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Its discovery and subsequent study of its properties at the LHC has provided a first 
portrait of the electroweak symmetry breaking mechanism 

The great success of the Higgs Boson

It ensures the calculability of the Standard Model of particle physics at high energies
 
.
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With MH = 125 GeV, its mass is at a lucky spot to maximally allow us to measure 
its interactions with other particles

The LHC data favors a SM-like Higgs boson 31 11. Status of Higgs Boson Physics

Figure 11.4: Combined measurements by ATLAS and CMS of the products ‡ · BR, normalised
to the SM predictions, for the five main production and five main decay modes.

higgs:fig:MuGeneral

compatibility of the signal with the SM Higgs boson. Indeed, it is sensitive to any deviation from1184

the SM Higgs boson couplings provided that these deviations do not cancel overall. The full Run 11185

combination determines the global signal strength to be1186

µ = 1.09 ± 0.11 = 1.09 ± 0.07 (stat.) ± 0.04 (expt.) ± 0.03 (th.bkg.) ± 0.07 (th. sig.), (11.13)

where the statistical, experimental uncertainties as well as the theoretical uncertainties on the1187

background and on the signal are reported separately. The ATLAS Run 2 combination of the1188

global signal strength yields [198]:1189

µ = 1.06 ± 0.07 = 1.06 ± 0.04 (stat.) ± 0.03 (exp.) ± 0.02 (th.bkg.) +0.05
≠0.04 (th. sig.), (11.14)

while the CMS Run 2 combination yields [199]:1190

µ = 1.02 +0.07
≠0.06 = 1.02 ± 0.04 (stat.) ± 0.04 (th) ± 0.04 (exp.). (11.15)

DRAFT 30th August, 2023 1:03pm- Not for public distribution
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The measured coupling modifiers of the Higgs boson to fermions and heavy gauge bosons, observed by the

CMS Collaboration, as functions of fermion or gauge boson mass, where v is the vacuum expectation value

of the Higgs field. For gauge bosons, the square root of the coupling modifier is plotted, to keep a linear

proportionality to the mass, as predicted in the SM. The p-value with respect to the SM prediction is 37.5%.

Taken from The CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after

the discovery,” Nature 607, no. 7917, 60-68 (2022) [arXiv:2207.00043 [hep-ex]].

Nature 607, no. 7917, 52-59; 60-68 (2022) [arXiv:2207.00092]; [arXiv:2207.00043]



• Furthermore, once you include the effects of the Higgs coupling to fermions 
(especially to the top quark), the Higgs potential shows an instability
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The SM does not explain the origins of electroweak symmetry 
breaking

We put by hand the condition for EWSB V (⇥) = �m2|⇥|2 + �|⇥|4

What is behind the EWSB mechanism?
Radiative Breaking (like in Supersymmetry) or Compositeness

• The SM does not explain how the Higgs mass parameter and self-coupling are 
determined

The SM does not explain the origins of electroweak symmetry 
breaking
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LHC Precision Higgs Measurements and Di-Higgs Production
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Figure 1. Projected uncertainties on ki, combining
ATLAS and CMS: total (grey box), statistical (blue),
experimental (green) and theory (red). From Ref. [2].

These coupling measurements assume the absence of sizable
additional contributions to GH . As recently suggested, the patterns
of quantum interference between background and Higgs-mediated
production of photon pairs or four leptons are sensitive to GH .
Measuring the off-shell four-fermion final states, and assuming
the Higgs couplings to gluons and ZZ evolve off-shell as in the
SM, the HL-LHC will extract GH with a 20% precision at 68% CL.
Furthermore, combining all Higgs channels, and with the sole
assumption that the couplings to vector bosons are not larger than
the SM ones (kV  1), will constrain GH with a 5% precision at
95% CL. Invisible Higgs boson decays will be searched for at
HL-LHC in all production channels, VBF being the most sensitive.
The combination of ATLAS and CMS Higgs boson coupling mea-
surements will set an upper limit on the Higgs invisible branching
ratio of 2.5%, at the 95% CL. The precision reach in the mea-
surements of ratios will be at the percent level, with particularly
interesting measurements of kg/kZ, which serves as a probe of
new physics entering the H ! gg loop, can be measured with an
uncertainty of 1.4%, and kt/kg, which serves as probe of new
physics entering the gg ! H loop, with a precision of 3.4%.

A summary of the limits obtained on first and second gen-
eration quarks from a variety of observables is given in Fig. 2
(left). It includes: (i) HL-LHC projections for exclusive decays of
the Higgs into quarkonia; (ii) constraints from fits to differential
cross sections of kinematic observables (in particular pT); (iii)
constraints on the total width GH relying on different assumptions
(the examples given in the Fig. 2 (left) correspond to a projected limit of 200 MeV on the total width from the mass shift
from the interference in the diphoton channel between signal and continuous background and the constraint at 68% CL on the
total width from off-shell couplings measurements of 20%); (iv) a global fit of Higgs production cross sections (yielding the
constraint of 5% on the width mentioned herein); and (v) the direct search for Higgs decays to cc using inclusive charm tagging
techniques. Assuming SM couplings, the latter is expected to lead to the most stringent upper limit of kc / 2. A combination of
ATLAS, CMS and LHCb results would further improve this constraint to kc / 1.

The Run 2 experience in searches for Higgs pair production led to a reappraisal of the HL-LHC sensitivity, including several
channels, some of which were not considered in previous projections: 2b2g , 2b2t , 4b, 2bWW, 2bZZ. Assuming the SM Higgs

Figure 2. Left: Summary of the projected HL-LHC limits on the quark Yukawa couplings. Right: Summary of constraints on
the SMEFT operators considered. The shaded bounds arise from a global fit of all operators, those assuming the existence of a
single operator are labeled as "exclusive". From Ref. [2].
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High Luminosity LHC Projections  (2038)

A powerful tool to explore new physics needed to 
explain many particle physics topics

This could include other Higgs bosons, new particles, 
new forces, and connections with invisible sectors

 with 30 times more data at slightly higher energies

• Combination of searches in 
bbττ, bbγγ and bbbb final 
states


• mX range: 251 GeV to 3 TeV


• Complementary sensitivity 
ranges of the three searches


• mX = 1.1 TeV


• 3.2 (2.1) local (global) 
significance

X→HH
Higgs boson pair production

14

bbγγ bbττ bbbb

DiHiggs overview: Marco Valente, Wed 10:30am

Non-Resonant H(bb)H(bb)

Motivations
o Probe the Higgs trilinear coupling
o VBF HH also sensitive to %2! (HHVV)
o Probe also potential BSM terms

Analysis feature & main selection
o Two AK8 jets, utilize 

DNN “ParticleNet”
X->bb tagger

May 19, 2022 21
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Gluon Fusion (ggF)
Vector boson fusion (VBF)
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HH → bbττ and HH → bbbb

23

• Combine large BR & good signatures
- BRSM(HH → bbττ) = 7.4%  ⇒  ~320 events in 138 fb-1  
- BRSM(HH → bbbb) = 33%  ⇒  ~1400 events in 138 fb-1

bbττ bbbb boosted

σggF+VBF  
/σSM

<3.3 (5.2) <9.9 (5.1)

σVBF/σSM <124 (154) <728 (409)

0.62 < κ2V < 1.41  
(0.66 < κ2V < 1.37) @ 95% CL

HH

1428th February 2020 Katharine Leney

All HH decay 
modes covered, 

either by 
targeted 

analyses, or by 
multilepton 

analysis (covering 
multi-!/τ/γ final 

states).

Gluon fusion   
σ = 31.05 fb 

Self-coupling, λ 

VBF 
σ = 1.726 fb 

VVHH coupling, c2V St
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Also X→SH (S = scalar, m≠125 GeV)

Close links with 
LHC-HH group 

re theory 
developments, 
and benchmark 

BSM models

-1.8 < κλ < 8.8  
(-3 < κλ < 9.9)  

@ 95% CL

   CMS-B2G-22-003 (submitted to PRL)

   CMS-PAS-HIG-20-010

⇒Currently best observed (expected) κλ limits from      bbττ+bbγγ combination: -1.0 < κλ < 6.6 (-1.2 < κλ < 7.2) 

⇒      bbγγ observed (expected) κλ limits: -3.3 < κλ < 8.5 (-2.5 < κλ < 8.2) [JHEP 03 (2021) 257]
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HH → bbττ

HH → bbbb boosted

(all other couplings fixed to SM)

May 2022

March 2022

+ higher order  
EFT operators 

Non-Resonant H(bb)H(bb)

Motivations
o Probe the Higgs trilinear coupling
o VBF HH also sensitive to %2! (HHVV)
o Probe also potential BSM terms

Analysis feature & main selection
o Two AK8 jets, utilize 

DNN “ParticleNet”
X->bb tagger
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• can shed light on understanding the Higgs potential and the EW phase transition
• may relate to the flavor structure and new sources of light-fermions-Higgs couplings

• Enhanced di-Higgs production being probed at LHC
HH Production Limits Run 2 

13/09/23  Slawek Tkaczyk Scalars 2023 23

Nature 607 (2022) 60-68
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Limits on Higgs boson self-interaction kl and quartic coupling k2V (VVHH)
SM values assumed for H modifier couplings to t and V  

Constrain on Higgs self coupling modifier kl
-1.24 < kl < 6.49

Constrain on Higgs coupling modifier k2V
-0.67 < k2V < 1.38
K2V=0 excluded with 6.6s significance

ATLAS Higgs self-coupling results
• Higgs self-interaction can be measured via HH production

• 103 times more rare than single Higgs processes

• Allows us to probe the shape of the Higgs potential


• Many different channels analyzed

• Sensitivity better than 3x the SM

https://physics.aps.org/articles/v8/108

22

Phys. Lett. B 843 (2023) 137745
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What can entanglement tell us about the possibility and 
properties of an extended Higgs sector, e.g. 2HDM?
• In this talk I will use entanglement to explore the possibility that there are two 

SU(2) Higgs doublets Φa,  a = 1,2

• Each Higgs doublet has a charged and a neutral field
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Maximal Symmetry in 2HDM

Two-Higgs-Doublet Model
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• I will treat the two charged components as defining one qubit, and the two neutral 
components as describing a second qubit

• I will look at the behavior of the S-Matrix when performing a tree level charged-
neutral Higgs boson scattering

•  I will relate the suppression of entanglement to an emergent approximate SO(8) 
symmetry in this 2HDM and explore its connection with LHC data
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Qubits
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• The simplest nontrivial quantum system (2-dim. Hilbert space)
• Call the two basis states      and 
• A qubit state is in general a quantum superposition of them
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• You can think of the two angles as latitude and longitude  
of the surface of a sphere, called the Bloch sphere

• You can represent the basis states by 2-dim vectors:
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Qubits
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• The simplest nontrivial quantum system (2-dim. Hilbert space)
• Call the two basis states      and 
• A qubit state is in general a quantum superposition of them
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• You can think of the two angles as latitude and longitude  
of the surface of a sphere, called the Bloch sphere

Quantum gates
• Starting from any single qubit state you can apply a unitary gate operation that 

rotates you to some other state on the surface of the Bloch sphere
• For example, the one qubit Hadamard gate H takes the |0> state to the |+> state, 

and the |1>  state to the |-> state, where



Quantum entanglement
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• A quantum state of two or more qubits can be entangled, meaning that the 
state cannot be written as a tensor product of single qubit states

• For two qubits a basis for entangled states is the four Bell states: 

Each of these states is maximally entangled, meaning that each qubit is sharing 
100% of the information about its quantum state with the other qubit 



Concurrence as Entanglement Measure of two qubits

9/16/239

We can write an arbitrary two qubit state as a 4-vector in the computational basis
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|00i, |01i, |10i, |11i

such that the 
density matrix is

Doing the partial trace over the second qubit gives:
From which we can compute        , 
which is an indicator of entanglement:
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Tr⇢21

If then ρ1 is a mixed state and |ψ> is an entangled state
We can define a measure of entanglement of two qubits by the “concurrence” Δ 
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Tr⇢21 < 1

Like the von Neumann entropy                     , the concurrence has the property that it 
vanishes for a tensor product state and equals 1 for a maximally entangled Bell state
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Measure of Entanglement Power of a Unitary Operator 
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We are interested in the ability of a quantum operator U to generate entanglement

Its ”entanglement power” is defined averaging over all direct product states that U 
can act upon, averaging over each Bloch sphere Zanardi, Phys. Rev. A 63, 040304 (2001).
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E(U) = �(U | A> ⌦| B>)

Operators that can be written as product of single-qubit quantum gates V do not 
generate entanglement.

This defines an equivalent class among two qubit operators : U ~ U’  if U = V1U’ V2

Operators in the same equivalent class can have the same entanglement power

There are exactly two distinct equivalence classes of unitaries that are minimally 
entangling, i.e., for which the entanglement power vanishes:    

Low, Mehen, Phys. Rev. D 104, 074014 (2021)

2

prehensive details can be found in Refs. [3, 4].
We start with two distinguishable qubits, Alice (A) and

Bob (B), each with its own basis vectors {|1iI , |2iI}, I =
A,B. It is conventional to define the computation basis
{|11i, |12i, |21i, |22i}, where |iji = |iiA ⌦ |jiB . There
are several quantitative measures of entanglement in two-
qubit systems [20], although Ref. [3] showed that all of
them are related to the concurrence � [21, 22], which for
a normalized state | i = c11|11i + c21|21i + c12|12i +
c22|22i is defined as

�( ) = 2|c11c22 � c12c21| . (1)

The concurrence has a minimum at 0, if | i is not entan-
gled, and a maximum at 1 if it is maximally entangled.
Other commonly employed entanglement measures in-
clude the von Neumann entropy EvN (⇢) = �Tr(⇢A ln ⇢A)
and the linear entropy EL(⇢) = �Tr[⇢A(⇢A � 1)], where
⇢ = | ih | is the density matrix and ⇢A/B = TrB/A(⇢)
is the reduced density matrix for Alice/Bob.

Entanglement is a property of quantum states. Never-
theless we are more interested in the ability of a quantum
operator U to generate entanglement. In this regard, the
entanglement power of a unitary operator is defined by
averaging over all direct product states that U acts upon
[23, 24]:

�(U) = �(U | Ai ⌦ | Bi) , (2)

where the average is over each Bloch sphere. Importantly,
local operators which can be written as the product of
singlet-qubit quantum gates, V = UA⌦UB do not gener-
ate entanglement. This defines an equivalent class among
the two-qubit gates,

U ⇠ U 0 , if U = V1U
0V2 . (3)

Operators in the same equivalent class have the same
entanglement power. Classification of all non-local, and
hence entanglement generating operators in a two-qubit
system has been achieved long ago [20, 25, 26]. However,
for our purpose we focus on entanglement suppressing
operators, which consist of only the Identity gate and the
SWAP gate [3], as well as their equivalent classes. In the
computational basis they are defined by 1 |iji = |iji and
SWAP |iji = |jii. We will represent equivalent classes of
1 and SWAP by [1] and [SWAP], respectively.

In low-energy QCD, non-relativistic np scattering is
dominated by the s-wave and the S-matrix can be written
as [3]

S =
1

2

�
e2i�1 + e2i�0

�
1+

1

2

�
e2i�1 � e2i�0

�
SWAP , (4)

where �0 and �1 are the scattering phases in the 1S0 and
3S1 channels, respectively. Then, Alice and Bob are the
spin-1/2 proton and neutron, respectively. One can see
from Eq. (4) that S / 1 if �0 = �1 and S / SWAP if
|�0��1| = ⇡/2. The observation in Ref. [2] is that �0 = �1
corresponds to Wigner’s SU(4)sm spin-flavor symmetry

[5, 6] and |�0 � �1| = ⇡/2 gives rise to the Schrödinger
symmetry [7, 8]. Both are emergent symmetries not
present in the fundamental QCD Lagrangian.

III. 2HDM ESSENTIALS

In 2HDM there are two hypercharge-one, SU(2) dou-
blet fields �a = (�+

a
,�0

a
)T , a = 1, 2, and the most general

potential is given by, following the notation of Ref. [27],

V = m2
1�
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��7(�
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2�2)(�

†
1�2) + h.c.

i
. (5)

For simplicity we assume CP conservation and �i are real
parameters, although our results can be easily general-
ized to the CP-violating case. We also assume a U(1)em-
preserving vacuum, leading to two scalar VEVs, v1 and
v2, that are real and non-negative, with (v21 + v22)

1/2
⌘

v = 246 GeV. We define t� = v2/v1 � 0, 0  �  ⇡/2,
such that c� ⌘ cos� = v1/v and s� ⌘ sin� = v2/v.
Before considering the couplings of the two Higgs dou-

blets to fermions, the flavor quantum number of Higgs
doublets is not well-defined. This is because �1 and
�2 have identical SM quantum numbers and one is free
to redefine the scalar fields by a global U(2) rotation
of ~� = (�1,�2)T , which leaves the scalar kinetic term
invariant, ~� ! ~�0 = U ~�, U†

U = I. Parameters ap-
pearing in Eq. (5) are not invariant under U(2) rota-
tions, whereas the potentials related by U(2) rotations
are physically equivalent. One can remove the U(2) re-
dundancy by introducing couplings to fermions. That
is, once Yukawa couplings are introduced, flavor can be
defined. For example, in type II 2HDMs [28, 29], one
doublet couples to the up-type fermions while the other
couples to the down-type fermions, thereby allowing us
to distinguish the two doublets. Another choice of basis,
which is convenient for the alignment limit [14–17], is the
Higgs basis [30], defined by (H1, H2) with the property:
hH0

1 i = v/
p
2 and hH0

2 i = 0. In the Higgs basis the scalar
potential is the same as in Eq. (5) but with the coe�-
cients {m2

1,m
2
2,m

2
12} ! {Y1, Y2, Y3} and �i ! Zi. The

minimziation of scalar potential gives Y1 = �Z1v2/2 and
Y3 = �Z6v2/2. Making a U(2) rotation corresponds to
single-qubit operation and will not change the entangle-
ment power of the S-matrix.
The alignment limit, defined as when the scalar h ⌘

Re(H0
1 ), coincides with the 125 GeV mass eigenstate. In

this case h, which carries the full VEV, couples to the
massive gauge bosons with the SM strength when the
gauge coupling is turned on. It is shown in Refs. [14–17]
that the alignment is achieved by the condition,

Z6 = 0 . (6)
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Simple example: low energy neutron-proton scattering
To see the relation between minimal entanglement and “accidental” symmetries of the 
system, consider low energy np scattering

      

9/16/2311

For low energies the s-wave scattering dominates, so the only angular momentum 
dependence is from the two spins, each of which can be represented as a qubit state

The total angular momentum operator for the two-qubit 
system can be written in terms of Pauli matrices:

The scattering has two spin channels, 
the singlet 1S0 and the triplet 3S1

Minimal Entangler and Emergent Symmetry
Beane, Kaplan, Klco, Savage, arXiv:1812.03138



Simple example: low energy neutron-proton scattering
The S-matrix (restricting now to just s-wave scattering) is a unitary matrix in this         
2-qubit space, and can be written in terms of phases and the projection operators 
P0 , P1 onto the singlet 1S0 and the triplet 3S1  spin combinations, respectively:
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The s-wave S-matrix can be written entirely in 
terms of minimal entanglers:

For sufficiently low momenta the phases δ0, δ1, can 
be written in terms of two scattering lengths α0, α1 
and two “effective ranges” r0(0), r0(1)

à

P0 + P1 = 1



The SWAP operator and Schrodinger symmetry
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To get just the SWAP operator, we would need 
(in the sense of RG flow to the infrared) or vice-versa

This corresponds to the scattering length vanishing in one channel and diverging in 
the other

T. Mehen, I. Stewart, M. Wise, hep-th/9910025

This implies an approximate scale invariance, signaling an emergent “Schrodinger 
symmetry”, a nonrelativistic version of conformal symmetry 

Now we can ask under what conditions will the S-matrix reduce to purely one or the 
other minimal entangler?
This analysis will connect the minimal entanglers with emergent symmetries



The Identity operator and Wigner SU(4)

9/16/2314

To get just the identity operator, we would need δ0(p) = δ1(p)
i.e., the two spin channels have the same phase shift

E. Wigner, Phys. Rev. 51, (1937) 106 

This implies the SU(4) Wigner symmetry, which we can see by writing the four 
n/p spin states as a 4-plet: 

The leading interaction terms in the effective Lagrangian are:

So              implies                , thus an approximate SU(4) 

S. Weinberg, Phys. Lett. B251, (1990) 288

T. Mehen, I. Stewart, M. Wise, hep-ph/9902370 



What about actual QCD?
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The actual data from low energy np scattering gives

And fitting data to simple square wells for the nucleon-nucleon potential gives:

both much larger than

D.B. Kaplan, M. Savage, hep-ph/9509371

So low energy QCD has                       (corresponding to the Identity operator) and 
exhibits both the approximate Wigner SU(4) and Schrodinger symmetries 

This is precisely the observation of the Seattle group:

Slide by D.B. Kaplan

This is precisely the observation of the Seattle group:

Slide by D.B. Kaplan

Beane, Kaplan, Klco, Savage, arXiv:1812.03138

Density plot of the entanglement power 
E(S) of the S-matrix 
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Exploring an extended Higgs sector via entanglement 
suppression and symmetry enhancement
• Based on observations in low-energy QCD of intriguing connections between the 

emergent global symmetries and suppression of entanglement in non-relativistic 
scattering of spin-1/2 baryons, we explore similar concepts in a two Higgs Doublet Model

The potential reads:

• The 2HDM has two identical complex, hypercharge-one, SU(2)L doublet scalar fields 

Brief Review of the 2HDM

The 2HDM consist of two identical complex hypercharge-one,1

SU(2)L doublet scalar fields Φi(x) ≡ (Φ+
i (x) , Φ

0
i (x)), where the

index i ∈ {1, 2} labels the two Higgs doublet fields. The scalar

is given by,
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11Φ

†
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.

After minimizing the scalar potential, 〈Φi〉 = vi/
√
2, where

v1 = |v1| and v2 = |v2|eiξ (0 ≤ ξ < 2π).2 In particular,

v2 ≡ |v1|2 + |v2|2 = (246 GeV)2 and tan β ≡ |v2|/|v1|.
1The U(1)Y hypercharge is normalized such that the electric charge is given by Q = T3 + Y/2.
2Without loss of generality, we have performed a U(1)Y transformation to remove the phase of v1 = 〈Φ0

1〉.
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prehensive details can be found in Refs. [3, 4].
We start with two distinguishable qubits, Alice (A) and

Bob (B), each with its own basis vectors {|1iI , |2iI}, I =
A,B. It is conventional to define the computation basis
{|11i, |12i, |21i, |22i}, where |iji = |iiA ⌦ |jiB . There
are several quantitative measures of entanglement in two-
qubit systems [20], although Ref. [3] showed that all of
them are related to the concurrence � [21, 22], which for
a normalized state | i = c11|11i + c21|21i + c12|12i +
c22|22i is defined as

�( ) = 2|c11c22 � c12c21| . (1)

The concurrence has a minimum at 0, if | i is not entan-
gled, and a maximum at 1 if it is maximally entangled.
Other commonly employed entanglement measures in-
clude the von Neumann entropy EvN (⇢) = �Tr(⇢A ln ⇢A)
and the linear entropy EL(⇢) = �Tr[⇢A(⇢A � 1)], where
⇢ = | ih | is the density matrix and ⇢A/B = TrB/A(⇢)
is the reduced density matrix for Alice/Bob.

Entanglement is a property of quantum states. Never-
theless we are more interested in the ability of a quantum
operator U to generate entanglement. In this regard, the
entanglement power of a unitary operator is defined by
averaging over all direct product states that U acts upon
[23, 24]:

�(U) = �(U | Ai ⌦ | Bi) , (2)

where the average is over each Bloch sphere. Importantly,
local operators which can be written as the product of
singlet-qubit quantum gates, V = UA⌦UB do not gener-
ate entanglement. This defines an equivalent class among
the two-qubit gates,

U ⇠ U 0 , if U = V1U
0V2 . (3)

Operators in the same equivalent class have the same
entanglement power. Classification of all non-local, and
hence entanglement generating operators in a two-qubit
system has been achieved long ago [20, 25, 26]. However,
for our purpose we focus on entanglement suppressing
operators, which consist of only the Identity gate and the
SWAP gate [3], as well as their equivalent classes. In the
computational basis they are defined by 1 |iji = |iji and
SWAP |iji = |jii. We will represent equivalent classes of
1 and SWAP by [1] and [SWAP], respectively.

In low-energy QCD, non-relativistic np scattering is
dominated by the s-wave and the S-matrix can be written
as [3]
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where �0 and �1 are the scattering phases in the 1S0 and
3S1 channels, respectively. Then, Alice and Bob are the
spin-1/2 proton and neutron, respectively. One can see
from Eq. (4) that S / 1 if �0 = �1 and S / SWAP if
|�0��1| = ⇡/2. The observation in Ref. [2] is that �0 = �1
corresponds to Wigner’s SU(4)sm spin-flavor symmetry

[5, 6] and |�0 � �1| = ⇡/2 gives rise to the Schrödinger
symmetry [7, 8]. Both are emergent symmetries not
present in the fundamental QCD Lagrangian.

III. 2HDM ESSENTIALS

In 2HDM there are two hypercharge-one, SU(2) dou-
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V = m2
1�

†
1�1 +m2

2�
†
2�2 �

h
m2

12�
†
1�2 + h.c.

i

+
�1
2
(�†

1�1)
2 +

�2
2
(�†

2�2)
2 + �3(�

†
1�1)(�

†
2�2)

+ �4(�
†
1�2)(�

†
2�1) +


�5
2
(�†

1�2)
2 + �6(�

†
1�1)(�

†
1�2)

��7(�
†
2�2)(�

†
1�2) + h.c.

i
. (5)

For simplicity we assume CP conservation and �i are real
parameters, although our results can be easily general-
ized to the CP-violating case. We also assume a U(1)em-
preserving vacuum, leading to two scalar VEVs, v1 and
v2, that are real and non-negative, with (v21 + v22)

1/2
⌘

v = 246 GeV. We define t� = v2/v1 � 0, 0  �  ⇡/2,
such that c� ⌘ cos� = v1/v and s� ⌘ sin� = v2/v.
Before considering the couplings of the two Higgs dou-

blets to fermions, the flavor quantum number of Higgs
doublets is not well-defined. This is because �1 and
�2 have identical SM quantum numbers and one is free
to redefine the scalar fields by a global U(2) rotation
of ~� = (�1,�2)T , which leaves the scalar kinetic term
invariant, ~� ! ~�0 = U ~�, U†

U = I. Parameters ap-
pearing in Eq. (5) are not invariant under U(2) rota-
tions, whereas the potentials related by U(2) rotations
are physically equivalent. One can remove the U(2) re-
dundancy by introducing couplings to fermions. That
is, once Yukawa couplings are introduced, flavor can be
defined. For example, in type II 2HDMs [28, 29], one
doublet couples to the up-type fermions while the other
couples to the down-type fermions, thereby allowing us
to distinguish the two doublets. Another choice of basis,
which is convenient for the alignment limit [14–17], is the
Higgs basis [30], defined by (H1, H2) with the property:
hH0

1 i = v/
p
2 and hH0

2 i = 0. In the Higgs basis the scalar
potential is the same as in Eq. (5) but with the coe�-
cients {m2

1,m
2
2,m

2
12} ! {Y1, Y2, Y3} and �i ! Zi. The

minimziation of scalar potential gives Y1 = �Z1v2/2 and
Y3 = �Z6v2/2. Making a U(2) rotation corresponds to
single-qubit operation and will not change the entangle-
ment power of the S-matrix.
The alignment limit, defined as when the scalar h ⌘

Re(H0
1 ), coincides with the 125 GeV mass eigenstate. In

this case h, which carries the full VEV, couples to the
massive gauge bosons with the SM strength when the
gauge coupling is turned on. It is shown in Refs. [14–17]
that the alignment is achieved by the condition,

Z6 = 0 . (6)
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The Higgs basis : The Higgs basis

It is convenient to introduce the Higgs basis fields:
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V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.]

+ 1
2Z1(H

†
1H1)

2 + 1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2)

+Z4(H
†
1H2)(H

†
2H1) +

{
1
2Z5(H

†
1H2)

2

+
[
Z6H

†
1H1 + Z7H

†
2H2

]
H†

1H2 + h.c.
}
.

with

The potential is physically equivalent; parameters not invariant under the U(2) rotation

It is convenient to introduce the Higgs basis fields H1 and H2: through a U(2) rotation 

• Minimization of the scalar potential fixes 
<latexit sha1_base64="dbUpKbJeuTay6V3SALEq8zbYiPk=">AAACD3icbZC7TsMwFIadcivhFmBksahALLRJqAoLUgULY5HohV6IHNdtrToX2U6lKuobsPAqLAwgxMrKxtvgtBmg5UiWf33/ObLP74aMCmma31pmaXlldS27rm9sbm3vGLt7NRFEHJMqDljAGy4ShFGfVCWVjDRCTpDnMlJ3h9eJXx8RLmjg38lxSDoe6vu0RzGSCjnGsX7vWPASnsKmukeOXbDbbcXOEtZ0SnD0YMOC7Rg5M29OCy4KKxU5kFbFMb7a3QBHHvElZkiIlmWGshMjLilmZKK3I0FChIeoT1pK+sgjohNP95nAI0W6sBdwdXwJp/T3RIw8Icaeqzo9JAdi3kvgf14rkr2LTkz9MJLEx7OHehGDMoBJOLBLOcGSjZVAmFP1V4gHiCMsVYS6CsGaX3lR1Oy8VcoXb4u58lUaRxYcgENwAixwDsrgBlRAFWDwCJ7BK3jTnrQX7V37mLVmtHRmH/wp7fMHfcmXTA==</latexit>

Y1 = �Z1v2/2

Y3 = �Z6v
2/2

Davidson, Haber, Phys. Rev. D 72 (2005) [0504050] 
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• It defines the masses in terms of the Zi’s

The Higgs basis  (cont’d)Minimization of the scalar potential fixes Y1 = −1
2Z1v2 and

Y3 = −1
2Z6v2. The charged Higgs squared mass is given by

m2
H± = Y2 +

1
2Z3v

2 .

For a CP-conserving scalar potential, one can rephase the Higgs

basis field H2 such that all scalar potential parameters (and the

vevs v1 and v2) are real. In this case, the mass of the CP-odd

scalar A is,

m2
A = m2

H± + 1
2(Z4 − Z5)v

2 .

The masses of the CP-even scalars h and H (where mh < mH)

are obtained by diagonalizing a 2 × 2 squared mass matrix

(denoted by M2
H).

Minimization of the scalar potential fixes Y1 = −1
2Z1v2 and

Y3 = −1
2Z6v2. The charged Higgs squared mass is given by

m2
H± = Y2 +

1
2Z3v

2 .

For a CP-conserving scalar potential, one can rephase the Higgs

basis field H2 such that all scalar potential parameters (and the

vevs v1 and v2) are real. In this case, the mass of the CP-odd

scalar A is,

m2
A = m2

H± + 1
2(Z4 − Z5)v

2 .

The masses of the CP-even scalars h and H (where mh < mH)

are obtained by diagonalizing a 2 × 2 squared mass matrix

(denoted by M2
H).

For simplicity we assume CP conservation and λi as real parameters, although our 
results can be easily generalized to the CP-violating case. In this case we have: 

With respect to Higgs basis states {
√
2Re H0

1 − v ,
√
2Re H0

2},

M2
H =



Z1v2 Z6v2

Z6v2 m2
A + Z5v2



 .

The CP-even Higgs bosons are h and H with mh ≤ mH. The

couplings of
√
2Re H0

1 − v coincide with those of the SM Higgs

boson. Approximate Higgs alignment3 arises two limiting cases:

1. m2
A $ (Z1 − Z5)v2. This is the decoupling limit, where h is

SM-like and m2
H ∼ m2

A ∼ m2
H± $ m2

h & Z1v2.

2. |Z6| ' 1. Then, h is SM-like if m2
A + (Z5 − Z1)v2 > 0.

Otherwise, H is SM-like.

3Alignment refers to the scalar mass eigenstate aligning with the direction of the scalar vev in field space.

The masses of the CP-even scalars h and H (where mh < mH) are obtained by 
diagonalizing a 2×2 squared mass matrix 

one can express the real neutral Higgs field components in terms of the CP–even mass 
eigenstates, h and H, with α the angle of the U(2) rotation that diagonalizes the mass 
matrix in the original (weak eigenstates) basis Φi

Recall we are in the Higgs basis state {HSM, HNSM}
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The Alignment limit

Define the Alignment Limit as the condition for which one scalar mass eigenstate 
aligns with the direction of the scalar vev in field space, hence the SM Higgs field 
Approximate alignment occurs  for:

In particular, the CP-even mass eigenstates are:



H

h



 =



cβ−α −sβ−α

sβ−α cβ−α








√
2 Re H0

1 − v
√
2Re H0

2



 ,

where α is the mixing angle obtained by diagonalizing the scalar

squared-mass matrix when written with respect to the Φ-basis,

and tanβ ≡ v2/v1. Since hSM ≡
√
2 Re H0

1 − v,

• h is SM-like if |cβ−α| $ 1 (alignment with or without

decoupling, depending on the magnitude of mA),

•H is SM-like if |sβ−α| $ 1 (alignment without decoupling).

alignment with or without decoupling, 
depending on the magnitude of mA

1)                                    à This is the decoupling limit, where h is SM-like 

With respect to Higgs basis states {
√
2Re H0

1 − v ,
√
2Re H0

2},

M2
H =



Z1v2 Z6v2

Z6v2 m2
A + Z5v2



 .

The CP-even Higgs bosons are h and H with mh ≤ mH. The

couplings of
√
2Re H0

1 − v coincide with those of the SM Higgs

boson. Approximate Higgs alignment3 arises two limiting cases:

1. m2
A $ (Z1 − Z5)v2. This is the decoupling limit, where h is

SM-like and m2
H ∼ m2

A ∼ m2
H± $ m2

h & Z1v2.

2. |Z6| ' 1. Then, h is SM-like if m2
A + (Z5 − Z1)v2 > 0.

Otherwise, H is SM-like.

3Alignment refers to the scalar mass eigenstate aligning with the direction of the scalar vev in field space.

2)                    à Alignment without decoupling

With respect to Higgs basis states {
√
2Re H0

1 − v ,
√
2Re H0

2},

M2
H =



Z1v2 Z6v2

Z6v2 m2
A + Z5v2



 .

The CP-even Higgs bosons are h and H with mh ≤ mH. The

couplings of
√
2Re H0

1 − v coincide with those of the SM Higgs

boson. Approximate Higgs alignment3 arises two limiting cases:

1. m2
A $ (Z1 − Z5)v2. This is the decoupling limit, where h is

SM-like and m2
H ∼ m2

A ∼ m2
H± $ m2

h & Z1v2.

2. |Z6| ' 1. Then, h is SM-like if m2
A + (Z5 − Z1)v2 > 0.

Otherwise, H is SM-like.

3Alignment refers to the scalar mass eigenstate aligning with the direction of the scalar vev in field space.

With respect to Higgs basis states {
√
2Re H0

1 − v ,
√
2Re H0

2},

M2
H =



Z1v2 Z6v2

Z6v2 m2
A + Z5v2



 .

The CP-even Higgs bosons are h and H with mh ≤ mH. The

couplings of
√
2Re H0

1 − v coincide with those of the SM Higgs

boson. Approximate Higgs alignment3 arises two limiting cases:

1. m2
A $ (Z1 − Z5)v2. This is the decoupling limit, where h is

SM-like and m2
H ∼ m2

A ∼ m2
H± $ m2

h & Z1v2.

2. |Z6| ' 1. Then, h is SM-like if m2
A + (Z5 − Z1)v2 > 0.

Otherwise, H is SM-like.

3Alignment refers to the scalar mass eigenstate aligning with the direction of the scalar vev in field space.

With respect to Higgs basis states {
√
2Re H0

1 − v ,
√
2Re H0

2},

M2
H =



Z1v2 Z6v2

Z6v2 m2
A + Z5v2



 .

The CP-even Higgs bosons are h and H with mh ≤ mH. The

couplings of
√
2Re H0

1 − v coincide with those of the SM Higgs

boson. Approximate Higgs alignment3 arises two limiting cases:

1. m2
A $ (Z1 − Z5)v2. This is the decoupling limit, where h is

SM-like and m2
H ∼ m2

A ∼ m2
H± $ m2

h & Z1v2.

2. |Z6| ' 1. Then, h is SM-like if m2
A + (Z5 − Z1)v2 > 0.

Otherwise, H is SM-like.

3Alignment refers to the scalar mass eigenstate aligning with the direction of the scalar vev in field space.

h is SM-like if (Otherwise, H is SM-like)  

The alignment limit in equations

The CP-even Higgs squared-mass matrix yields,

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

Z6v
2 = (m2

h −m2
H)sβ−αcβ−α ,

Z5v
2 = m2

Hs2β−α +m2
hc

2
β−α −m2

A .

If h is SM-like, then m2
h " Z1v2 (i.e., Z1 " 0.26) and

|cβ−α| =
|Z6|v2√

(m2
H −m2

h)(m
2
H − Z1v2)

"
|Z6|v2

m2
H −m2

h

# 1 ,

If H is SM-like, then m2
H " Z1v2 (i.e., Z1 " 0.26) and

|sβ−α| =
|Z6|v2√

(m2
H −m2

h)(Z1v2 −m2
h)

"
|Z6|v2

m2
H −m2

h

# 1 .

Gunion, Haber, Phys. Rev. D 67 (2003), [0207010]. 
 M.C., Low, Shah, Wagner, JHEP 04 (2014) 015, [1310.2248] 



9/16/2320

We will keep in mind that the LHC favors a SM-like Higgs boson
LHC constraints on Higgs alignment in the 2HDM

Regions excluded by fits to the measured rates of the productions and decay of the Higgs

boson (assumed to be h of the 2HDM). Contours at 95% CL. The observed best-fit values

for cos(β −α) are −0.006 for the Type-I 2HDM and 0.002 for the Type-II 2HDM. Taken

from ATLAS Collaboration, ATLAS-CONF-2021-053 (2 November 2021).

LHC constraints on Higgs alignment in the 2HDM 

Regions excluded by fits to the measured rates of the productions and decay of the Higgs boson 
(assumed to be h of the 2HDM). Contours at 95% CL. ATLAS-CONF-2021-053 
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S-Matrix and perturbative entanglement suppression
Consider the information theoretic properties of the 2HDM Φa,  a = 1,2 :
The two flavors, one for each SU(2)L doublet, serve as a quantum system – a qubit.
The scattering of the two isospin components of the two doublets is a two-qubit system

Maximal Symmetry in 2HDM

Two-Higgs-Doublet Model

Two flavors of SU(2)L doublet �a = (�+
a=1,2¸ ˚˙ ˝
pø,¿

, �0
a=1,2¸ ˚˙ ˝
nø,¿

) .

V(�1, �2) = m2
1�†

1�1 + m2
2�†

2�2 ≠
Ë
m2

12�†
1�2 + h.c.

È

+ ⁄1
2 (�†

1�1)2 + ⁄2
2 (�†

2�2)2 + ⁄3(�†
1�1)(�†

2�2) + ⁄4(�†
1�2)(�†

2�1)

+
5

⁄5
2 (�†

1�2)2 + ⁄6(�†
1�1)(�†

1�2) + ⁄7(�†
2�2)(�†

1�2) + h.c.
6

.

Consider tree-level scattering S(�+
a

, �0
b

æ �+
c

, �0
d
) © 1 + iMab,cd”(4)(p)

Unbroken Phase: Mab,cd =

Q

cca

R

ddb

⁄1 ⁄ú
6 ⁄ú

6 ⁄ú
5 11

⁄6 ⁄3 ⁄4 ⁄ú
7 12

⁄6 ⁄4 ⁄3 ⁄ú
7 21

⁄5 ⁄7 ⁄7 ⁄2 22
11 12 21 22Carena, Low, Wagner and Xiao [2307.08112]
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Two flavors of SU(2)L doublets  

Using the S-matrix – a Unitary Operator - as a logic quantum gate 

Recall:

3

In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
! �+

c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude

3

In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
! �+

c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude

3

In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
! �+

c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude
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In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.
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In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
! �+

c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude
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In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
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c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude
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In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.
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is to demonstrate that, when the 2-to-2 amplitude min-
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imal SO(8) symmetry emerges. The 2-to-2 amplitude
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In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
! �+

c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude

where
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Derivation of Eqs. (13-15): we assume the initial state is

|�ai = |1i+ ✏|2i , |�bi = �|1i+ �|2i , (25)

where ||2 + |✏|2 = |�|2 + |�|2 = 1. The final state is

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi = cij |iji

c11 = (1 + iM11,11)� + iM12,11 � + iM21,11 ✏� + iM22,11 ✏� ,

c12 = iM11,12 � + (1 + iM12,12)� + iM21,12 ✏� + iM22,12 ✏� ,

c21 = iM11,21 � + iM12,21 � + (1 + iM21,21) ✏� + iM22,21 ✏� ,

c22 = iM11,22 � + iM12,22 � + iM21,22 ✏� + (1 + iM22,22) ✏� ,

(26)

The concurrence �(|�c�di) = c11c22 � c12c21 reads

�(|�c�di) = i✏��(M11,11 �M12,12 �M21,21 +M22,22)

+ i✏(�2
� �2)(M21,22 �M11,12) + i(2

� ✏2)��(M12,22 �M11,21)

� iM12,21 2�2 � iM21,12 ✏2�2 + iM11,22 2�2 + iM22,11 ✏2�2 +O((Mab,cd)
2) .

(27)

Since , ✏, � and � are arbitrary, setting �(|�c�di) = 0 leads to the conditions in Eqs. (13-15).
In the Higgs basis, the minimization condition leads to the quadratic coe�cients Y1 = �Z1v2/2 and Y3 = �Z6v2/2,

while the mass matrices of the charged and CP even/odd neutral scalars are given by

m2
+ =

✓
0 0
0 Y2 + Z3v2/2

◆
, (28)

m2
even =

✓
Z1v2 Z6v2

Z6v2 Y2 + (Z3 + Z4 + Z5)v2/2

◆
, (29)

m2
odd =

✓
0 0
0 Y2 + (Z3 + Z4 � Z5)v2/2

◆
. (30)

The Feynman rules are given by (time goes from left to right)

H0
1

H+
a

H�
b

=
iv
p
2

✓
Z1 Z6

Z6 Z3

◆

ab

, (31)

H0
2

H+
a

H�
b

=
iv
p
2

✓
Z6 Z5

Z4 Z7

◆

ab

, (32)

H0
1

H0
a

H0
b

=
iv
p
2

✓
Z1 2Z6

2Z6 Z5

◆

ab

, (33)

We need to demand the concurrence
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Since κ, ε, γ, δ are arbitrary, zero concurrence, for the S-Matrix to be in the equivalent 
class of the identity, implies

3

In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+
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�0
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in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude
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only linear terms in Mab,cd
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In the case of CP-violation, Z6 is complex and the align-
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M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE
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i
, i = 1, 2, respectively.
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Mab,cd are the scattering amplitudes one typically com-
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and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
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Eq. (7), which implies
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More details can be found in the Supplemental Materials.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is
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⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)
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,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
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Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
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boson and H+ is the massive charged scalar. In the neu-
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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In order for the S-matrix to minimize entanglement and
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2
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Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)

2

=
Z

2

0

@
X

i=1,2

|H0
i
|
2 +G+G� +H+H�

�
v2

2

1

A
2

,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

We shall perform the calculation in the Higgs basis: such U(2) rotation - no mixing 
between Φ0 and Φ+ - corresponds to a single-qubit operation and does not change 
the entanglement power of the S-Matrix

From the scalar potential the Feynman rules follow

• Tree level contributions
• Gauge coupling turned off
• Yukawa couplings do not 

contribute at this order
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Derivation of Eqs. (13-15): we assume the initial state is

|�ai = |1i+ ✏|2i , |�bi = �|1i+ �|2i , (25)

where ||2 + |✏|2 = |�|2 + |�|2 = 1. The final state is

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi = cij |iji

c11 = (1 + iM11,11)� + iM12,11 � + iM21,11 ✏� + iM22,11 ✏� ,

c12 = iM11,12 � + (1 + iM12,12)� + iM21,12 ✏� + iM22,12 ✏� ,

c21 = iM11,21 � + iM12,21 � + (1 + iM21,21) ✏� + iM22,21 ✏� ,

c22 = iM11,22 � + iM12,22 � + iM21,22 ✏� + (1 + iM22,22) ✏� ,

(26)

The concurrence �(|�c�di) = c11c22 � c12c21 reads

�(|�c�di) = i✏��(M11,11 �M12,12 �M21,21 +M22,22)

+ i✏(�2
� �2)(M21,22 �M11,12) + i(2

� ✏2)��(M12,22 �M11,21)

� iM12,21 2�2 � iM21,12 ✏2�2 + iM11,22 2�2 + iM22,11 ✏2�2 +O((Mab,cd)
2) .

(27)

Since , ✏, � and � are arbitrary, setting �(|�c�di) = 0 leads to the conditions in Eqs. (13-15).
In the Higgs basis, the minimization condition leads to the quadratic coe�cients Y1 = �Z1v2/2 and Y3 = �Z6v2/2,

while the mass matrices of the charged and CP even/odd neutral scalars are given by

m2
+ =

✓
0 0
0 Y2 + Z3v2/2

◆
, (28)

m2
even =

✓
Z1v2 Z6v2

Z6v2 Y2 + (Z3 + Z4 + Z5)v2/2

◆
, (29)

m2
odd =

✓
0 0
0 Y2 + (Z3 + Z4 � Z5)v2/2

◆
. (30)

The Feynman rules are given by (time goes from left to right)

H0
1

H+
a

H�
b

=
iv
p
2

✓
Z1 Z6

Z6 Z3

◆

ab

, (31)

H0
2

H+
a

H�
b

=
iv
p
2

✓
Z6 Z5

Z4 Z7

◆

ab

, (32)

H0
1

H0
a

H0
b

=
iv
p
2

✓
Z1 2Z6

2Z6 Z5

◆

ab

, (33)
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H�
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=
iv
p
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◆

ab

, (31)
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a

H�
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=
iv
p
2
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ab
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1
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a
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b

=
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Z1 2Z6
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◆

ab
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H0
2

H0
a

H0
b

=
iv
p
2

✓
Z6 Z3 + Z4

Z3 + Z4 Z7

◆

ab

, (34)

H+
a

H0
b

H+
c

H0
d

= i

0

B@

Z1 Z6 Z6 Z5

Z6 Z3 Z4 Z7

Z6 Z4 Z3 Z7

Z5 Z7 Z7 Z2

1

CA

ab,cd

. (35)

Applying Eqs. (13-15) to the four-point coupling in Eq. (35) we arrive at

Z1 + Z2 = 2Z3 ,

Z4 = Z5 = 0 ,

Z6 = Z7 .

(36)

Using the relations in Eq. (36), the s/u-channel amplitudes are,

Ms

1 =

0

B@

Z2
1 Z1Z6 Z1Z6 0

Z1Z6 Z2
6 Z2

6 0
Z1Z6 Z2

6 Z2
6 0

0 0 0 0

1

CA , (37)

Ms

2 =

0

B@

Z2
6 0 Z3Z6 Z2

6
0 0 0 0

Z3Z6 0 Z2
3 Z3Z6

Z2
6 0 Z3Z6 Z2

6

1

CA , (38)

Mu

1 =

0

B@

Z2
1 Z1Z6 Z1Z6 Z2

6
Z1Z6 Z2

6 0 0
Z1Z6 0 Z2

6 0
Z2
6 0 0 0

1

CA , (39)

Mu

2 =

0

B@

Z2
6 0 Z3Z6 0
0 0 Z2

6 0
Z3Z6 Z2

6 Z2
3 Z3Z6

0 0 Z3Z6 Z2
6

1

CA , (40)

The condition M11,22 = M12,21 = 0 then requires

Z6 = 0 . (41)

The resulting amplitude in the t-channel is:

M t

1 =

0

B@

8Z2
1s

2
↵̃

�2Z1Z3c↵̃s↵̃ 0 0
�2Z1Z3c↵̃s↵̃ 4Z1Z3s2↵̃ 0 0

0 0 8Z1Z3s2↵̃ �2Z2
3c↵̃s↵̃

0 0 �2Z2
3c↵̃s↵̃ 4Z2
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2
↵̃

1

CA , (42)
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1

CA , (43)

M t

3 = M t

4 = 0 . (44)
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The resulting amplitude in the t-channel is:
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FIG. 1. Feynman diagrams of �+
a �

0
b ! �+

c �
0
d scattering in the symmetry broken phase.

includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by

0

B@

h
H
G0

A

1

CA = R

0

B@

H0
1

H0
1
⇤

H0
2

H0
2
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CA , R =
1
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0
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�s↵̃ �s↵̃ c↵̃ c↵̃
c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is

iMab,cd = iM0
ab,cd

�
v2

2

X
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X

r=s,t,u
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i ab,cd Pr,i , (17)
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1

CA , (18)
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i ab,cd = MabiM
⇤
cdi

, Mu

i ab,cd
= MadiM

⇤
cbi

, (19)

M t

i ab,cd
=

X

j,k

RijMajc(RikMdkb,0)
⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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. (21)

In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
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,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2
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+,i
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for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/
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and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
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0

B@

h
H
G0

A

1

CA = R

0

B@

H0
1

H0
1
⇤

H0
2

H0
2
⇤

1

CA , R =
1

2

0

B@

�s↵̃ �s↵̃ c↵̃ c↵̃
c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

rotation matrix in the neutral sector

Full amplitude:

3

In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
! �+

c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude

Every term should satisfy the conditions: 
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/
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T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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note by (h,H,G0, A): h is the lightest CP-even scalar,
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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for r = s, u. Masses in the propagator run through
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

This leads to the scalar potential with maximal SO(8) symmetry: 
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which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by

0

B@

h
H
G0

A

1

CA = R

0

B@

H0
1

H0
1
⇤

H0
2

H0
2
⇤

1

CA , R =
1

2

0

B@

�s↵̃ �s↵̃ c↵̃ c↵̃
c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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�
. (21)

In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)

2

=
Z

2

0

@
X

i=1,2

|H0
i
|
2 +G+G� +H+H�

�
v2

2

1

A
2

,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

Acting on the 8 real components of 
the two doublets 
This is then broken spontaneously to 
SO(7) by the Higgs vev

è è Z6 = 0
Alignment

MC, Low, Wagner, Xiao [2307.08112]
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Emergent Symmetry and LHC bounds on the Higgs spectra
Entanglement suppression for a 2HDM implies

Minimization of the scalar potential fixes Y1 = −1
2Z1v2 and

Y3 = −1
2Z6v2. The charged Higgs squared mass is given by

m2
H± = Y2 +

1
2Z3v

2 .

For a CP-conserving scalar potential, one can rephase the Higgs

basis field H2 such that all scalar potential parameters (and the

vevs v1 and v2) are real. In this case, the mass of the CP-odd

scalar A is,

m2
A = m2

H± + 1
2(Z4 − Z5)v

2 .

The masses of the CP-even scalars h and H (where mh < mH)

are obtained by diagonalizing a 2 × 2 squared mass matrix

(denoted by M2
H).

Minimization of the scalar potential fixes Y1 = −1
2Z1v2 and

Y3 = −1
2Z6v2. The charged Higgs squared mass is given by

m2
H± = Y2 +

1
2Z3v

2 .

For a CP-conserving scalar potential, one can rephase the Higgs

basis field H2 such that all scalar potential parameters (and the

vevs v1 and v2) are real. In this case, the mass of the CP-odd

scalar A is,

m2
A = m2

H± + 1
2(Z4 − Z5)v

2 .

The masses of the CP-even scalars h and H (where mh < mH)

are obtained by diagonalizing a 2 × 2 squared mass matrix

(denoted by M2
H).
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FIG. 1. Feynman diagrams of �+
a �

0
b ! �+

c �
0
d scattering in the symmetry broken phase.

includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by

0

B@

h
H
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A

1
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1
⇤

H0
2
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2
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�s↵̃ �s↵̃ c↵̃ c↵̃
c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is
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�
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, (19)

M t

i ab,cd
=

X

j,k

RijMajc(RikMdkb,0)
⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†
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2H2)
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2
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A
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(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

• Existence of a SM-like Higgs boson with mass = 125 GeV

• Three massless Higgs bosons, incompatible with LHC data
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m2
H

= m2
A
+ Z5v

2

• However, gauge and Yukawa interaction will typically break the enhanced SO(8) 
explicitly

• Still, we need to lift the zero mass of the charged Higgs boson by adding a soft 
mass term in the potential through Y2

  This will equally lift the mass of the two non-SM CP-even Higgs bosons as well

Minimization of the scalar potential fixes Y1 = −1
2Z1v2 and

Y3 = −1
2Z6v2. The charged Higgs squared mass is given by

m2
H± = Y2 +

1
2Z3v

2 .

For a CP-conserving scalar potential, one can rephase the Higgs

basis field H2 such that all scalar potential parameters (and the

vevs v1 and v2) are real. In this case, the mass of the CP-odd

scalar A is,

m2
A = m2

H± + 1
2(Z4 − Z5)v

2 .

The masses of the CP-even scalars h and H (where mh < mH)

are obtained by diagonalizing a 2 × 2 squared mass matrix

(denoted by M2
H).
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Information-theoretic properties may provide insights on the origin of physical principles. 

In the two Higgs doublet model: a prototypical example for BSM theories with 
extended Higgs sectors, the perturbative S-matrix, in the Identity class, 
suppresses flavor entanglement in 

How does the entanglement behave:  
When the gauge and Yukawa couplings are turned on?  
When the emerging symmetry is softly broken in a realistic model? 

More general amplitudes and models (e.g. 3HDM with 2 qutrits) need to be investigated 
to explore possible entanglement suppression that may lead to emergent enhanced 
symmetries
 

Final Thoughts
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Maximal Symmetry in 2HDM

Two-Higgs-Doublet Model

Two flavors of SU(2)L doublet �a = (�+
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Creating entangled states in a quantum circuit

9/16/2330

• Starting with a 2-qubit state in the computational basis, you can create a Bell state 
by applying the Hadamard gate and then a CNOT, which is a 2-qubit entangling gate

Recall Hadamard transforms the computational basis |0> and |1> states into the 
Hadamard basis states  |+> and |-> 

Comment: interestingly, the Hadamard is its own inverse

The CNOT gate act on two qubits

How  it works:



KAK decomposition of unitary operators on two qubits

Now we want to classify unitary operators that act on two qubits, according to how 
much entanglement they produce

      

9/16/2331

We will use the “KAK” decomposition of a general element of SU(4), first derived by 
Cartan to minimize the number of parameters relevant for entanglement
      

Unitary operators on 2-qubit states are elements of SU(4), which has 15 hermitian 
generators 

where

and where the “a” index runs over 3 values, and the     are the Pauli matrices 
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�a

The 15 real parameters describing an arbitrary unitary are 
but only 3 are relevant
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2-qubit entangling operators

9/16/2332

First, one can readily see that the Bell states are eigenstates of Ue

Obviously only        can produce entanglement, so we can classify all 2-qubit 
“entanglers” by just looking at      , parametrized by  
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| 3
Belli =

<latexit sha1_base64="0wVRSc9baEoosFKieug36fO4JTg=">AAACFXicbVC7SgNBFJ2Nrxhfq5ZaDAbBKuxKRBshaGMZwTwgG8Ps5CYZMjO7zMwKYU3jT/gLttrbia21rV/i5FGYxAMXDufcy733hDFn2njet5NZWl5ZXcuu5zY2t7Z33N29qo4SRaFCIx6pekg0cCahYpjhUI8VEBFyqIX965FfewClWSTvzCCGpiBdyTqMEmOllnv4GMSatdJACXwFnA/vi4EisssBX+KWm/cK3hh4kfhTkk dTlFvuT9COaCJAGsqJ1g3fi00zJcowymGYCxINMaF90oWGpZII0M10/MUQH1uljTuRsiUNHqt/J1IitB6I0HYKYnp63huJ/3mNxHQumimTcWJA0smiTsKxifAoEtxmCqjhA0sIVczeimmPKEKNDW5mSxiKoQ3Fn49gkVRPC/5Zwbst5kvFaTxZdICO0Any0TkqoRtURhVE0RN6Qa/ozXl23p0P53PSmnGmM/toBs7XL5qrnvA=</latexit>

| 4
Belli =

<latexit sha1_base64="AQspA5kG3KVm2YKCu63gN25soQo=">AAACInicbVBNSwMxEM36WetX1aOXYBEUoewWRb0VvHhUsFrolpJNZ9tgNrsms0LZ7m/x4l/x4kFRT4I/xrRWUOuDgZf3ZsjMCxIpDLruuzM1PTM7N19YKC4uLa+sltbWL02cag51HstYNwJmQAoFdRQooZFoYFEg4Sq4Phn6V7egjYjVBfYTaEWsq0QoOEMrtUvHfqgZz7w8882Nxqya576EEHfowHV9zVRXAt2jA8/7fvhadHu4W2yXym7FHYFOEm9MymSMs3bp1e/EPI1AIZfMmKbnJtjKmEbBJeRFPzWQMH7NutC0VLEITCsbnZjTbat0aBhrWwrpSP05kbHImH4U2M6IYc/89Ybif14zxfColQmVpAiKf30UppJiTId50Y7QwFH2LWFcC7sr5T1mM0Ob6jAE7+/Jk+SyWvEOKu75frlWHcdRIJtki+wQjxySGjklZ6ROOLkjD+SJPDv3zqPz4rx9tU4545kN8gvOxyfwEqMt</latexit>

1p
2
(|00i+ |11i)

<latexit sha1_base64="hJqNtJphXqcSK9XPk8ba4Lnae6Q=">AAACInicbVBNSwMxEM36WetX1aOXYBH0YNktinorePGoYLXQLSWbzrbBbHZNZoWy3d/ixb/ixYOingR/jGmtoNYHAy/vzZCZFyRSGHTdd2dqemZ2br6wUFxcWl5ZLa2tX5o41RzqPJaxbgTMgBQK6ihQQiPRwKJAwlVwfTL0r25BGxGrC+wn0IpYV4lQcIZWapeO/VAznnl55psbjVk1z30JIe7Qgev6mqmuBLpHB573/fC16PZwt9guld2KOwKdJN6YlMkYZ+3Sq9+JeRqBQi6ZMU3PTbCVMY2CS8iLfmogYfyadaFpqWIRmFY2OjGn21bp0DDWthTSkfpzImORMf0osJ0Rw5756w3F/7xmiuFRKxMqSREU//ooTCXFmA7zoh2hgaPsW8K4FnZXynvMZoY21WEI3t+TJ8llteIdVNzz/XKtOo6jQDbJFtkhHjkkNXJKzkidcHJHHsgTeXbunUfnxXn7ap1yxjMb5Becj0/zQqMv</latexit>

1p
2
(|00i � |11i)

<latexit sha1_base64="d0hF2F9qNYgJqXJ9zCauG3Pjqos=">AAACInicbVBNSwMxEM36WetX1aOXYBEUoewWRb0VvHhUsFrolpJNZ9tgNrsms0LZ7m/x4l/x4kFRT4I/xrRWUOuDgZf3ZsjMCxIpDLruuzM1PTM7N19YKC4uLa+sltbWL02cag51HstYNwJmQAoFdRQooZFoYFEg4Sq4Phn6V7egjYjVBfYTaEWsq0QoOEMrtUvHfqgZz7w8882Nxqya576EEHfowPV8zVRXAt2jA8/9fvhadHu4W2yXym7FHYFOEm9MymSMs3bp1e/EPI1AIZfMmKbnJtjKmEbBJeRFPzWQMH7NutC0VLEITCsbnZjTbat0aBhrWwrpSP05kbHImH4U2M6IYc/89Ybif14zxfColQmVpAiKf30UppJiTId50Y7QwFH2LWFcC7sr5T1mM0Ob6jAE7+/Jk+SyWvEOKu75frlWHcdRIJtki+wQjxySGjklZ6ROOLkjD+SJPDv3zqPz4rx9tU4545kN8gvOxyfwH6Mt</latexit>

1p
2
(|01i+ |10i)

<latexit sha1_base64="6T/YiChRMS1Q+2G2erKXWpn+TfU=">AAACInicbVBNSwMxEM36WetX1aOXYBH0YNktinorePGoYLXQLSWbzrbBbHZNZoWy3d/ixb/ixYOingR/jGmtoNYHAy/vzZCZFyRSGHTdd2dqemZ2br6wUFxcWl5ZLa2tX5o41RzqPJaxbgTMgBQK6ihQQiPRwKJAwlVwfTL0r25BGxGrC+wn0IpYV4lQcIZWapeO/VAznnl55psbjVk1z30JIe7Qgev5mqmuBLpHB577/fC16PZwt9guld2KOwKdJN6YlMkYZ+3Sq9+JeRqBQi6ZMU3PTbCVMY2CS8iLfmogYfyadaFpqWIRmFY2OjGn21bp0DDWthTSkfpzImORMf0osJ0Rw5756w3F/7xmiuFRKxMqSREU//ooTCXFmA7zoh2hgaPsW8K4FnZXynvMZoY21WEI3t+TJ8llteIdVNzz/XKtOo6jQDbJFtkhHjkkNXJKzkidcHJHHsgTeXbunUfnxXn7ap1yxjMb5Becj0/zT6Mv</latexit>

1p
2
(|01i � |10i)

<latexit sha1_base64="REaFpdUEmtIhIKY7Pex5cE7WfHU=">AAACG3icbZDLSsNAFIYnXmu9RV26GVoEQSyJVHQjFNy4rGAv0IQwmU7aoZNJmJmIMXTvS/gKbnXvTty6cOuTOG2ysK0/DHz85xzOmd+PGZXKsr6NpeWV1bX10kZ5c2t7Z9fc22/LKBGYtHDEItH1kSSMctJSVDHSjQVBoc9Ixx9dT+qdeyIkjfidSmPihmjAaUAxUtryzIoTD6lnwyvo+EQh7wGe5pDCkxwePbNq1ayp4CLYBVRBoaZn/jj9CCch4QozJGXPtmLlZkgoihkZl51EkhjhERqQnkaOQiLdbPqXMTzSTh8GkdCPKzh1/05kKJQyDX3dGSI1lPO1iflfrZeo4NLNKI8TRTjOFwUJgyqCk2BgnwqCFUs1ICyovhXiIRIIKx3fzBbfD8c6FHs+gkVon9Xs85p1W6826kU8JXAIKuAY2OACNMANaIIWwOAJvIBX8GY8G+/Gh/GZty4ZxcwBmJHx9Qv0kKCl</latexit>

�1 = �x � �y + �z

<latexit sha1_base64="BWZSXV2kPua+6MNx0FpDfueIems=">AAACG3icbZDLSsNAFIYn9VbrLerSzdAiCGJJSkU3QsGNywr2Am0Ik+mkHTqZhJmJGEP3voSv4Fb37sStC7c+idMmC9v6w8DHf87hnPm9iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFbhrHApIVDFoquhyRhlJOWooqRbiQICjxGOt74elrv3BMhacjvVBIRJ0BDTn2KkdKWa5b70Yi6NXgF+x5RyH2Apxkk8CyDR9esWFVrJrgMdg4VkKvpmj/9QYjjgHCFGZKyZ1uRclIkFMWMTEr9WJII4TEakp5GjgIinXT2lwk81s4A+qHQjys4c/9OpCiQMgk83RkgNZKLtan5X60XK//SSSmPYkU4zhb5MYMqhNNg4IAKghVLNCAsqL4V4hESCCsd39wWzwsmOhR7MYJlaNeq9nnVuq1XGvU8niI4AmVwAmxwARrgBjRBC2DwBF7AK3gzno1348P4zFoLRj5zCOZkfP0C9i6gpg==</latexit>

�2 = �x + �y � �z

<latexit sha1_base64="pl4B/weCZN/tvWaWuAH4kMx0Jkg=">AAACHHicbZDLSgMxFIYz9VbrrerSTbAIbiwzWtGNUHDjsoK9QDsMSZppQzOZIcmI49AH8CV8Bbe6dyduBbc+iWk7Bdv6Q+DjP+dwTn4ccaa0bX9buaXlldW1/HphY3Nre6e4u9dQYSwJrZOQh7KFkaKcCVrXTHPaiiRFAea0iQfXo3rznkrFQnGnk4i6AeoJ5jOCtLG8YqkT9Zl3Bq/gSQdTjbyHKSRTeDRddtkeCy6Ck0EJZKp5xZ9ONyRxQIUmHCnVduxIuymSmhFOh4VOrGiEyAD1aNugQAFVbjr+zBAeGacL/VCaJzQcu38nUhQolQTYdAZI99V8bWT+V2vH2r90UyaiWFNBJov8mEMdwlEysMskJZonBhCRzNwKSR9JRLTJb2YLxsHQhOLMR7AIjdOyc162byulaiWLJw8OwCE4Bg64AFVwA2qgDgh4Ai/gFbxZz9a79WF9TlpzVjazD2Zkff0Cbp+g4A==</latexit>

�3 = ��x � �y � �z

<latexit sha1_base64="Dd/DXqY0MD2dL9va5IXz9M6061g=">AAACHHicbZDLSgMxFIYzXmu9VV26CRZBEMuMVHQjFNy4rGAv0BmGTJppQ5PMkGTEcegD+BK+glvduxO3glufxLQdwbb+EPj4zzmckz+IGVXatr+shcWl5ZXVwlpxfWNza7u0s9tUUSIxaeCIRbIdIEUYFaShqWakHUuCeMBIKxhcjeqtOyIVjcStTmPicdQTNKQYaWP5pbIb96lfhZfwxA2IRv49PJ5A+gsPpsuu2GPBeXByKINcdb/07XYjnHAiNGZIqY5jx9rLkNQUMzIsuokiMcID1CMdgwJxorxs/JkhPDROF4aRNE9oOHb/TmSIK5XywHRypPtqtjYy/6t1Eh1eeBkVcaKJwJNFYcKgjuAoGdilkmDNUgMIS2puhbiPJMLa5De1JQj40ITizEYwD83TinNWsW+q5Vo1j6cA9sEBOAIOOAc1cA3qoAEweATP4AW8Wk/Wm/VufUxaF6x8Zg9Myfr8AWnSoN0=</latexit>

�4 = ��x + �y + �z



Entanglement power of operators on two-qubit states

Generically applying a unitary      to a two–qubit tensor product state                     
will produce an entangled state, but not always, and the amount of entanglement 
depends on the state you are acting on
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We can define the “entanglement power” of a unitary by acting on all possible 
two-qubit tensor product states, and averaging the resulting value of the 
concurrence over the two Bloch spheres:
      

Introducing more compact notation for the qubit states
<latexit sha1_base64="5coiR62wekqo2l5fm42WBtCGyYc="></latexit>

| Ai = cos
✓A
2
|0iA + ei�Asin

✓A
2
|1iA

<latexit sha1_base64="3wAHk2bUjat+/vCEWxS9NTdTyhE="></latexit>

| Bi = cos
✓B
2
|0iB + ei�B sin

✓B
2
|1iB
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<latexit sha1_base64="3wAHk2bUjat+/vCEWxS9NTdTyhE=">AAACW3icbVHPa9swFJadtc2ytEtbdtpFLBQKhWCHjvZSCNllxxaWphCnRlaeE1FZNtJzIbj+J3tqD/1XxuTEjC3NA8HH94MnfYoyKQx63qvjNj7s7O41P7Y+tfcPPncOj25NmmsOI57KVN9FzIAUCkYoUMJdpoElkYRx9PCj0sePoI1I1S9cZjBN2FyJWHCGlgo7+inIjAiHgWZqLoFe0SLQCeWpKYNYM14EuABk4bAs+uWTV9 vCIT1bG6G8L0SQLUTlqAgj1Lak/zfZCjtdr+ethr4Hfg26pJ7rsPMczFKeJ6CQS2bMxPcynBZMo+ASylaQG8gYf2BzmFioWAJmWqy6KemJZWY0TrU9CumK/TdRsMSYZRJZZ8JwYTa1itymTXKML6eFUFmOoPh6UZxLiimtiqYzoYGjXFrAuBb2rpQvmC0G7XdUJfibT34Pbvs9/3vPuznvDvp1HU3ylXwjp8QnF2RAfpJrMiKcvJDfzp7TdN7chtty22ur69SZY/LfuF/+AET+ti4=</latexit>

| Bi = cos
✓B
2
|0iB + ei�B sin

✓B
2
|1iB

The easy way to compute the concurrence is to first rotate to the Bell state 
basis, then apply       , then rotate back to the computational basis, giving the 
following state: 

Computing the concurrence from this state:

Entanglement power of operators on two-qubit states
<latexit sha1_base64="5coiR62wekqo2l5fm42WBtCGyYc=">AAACW3icbVHPa9swFJadtc2ytEtbdtpFLBQKhWCHjvZSSNhlxxaWphCnRlaeE1FZNtJzIbj+J3tqD/1XxuTEjC3NA8HH94MnfYoyKQx63qvjNj7s7O41P7Y+tfcPPncOj25NmmsOI57KVN9FzIAUCkYoUMJdpoElkYRx9PCj0sePoI1I1S9cZjBN2FyJWHCGlgo7+inIjAiHgWZqLoFe0SLQCeWpKYNYM14EuABk4bAs+uWTV9 vCIT1bG6G8L0SQLUTlqAgj1Lak/zfZCjtdr+ethr4Hfg26pJ7rsPMczFKeJ6CQS2bMxPcynBZMo+ASylaQG8gYf2BzmFioWAJmWqy6KemJZWY0TrU9CumK/TdRsMSYZRJZZ8JwYTa1itymTXKML6eFUFmOoPh6UZxLiimtiqYzoYGjXFrAuBb2rpQvmC0G7XdUJfibT34Pbvs9/3vPuznvDvp1HU3ylXwjp8QnF2RAfpJrMiKcvJDfzp7TdN7chtty22ur69SZY/LfuF/+ADq9tig=</latexit>

| Ai = cos
✓A
2
|0iA + ei�Asin

✓A
2
|1iA

<latexit sha1_base64="dRGF2VryaL78Kjp34OEISOhs57U="></latexit>

� =
1

2

�����

4X

i=1

vi�
2
i

�����
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<latexit sha1_base64="5coiR62wekqo2l5fm42WBtCGyYc=">AAACW3icbVHPa9swFJadtc2ytEtbdtpFLBQKhWCHjvZSSNhlxxaWphCnRlaeE1FZNtJzIbj+J3tqD/1XxuTEjC3NA8HH94MnfYoyKQx63qvjNj7s7O41P7Y+tfcPPncOj25NmmsOI57KVN9FzIAUCkYoUMJdpoElkYRx9PCj0sePoI1I1S9cZjBN2FyJWHCGlgo7+inIjAiHgWZqLoFe0SLQCeWpKYNYM14EuABk4bAs+uWTV9 vCIT1bG6G8L0SQLUTlqAgj1Lak/zfZCjtdr+ethr4Hfg26pJ7rsPMczFKeJ6CQS2bMxPcynBZMo+ASylaQG8gYf2BzmFioWAJmWqy6KemJZWY0TrU9CumK/TdRsMSYZRJZZ8JwYTa1itymTXKML6eFUFmOoPh6UZxLiimtiqYzoYGjXFrAuBb2rpQvmC0G7XdUJfibT34Pbvs9/3vPuznvDvp1HU3ylXwjp8QnF2RAfpJrMiKcvJDfzp7TdN7chtty22ur69SZY/LfuF/+ADq9tig=</latexit>

| Ai = cos
✓A
2
|0iA + ei�Asin

✓A
2
|1iA

<latexit sha1_base64="3wAHk2bUjat+/vCEWxS9NTdTyhE=">AAACW3icbVHPa9swFJadtc2ytEtbdtpFLBQKhWCHjvZSCNllxxaWphCnRlaeE1FZNtJzIbj+J3tqD/1XxuTEjC3NA8HH94MnfYoyKQx63qvjNj7s7O41P7Y+tfcPPncOj25NmmsOI57KVN9FzIAUCkYoUMJdpoElkYRx9PCj0sePoI1I1S9cZjBN2FyJWHCGlgo7+inIjAiHgWZqLoFe0SLQCeWpKYNYM14EuABk4bAs+uWTV9 vCIT1bG6G8L0SQLUTlqAgj1Lak/zfZCjtdr+ethr4Hfg26pJ7rsPMczFKeJ6CQS2bMxPcynBZMo+ASylaQG8gYf2BzmFioWAJmWqy6KemJZWY0TrU9CumK/TdRsMSYZRJZZ8JwYTa1itymTXKML6eFUFmOoPh6UZxLiimtiqYzoYGjXFrAuBb2rpQvmC0G7XdUJfibT34Pbvs9/3vPuznvDvp1HU3ylXwjp8QnF2RAfpJrMiKcvJDfzp7TdN7chtty22ur69SZY/LfuF/+AET+ti4=</latexit>

| Bi = cos
✓B
2
|0iB + ei�B sin

✓B
2
|1iB

Integrating over the 4 angles that parametrize the two Bloch spheres gives:

This gives us the entanglement power for any distinct two-qubit entangler, 
modulo equivalence classes from applying additional single qubit unitaries 
that don’t contribute to entanglement

Entanglement power of operators on two-qubit states
<latexit sha1_base64="dRGF2VryaL78Kjp34OEISOhs57U="></latexit>

� =
1

2

�����

4X

i=1

vi�
2
i

�����



Minimal entanglers

From this expression we see immediately that there are exactly two distinct 
equivalence classes of unitaries that are minimally entangling, i.e., for which the 
entanglement power vanishes:
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corresponding to Ue =     , the 2-qubit Identity operator
corresponding to the 2-qubit SWAP operator

SWAP

Ue =


