

20th Planck Conference from Kazimierz to Warsaw WARSAW OCHOTA 22-27 MAY 2017

Update on R-Parity violation at the LHC

BASED ON ARXIV:170(5 + i).XXXXX, $i = \{0, 1, 2\}$

MANUEL E. KRAUSS

in collaboration with

H. DREINER, D. DERCKS, T. OPFERKUCH AND A. REINERT

Bonn University and Bethe Center for Theoretical Physics

May 24, 2017

Reminder: R-Parity and R-Parity violation

R-Parity:
$$R = (-1)^{3(B-L)+2s}$$

MSSM with R-Parity conservation (RPV):

$$W_{\text{MSSM}} = \epsilon_{ab} \left[(Y_u)_{ij} \hat{Q}_i^a \hat{H}_u^b \hat{U}_j + (Y_d)_{ij} \hat{Q}_i^a \hat{H}_d^b \hat{D}_j \right. \\ \left. + (Y_e)_{ij} \hat{L}^a \hat{H}_d^b \hat{E}_j - \mu \hat{H}_d^a \hat{H}_u^b \right]$$

additional *R*-Parity-violating (RPV) terms:

$$W_{\rm RPV} = \epsilon_{ab} \left[\frac{1}{2} \lambda_{ijk} \hat{L}^a_i \hat{L}^b_j \hat{\bar{E}}_k + \lambda'_{ijk} \hat{L}^a_i \hat{Q}^b_j \hat{\bar{D}}_j - \kappa_i \hat{L}^a_i \hat{H}^a_u \right] \\ + \frac{1}{2} \epsilon_{xyz} \lambda''_{ijk} \hat{\bar{U}}^x_i \hat{\bar{D}}^y_j \hat{\bar{D}}^z_k$$

$W_{\rm RPV} = \frac{1}{2}\lambda \, LL\bar{E} + \lambda' \, LQ\bar{D} + \frac{1}{2}\lambda'' \, \bar{U}\bar{D}\bar{D}$

Consequences of R-Parity violation

New interactions with respect to RPC SUSY:

$$\mathcal{L}_{LL\bar{E}} = -\frac{1}{2} \lambda_{ijk} \Big(\tilde{\ell}_{Rk}^* \nu_i \ell_j + \tilde{\nu}_i \ell_j \bar{\ell}_k + \tilde{\ell}_{Lj} \bar{\ell}_k \nu_i - (j \leftrightarrow i) \Big) + \text{h.c.}$$

$$\mathcal{L}_{LQ\bar{D}} = -\lambda'_{ijk} \Big(\tilde{d}_{Rk}^* \nu_i d_j + \frac{\tilde{\nu}_i d_j \bar{d}_k}{\bar{d}_k} + \tilde{d}_{Lj} \bar{d}_k \nu_i - \tilde{d}_{Rk}^* \ell_i u_j - \tilde{u}_{Lj} \bar{d}_k \ell_i - \tilde{\ell}_{Li} u_j \bar{d}_k \Big) + \text{h.c.}$$

$$\mathcal{L}_{\bar{U}\bar{D}\bar{D}} = -\frac{1}{2} \lambda'_{ijk} \epsilon_{pqr} \Big(\frac{\tilde{u}_{Ri}^{p*} \bar{d}_j^q \bar{d}_k^r}{\bar{d}_k^q} + \tilde{d}_{Rj}^{q*} \bar{u}_i^p \bar{d}_k^r + \tilde{d}_{Rk}^{r*} \bar{u}_i^p \bar{d}_j^q \Big) + \text{h.c.}$$

WARSAW, PLANCK 2017, MAY 24, 2017

$W_{\rm RPV} = \frac{1}{2}\lambda \, LL\bar{E} + \lambda' \, LQ\bar{D} + \frac{1}{2}\lambda'' \, \bar{U}\bar{D}\bar{D}$

Consequences of R-Parity violation

sfermions couple to two fermions violates baryon and lepton number

▶ Proton decay ⇒ tight constraints on combinations of RPV operators

e.g.
$$\lambda'_{11k} \cdot \lambda''_{11k} \lesssim 2 \cdot 10^{-27} \left(\frac{m_{\tilde{d}_k}}{100 \text{ GeV}}\right)^2$$

Does *R*-Parity *have* to be imposed?

$W_{\rm RPV} = \frac{1}{2}\lambda \, LL\bar{E} + \lambda' \, LQ\bar{D} + \frac{1}{2}\lambda'' \, \bar{U}\bar{D}\bar{D}$

Consequences of R-Parity violation

sfermions couple to two fermions violates baryon and lepton number

▶ Proton decay ⇒ tight constraints on combinations of RPV operators

e.g.
$$\lambda'_{11k} \cdot \lambda''_{11k} \lesssim 2 \cdot 10^{-27} \left(\frac{m_{\tilde{d}_k}}{100 \text{ GeV}}\right)^2$$

Does *R*-Parity *have* to be imposed?

No.

Other discrete symmetries as good as R-Parity: baryon triality, lepton parity [Dreiner,Luhn,Thormeier '05; Smirnov,Vissani '96]

 \Rightarrow If SUSY is taken seriously, then so should RPV-SUSY

$W_{\rm RPV} = \frac{1}{2}\lambda \, LL\bar{E} + \lambda' \, LQ\bar{D} + \frac{1}{2}\lambda'' \, \bar{U}\bar{D}\bar{D}$

LHC PHENOMENOLOGY

SUSY with conserved R-Parity

- ▶ pair-production of SUSY particles
- \blacktriangleright SUSY particles cascade-decay down to LSP, LSP escapes
- $\Rightarrow\,$ High-energetic objects from decays, no resonances
- \Rightarrow Large amount of missing transverse momentum (MET)

SUSY with broken R-Parity

- ▶ resonant sfermion production possible
- LSP is unstable, many different decay possibilities depending on RPV operator
- ▶ (Possibly displaced vertices)
- $\Rightarrow\,$ MET reduced or absent; resonances or double-resonances
- $\Rightarrow\,$ LHC pheno different for almost every coupling combination

$W_{\rm RPV} = \frac{1}{2}\lambda \, LL\bar{E} + \lambda' \, LQ\bar{D} + \frac{1}{2}\lambda'' \, \bar{U}\bar{D}\bar{D}$

OTHER LSPS. WHAT'S THE DEAL?

RPC-MSSM: forbid every param. space with non-neutralino LSP RPV: Even with CMSSM boundaries, almost any LSP is possible

LHC pheno for instance: Produce $pp \to \tilde{t}\tilde{t}^*$

1. \tilde{t} LSP: $\tilde{t}^* \to bs$; double-dijet resonance including *b*-jets 2. $\tilde{\chi}_1^0$ LSP: $\tilde{t}^* \to \bar{t} \tilde{\chi}_1^0 \to \bar{t} t bs$; many jets, possibly leptons & MET 3. $\tilde{\tau}$ LSP: $\tilde{t}^* \to \bar{t} \tilde{\chi}_1^0 \to \bar{t} \bar{\tau} \tilde{\tau}$; $\tilde{\tau} \to \nu b bs$; many jets, (τ) leptons, MET

5

$W_{\rm RPV} = \frac{1}{2}\lambda \, LL\bar{E} + \lambda' \, LQ\bar{D} + \frac{1}{2}\lambda'' \, \bar{U}\bar{D}\bar{D}$

OTHER LSPS. WHAT'S THE DEAL?

Manuel E. Krauss

5

Setup

- ▶ consider small RPV couplings
 - \Rightarrow same spectrum as RPC but with prompt LSP decay
 - \Rightarrow directly compare RPC and RPV models
- ► take CMSSM boundary conditions, usual setup: $\tan \beta = 30, \ A_0 = -2M_0$
- ▶ use CheckMATE and all implemented searches [Drees et al. '13]

Setup

- ▶ consider small RPV couplings
 - \Rightarrow same spectrum as RPC but with prompt LSP decay
 - \Rightarrow directly compare RPC and RPV models
- ► take CMSSM boundary conditions, usual setup: $\tan \beta = 30, \ A_0 = -2M_0$
- ▶ use CheckMATE and all implemented searches [Drees et al. '13]

RPC-CMSSM:

6 Manuel E. Krauss

LLE-RPV vs RPC

atlas_conf_2013_036 $_{4\ell + MET}$	cms_1405_7570	atlas_1403_4853	atlas_1501_07110 M + Higgs + MET
atlas_1403_5294	atlas_1402_7029	atlas_1407_0583	cms_1504_03198 1k + ≥ 3j met ≥ 16 + WET
atlas_1407_0600 0 - 1ℓ + 3b + MET	atlas_conf_2013_061	atlas_conf_2013_024	atlas_1405_7875
atlas_1308_1841 $0\ell + \ge 7j + MET$	atlas_conf_2013_062	atlas_1404_2500 3ℓ or same-sign 2ℓ	atlas_conf_2014_056
atlas_conf_2013_031			

Manuel E. Krauss

7

LLE-RPV vs RPC

Electroweakino-pair-production dominates the discovery channels!

- $\tilde{\chi}_1^0$ LSP: $\tilde{\chi}_1^0 \to \ell \tau \nu$ • $\tilde{\tau}$ LSP: $\tilde{\chi}_1^0 \to \tau \tilde{\tau}; \tilde{\tau} \to \ell \nu$

LQD-RPV vs RPC

- ▶ bounds comparable to RPC
- $\tilde{\chi}_1^0$ LSP: $\tilde{\chi}_1^0 \to \mu j j / \nu j j$
- $\quad \bullet \ \, \tilde{\tau} \ \, \text{LSP:} \ \, \tilde{\chi}_1^0 \to \tau \tilde{\tau}; \ \, \tilde{\tau} \to \mu \nu / \tau \nu \\ \text{(via RGE-generated } \lambda_{233})$

- ► more constrained than RPC for large M₀: b-tags
- $\tilde{\chi}_1^0$ LSP: $\tilde{\chi}_1^0 \to ebj/\nu bj$
- $\tilde{\tau}$ LSP: $\tilde{\chi}_1^0 \to \tau \tilde{\tau};$ $\tilde{\tau} \to \tau ebj/\tau \nu bj$

UDD-RPV vs RPC

atlas_conf_2013_036 $_{4\ell + MET}$	cms_1405_7570	atlas_1403_4853	atlas_1501_07110
atlas_1403_5294	atlas_1402_7029	atlas_1407_0583	$\begin{array}{c} cms_{-1504_{-03198}} \\ 18 + 23j \ incl \geq 1b + MET \end{array}$
atlas_1407_0600 0 - 1ℓ + 3b + MET	atlas_conf_2013_061	atlas_conf_2013_024	atlas_1405_7875
atlas_1308_1841 $0\ell + \ge 7j + MET$	atlas_conf_2013_062	atlas_1404_2500 31 or same-sign 21	atlas_conf_2014_056
atlas_conf_2013_031			

10 Manuel E. Krauss

CONCLUSIONS

- Searches for RPV at the LHC need to consider much larger variety of final states than searches for RPC SUSY
- ► Good interaction between theory and experimental community: many different RPV-motivated scenarios considered
- RPV models are well-covered at the LHC Contrary to the common lore, bounds are comparable to RPC SUSY

Thank you.

CRITICISM

- ▶ In gluino LSP scenarios with UDD: exp. analyses often consider all λ'' couplings on at the same time \Rightarrow necessarily signal regions sensitive to tops dominate the exclusion bounds. It's not clear how the bounds change for, e.g., λ''_{121} .
- ▶ Little effort put into stau LSP scenarios

LARGE RPV COUPLINGS

For non-coloured and non-stau LSPs, the LHC phenomenology is usually similar compared to the neutralino LSP:

coloured prod. \rightarrow decay to neutralino \rightarrow decay to on-shell LSP \rightarrow ... coloured prod. \rightarrow decay to neutralino \rightarrow decay via off-shell LSP \rightarrow ...