac{2}{v^2} \Lambda'_{\phi_2}, \\ &\lambda'_{23} = \frac{1}{v^2} (\Lambda_{\phi_2} + \Lambda''_{\phi_2} - 2\Lambda'_{\phi_2}) \end{split}$$

Distributions



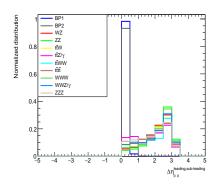


Figure: Normalized Distribution of ΔR and $\Delta \eta$ of leading and sub-leading muon for signal BPs and backgrounds.

Asimov estimate for discovery significance in counting experiment

Discovery significance for $n \sim \text{Poisson}(s + b)$

Consider the case where we observe n events, model as following Poisson distribution with mean s + b.

Here assume *b* is known.

- 1) For an observed n, what is the significance Z_0 with which we would reject the s = 0 hypothesis?
- 2) What is the expected (or more precisely, median) Z_0 if the true value of the signal rate is s?

Taken from the slides' A simove stimate for discovery significance in counting experiment' by Glen Cowan) 1-19

Gaussian approximation for Poisson significance

For large s + b, $n \to x \sim \text{Gaussian}(\mu, \sigma)$, $\mu = s + b$, $\sigma = \sqrt{(s + b)}$.

For observed value x_{obs} , p-value of s = 0 is $Prob(x > x_{obs} | s = 0)$,:

$$p_0 = 1 - \Phi\left(\frac{x_{\text{obs}} - b}{\sqrt{b}}\right)$$

Significance for rejecting s = 0 is therefore

$$Z_0 = \Phi^{-1}(1 - p_0) = \frac{x_{\text{obs}} - b}{\sqrt{b}}$$

Expected (median) significance assuming signal rate s is

$$\mathrm{median}[Z_0|s+b] = \frac{s}{\sqrt{b}}$$

 $Taken from the slides' A simove stimate for discovery significance in counting experiment' by {\it Glen Cowan}) 1-19$

Better approximation for Poisson significance

Likelihood function for parameter s is

$$L(s) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$

or equivalently the log-likelihood is

$$\ln L(s) = n \ln(s+b) - (s+b) - \ln n!$$

Find the maximum by setting $\frac{\partial \ln L}{\partial s} = 0$

gives the estimator for s: $\hat{s} = n - b$

Takenfrom the Slides' Asimovestimate for discovery significance in counting experiment' by GlenCowan) 1-19

Approximate Poisson significance (continued)

The likelihood ratio statistic for testing s = 0 is

$$q_0 = -2\ln\frac{L(0)}{L(\hat{s})} = 2\left(n\ln\frac{n}{b} + b - n\right)$$
 for $n > b$, 0 otherwise

For sufficiently large s + b, (use Wilks' theorem),

$$Z_0 \approx \sqrt{q_0} = \sqrt{2\left(n\ln\frac{n}{b} + b - n\right)}$$
 for $n > b$, 0 otherwise

To find median[$Z_0|s+b$], let $n \to s+b$ (i.e., the Asimov data set):

$$\mathrm{median}[Z_0|s+b] \approx \sqrt{2\left((s+b)\ln(1+s/b)-s\right)}$$

This reduces to s/\sqrt{b} for s << b.

 $Taken from the slides' A simove stimate for discovery significance in counting experiment' by {\it Glen Cowan}) 1-19$