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The Higgs alignment limit:

approaching the SM Higgs boson

Consider an extended Higgs sector with n hypercharge-one Higgs

doublets Φi and m additional singlet Higgs fields φi.

After minimizing the scalar potential, we assume that only the

neutral Higgs fields acquire vacuum expectation values (in order

to preserve U(1)EM),

〈Φ0
i 〉 = vi/

√
2 , 〈φ0

j〉 = xj .

Note that v2 ≡
∑

i |vi|2 = 4m2
W/g2 = (246 GeV)2.



The Higgs basis

Define new linear combinations of the hypercharge-one doublet

Higgs fields (the so-called Higgs basis). In particular,

H1 =





H+
1

H0
1



 =
1

v

∑

i

v∗iΦi , 〈H0
1〉 = v/

√
2 ,

and H2,H3, . . . ,Hn are the other linear combinations of doublet

scalar fields such that 〈H0
i 〉 = 0 (for i = 2, 3, . . . , n).

That is H0
1 is aligned in field space with the direction of the

Higgs vacuum expectation value (vev). Thus, if
√
2Re(H0

1)− v

is a mass-eigenstate, then the tree-level couplings of this scalar

to itself, to gauge bosons and to fermions are precisely those of

the SM Higgs boson, h0. This is the exact alignment limit.



A SM-like Higgs boson

In general,
√
2Re(H0

1)−v is not a mass-eigenstate due to mixing

with other neutral scalars. Nevertheless, a SM-like Higgs boson

exists if either:

• the diagonal squared masses of the other Higgs basis scalar

fields are all large compared to the mass of the observed Higgs

boson (the so-called decoupling limit).

and/or

• the elements of the neutral scalar squared-mass matrix that

govern the mixing of
√
2Re(H0

1)−v with other neutral scalars

are suppressed.



The decoupling limit of an extended Higgs sector

In the SM, m2
h = λv2 where v = 246 GeV and λ is the Higgs

self-coupling, which should not be much larger than O(1). Thus,
we expect mh ∼ O(v).

In extended Higgs sectors, there can be a new mass parameter,

M ≫ v, such that all physical Higgs masses with one exception

are of O(M). The Higgs boson, with mh ∼ O(v), is SM-like,

due to approximate alignment. This is the decoupling limit.

Integrating out all the heavy degrees of freedom at the mass

scale M , one is left with a low-energy effective theory which

consists of the SM particles, including a single neutral scalar

boson. This low-energy effective theory is precisely the SM!



Alignment without decoupling1

The alignment limit is most naturally achieved in the decoupling

regime. However, in this case the additional Higgs boson states

are very heavy and may be difficult to observe at the LHC.

In the case of approximate alignment without decoupling (due to

suppressed scalar mixing), non-SM-like Higgs boson states need

not be very heavy and thus may be more easily accessible at the

LHC.

The exact alignment limit is defined as the limit in which
√
2Re(H0

1) − v is a mass-eigenstate, i.e. it does not mix with

any of the other Higgs basis states H0
k (for k = 2, 3, . . .).

1J.F. Gunion and H.E. Haber, hep-ph/0207010; N. Craig, J. Galloway and S. Thomas, arXiv:1305.2424.



Exact alignment as a consequence of a symmetry?

We wish to explore the possibility of approximate Higgs alignment without

decoupling. Typically, alignment arises due to a (fine-tuned) choice of

Higgs sector parameters. In such cases, the exact alignment limit is not a

consequence of a symmetry.

In the case of natural Higgs alignment, exact alignment limit is the result

of a symmetry of the Lagrangian. We shall explore whether natural Higgs

alignment is possible, and whether small deviations from exact alignment can

explain the observation of a SM-like Higgs boson.

Consider a Higgs sector comprised entirely of n Higgs doublets. The scalar

potential expressed in terms of Higgs basis fields has the form

V = Y1H
†
1H1+

(

Y3iH
†
1Hi+h.c.

)

+1
2Z1(H

†
1H1)

2+H†
1H1

(

Z6iH
†
1Hi+h.c.

)

+· · · ,

where there is an implicit sum over the index i = 2, 3, . . . , n.



In light of 〈H1〉 = v and 〈Hi〉 = 0 (for i = 2, 3, . . . , n), the minimum

conditions ∂V/∂Hk = 0 yield,

Y1 = −1
2Z1v

2 , Y3i = −1
2Z6iv

2 .

Exact alignment implies that Z6i = 0, which via the minimum condition

yields Y3i = 0.

Exact alignment can therefore be achieved by imposing a discrete Z2 symmetry

in the Higgs basis,

H1 → +H1 , Hi → −Hi (for i = 2, 3, . . . , n) .

Assuming that all SM fermions and gauge bosons are even under the Z2

symmetry, the end result is a generalization of the inert doublet model in

which h =
√
2Re(H0

1)− v is identified as the SM Higgs boson.

However, this symmetry cannot be softly broken, so Higgs alignment is either

exact or not present. We now explore Higgs alignment further in the 2HDM.



Theoretical structure of the 2HDM

Consider the most general renormalizable 2HDM potential,

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[

λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)

]

Φ†
1Φ2 + h.c.

}

.

After minimizing the scalar potential, 〈Φ0
i 〉 = vi/

√
2 (for i = 1, 2) with

v ≡ (|v1|2 + |v2|2)1/2 = 2mW/g = 246 GeV.

Define the scalar doublet fields of the Higgs basis,

H1 =

(

H+
1

H0
1

)

≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

(

H+
2

H0
2

)

≡ −v2Φ1 + v1Φ2

v
,

such that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. The Higgs basis is uniquely defined

up to an overall rephasing, H2→ eiχH2.



In the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[

Z6(H
†
1H1) + Z7(H

†
2H2)

]

H†
1H2 + h.c.

}

,

where Y1, Y2 and Z1, . . . , Z4 are real and uniquely defined, whereas Y3, Z5,

Z6 and Z7 are complex and transform under the rephasing of H2,

[Y3, Z6, Z7]→ e−iχ[Y3, Z6, Z7] and Z5→ e−2iχZ5 .

After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

Remarks:

1. Generically, the Zi are O(1) parameters.

2. Exact alignment corresponds to Z6 = 0.



The Higgs alignment limit in the general 2HDM

In the general 2HDM, the scalar potential is generically CP-violating. In

this case, the neutral Higgs mass-eigenstates are linear combinations of

{
√
2ReH0

1 − v , ReH0
2 , ImH0

2}, which are determined by diagonalizing the

3× 3 real symmetric squared-mass matrix

M2 = v2









Z1 Re(Z6) −Im(Z6)

Re(Z6)
1
2Z345 + Y2/v

2 −1
2Im(Z5)

−Im(Z6) −1
2Im(Z5)

1
2Z345 − Re(Z5) + Y2/v

2









,

where Z345 ≡ Z3 + Z4 + Re(Z5). The diagonalizing matrix is a 3 × 3 real

orthogonal matrix that depends on three angles: θ12, θ13 and θ23, such that

θ12 and θ13 are invariant whereas θ23→ θ23− χ under the rephasing of H2.
2

The alignment limit again corresponds to two cases:

1. Y2≫ v2, corresponding to the decoupling limit.

2. |Z6| ≪ 1, corresponding to alignment with or without decoupling.
2See H.E. Haber and D. O’Neil, arXiv: hep-ph/0602242.



The alignment limit of the general 2HDM in equations

To obtain the conditions in which h1 is the SM-like Higgs boson, noting that:

gh1V V

ghSMV V
= c12c13 , where V = W or Z ,

where hSM is the SM Higgs boson, we demand that

s12 , s13≪ 1 .

Here, s12 ≡ sin θ12, c12 ≡ cos θ12, etc. We denote the masses of the neutral

Higgs mass eigenstates by m1, m2 and m3. It follows that:

Z1v
2 = m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 ,

Re(Z6 e
−iθ23) v2 = c13s12c12(m

2
2 −m2

1) ,

Im(Z6 e
−iθ23) v2 = s13c13(c

2
12m

2
1 + s212m

2
2 −m2

3) ,

Re(Z5 e
−2iθ23) v2 = m2

1(s
2
12 − c212s

2
13) +m2

2(c
2
12 − s212s

2
13)−m2

3c
2
13 ,

Im(Z5 e
−2iθ23) v2 = 2s12c12s13(m

2
2 −m2

1) .



Assuming no mass degeneracies in the neutral scalar sector, it then follows

that in the alignment limit,

s12 ≡ sin θ12 ≃
Re(Z6e

−iθ23)v2

m2
2 −m2

1

≪ 1 ,

s13 ≡ sin θ13 ≃ −
Im(Z6e

−iθ23)v2

m2
3 −m2

1

≪ 1 ,

One additional small quantity characterizes the alignment limit,

Im(Z5e
−2iθ23) ≃ (m2

2 −m2
1)s12s13

v2
≃ −2 Im(Z2

6e
−2iθ23)v2

m2
3 −m2

1

≪ 1 .

Finally, the following mass relations in the alignment limit are noteworthy,

m2
1 ≃ Z1v

2 ,

m2
2 −m2

3 ≃ Re(Z5e
−2iθ23)v2 .



The alignment limit of the CP-conserving 2HDM

Recall that the most relevant terms of the Higgs basis scalar

potential are:

V ∋ 1
2Z1(H

†
1H1)

2+
{

1
2Z5(H

†
1H2)

2 + Z6(H
†
1H1)(H

†
1H2) + h.c.

}

.

In the CP-conserving 2HDM, one can rephase the field H2 such

that all the parameters of the scalar potential are real.

We identify the CP-odd Higgs boson as A =
√
2 Im H0

2 with

squared-mass m2
A = Y2+

1
2(Z3+Z4−Z5)v

2. After eliminating Y2

in favor of m2
A, the CP-even Higgs squared-masses are obtained

by diagonalizing the corresponding 2 × 2 squared-mass matrix,

M2
H. The results are most transparent in the Higgs basis.



With respect to Higgs basis states, {
√
2Re H0

1 −v ,
√
2Re H0

2},

M2
H =





Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2



 .

The CP-even Higgs bosons are h and H with mh ≤ mH. The

couplings of
√
2Re H0

1 − v coincide with those of the SM Higgs

boson. Alignment arises two limiting cases:

1. m2
A ≫ (Z1 − Z5)v

2. This is the decoupling limit, where h is

SM-like and m2
A ∼ m2

H ∼ m2
H± ≫ m2

h ≃ Z1v
2.

2. |Z6| ≪ 1. Then, h is SM-like if m2
A + (Z5 − Z1)v

2 > 0.

Otherwise, H is SM-like.



In particular, the CP-even mass eigenstates are:

(

H

h

)

=

(

cβ−α −sβ−α

sβ−α cβ−α

) (√
2 Re H0

1 − v√
2Re H0

2

)

,

where cβ−α ≡ cos(β −α) and sβ−α ≡ sin(β −α) are defined in terms of the

mixing angle α that diagonalizes the CP-even Higgs squared-mass matrix when

expressed in the Φ1–Φ2 basis of scalar fields, {
√
2Re Φ0

1−v1 ,
√
2Re Φ0

2−v2},
and tanβ ≡ v2/v1.

Since the SM-like Higgs boson must be approximately
√
2Re H0

1 − v, it

follows that

• h is SM-like if |cβ−α| ≪ 1 (alignment with or without

decoupling, depending on the magnitude of mA),

• H is SM-like if |sβ−α| ≪ 1 (alignment without decoupling).



The alignment limit in equations

The CP-even Higgs squared-mass matrix yields,

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

Z6v
2 = (m2

h −m2
H)sβ−αcβ−α ,

Z5v
2 = m2

Hs2β−α +m2
hc

2
β−α −m2

A .

If h is SM-like, then m2
h ≃ Z1v

2 (i.e., Z1 ≃ 0.26) and

|cβ−α| =
|Z6|v2

√

(m2
H −m2

h)(m
2
H − Z1v2)

≃ |Z6|v2
m2

H −m2
h

≪ 1 ,

If H is SM-like, then m2
H ≃ Z1v

2 (i.e., Z1 ≃ 0.26) and

|sβ−α| =
|Z6|v2

√

(m2
H −m2

h)(Z1v2 −m2
h)
≃ |Z6|v2

m2
H −m2

h

≪ 1 .



A symmetry origin for alignment without decoupling

Consider the CP-conserving 2HDM in the Φ1–Φ2 basis. Then, λ1, λ2, . . . , λ7

are related to the corresponding Higgs basis parameters. For example,

Y3 =
1
2(m

2
11 −m2

22)s2β +m2
12c2β ,

Z6 = −1
2

[

λ1c
2
β − λ2s

2
β − λ345c2β

]

s2β + λ6cβc3β + λ7sβs3β ,

where λ345 ≡ λ3 + λ4 + λ5. If the alignment condition Z6 = 0 holds

independently of tan β, then it follows that

λ1 = λ2 = λ345 , λ6 = λ7 = 0 ,

which is called the natural alignment condition.3

In order to associate natural alignment with a symmetry, we shall make use

of the alignment condition Y3 = 0. If this condition holds independently of

tanβ, then,

m2
11 = m2

22 , m2
12 = 0 .

3See P.S. Bhupal Dev and A. Pilaftsis, arXiv:1408.3405.



Family and Generalized CP symmetries of the 2HDM

The scalar potential of the most general 2HDM is governed by 11 free

parameters: 1 vev, 8 real parameters and two relative phases. It is possible

to impose a discrete or continuous global symmetry on the Higgs potential

[beyond the hypercharge U(1)Y ] to reduce the number of 2HDM parameters.

symmetry m2
22 m2

12 λ2 λ3 λ4 λ5 λ6 λ7

Z2 0 0 0

Π2 m2
11 real λ1 real λ∗

6

U(1) 0 0 0 0

SO(3) m2
11 0 λ1 λ1 − λ3 0 0 0

CP1 real real real real

CP2 m2
11 0 λ1 −λ6

CP3 m2
11 0 λ1 λ1 − λ3 − λ4 (real) 0 0

Classification of 2HDM scalar potential symmetries and their impact on the coefficients of the scalar potential

in a basis where the symmetry is manifest [Ivanov; Ferreira, Haber and Silva].



Higgs family symmetries

Z2 : Φ1 → Φ1, Φ2 → −Φ2

Π2 : Φ1 ←→ Φ2

U(1)PQ [Peccei-Quinn]: Φ1 → e−iθΦ1, Φ2 → eiθΦ2

SO(3): Φa → UabΦb , U ∈ U(2)/U(1)Y

Generalized CP (GCP) transformations

CP1 : Φ1 → Φ∗
1, Φ2 → Φ∗

2

CP2 : Φ1 → Φ∗
2, Φ2 → −Φ∗

1

CP3 : Φ1 → Φ∗
1cθ+Φ∗

2sθ, Φ2 → −Φ∗
1sθ+Φ∗

2cθ, for 0 < θ < 1
2π

where cθ ≡ cos θ and sθ ≡ sin θ. Some observations of note:

1. Π2 symmetry is equivalent to Z2 symmetry in a different basis.

2. Applying Z2 and Π2 simultaneously ⇐⇒ CP2 in a different basis.

3. Applying U(1)PQ and Π2 simultaneously⇐⇒ CP3 in a different basis.



Exceptional region of the parameter space (ERPS)

An exceptional region of the 2HDM parameter space (first identified by

Davidson and Haber) consists of:

ERPS : m2
22 = m2

11 , m2
12 = 0 , λ1 = λ2 , λ7 = −λ6

The corresponding conditions in the Higgs basis are,

Y2 = Y1 , Y3 = Z6 = Z7 = 0 , Z1 = Z2 .

Indeed, in the ERPS one of the two fine-tuning conditions is removed.

The ERPS includes SO(3), CP3 (equivalent to U(1)PQ⊗Π2 in another basis),

and CP2 (equivalent to Z2⊗Π2 in another basis). To avoid an extra massless

Goldstone boson, one must softly-break the SO(3) and CP3 symmetries.

However, none of the ERPS models can be extended to the

Yukawa interactions without generating a massless quark or some other

phenomenologically untenable feature [P.M. Ferreira and J.P. Silva,

Eur. Phys. J. C 69, 45 (2010)].



Exact alignment due to a symmetry

We have noted previously that exact alignment can be achieved by imposing

m2
11 = m2

22 and m2
12 = 0. This leads to three possible symmetry choices:

symmetry m2
22 m2

12 λ2 λ3 λ4 λ5 λ6 λ7

CP2 m2
11 0 λ1 −λ6

CP3 m2
11 0 λ1 λ1 − λ3 − λ4 (real) 0 0

SO(3) m2
11 0 λ1 λ1 − λ3 0 0 0

Note that CP2 is not “natural alignment” as defined by Dev and Pilaftsis,

since a particular tan β is chosen by imposing Z6 = 0. That is, setting

λ1 = λ2 and λ7 = −λ6 yields

Z6 = −1
4

(

λ1 − λ345

)

s4β + λ6c4β ,

which satisfies Z6 = 0 only for the specific choice, tan 4β = 4λ6/(λ1−λ345).

However, none of these symmetries can be extended to the Yukawa sector.



The CP2-symmetric 2HDM with mirror fermions

Consider the 2HDM with a CP2-symmetric scalar potential, which can be

realized as a Z2 ⊗ Π2 discrete symmetry. To extend this symmetry to the

Yukawa sector, we introduce mirror fermions.4 SM fermions are denoted by

lower case letters (e.g. left-handed doublet fields q and right-handed singlet

fields u and d); mirror fermions by upper case letters.

We take the top sector to transform under the discrete symmetries as follows,

Π2 : q ⇔ q, u⇔ U, U ⇔ U ,

Z2 : q ⇔ q, u⇔ −u, U ⇔ U, U ⇔ U .

where U is in the representation conjugate to U (to avoid anomalies). The

Yukawa couplings consistent with the Z2 ⊗Π2 discrete symmetry are

LYuk ⊃ yt (qΦ2u+ qΦ1U) + h.c.

4P. Draper, H.E. Haber and J.T. Ruderman, JHEP 1606, 124 (2016) [arXiv:1605.03237 [hep-ph]].



The model is not phenomenologically viable due to experimental limits on

mirror fermion masses. Thus, we introduce a vectorlike mass,

Lmass ⊃MUUU + h.c.

which preserves the Z2 but explicitly breaks the Π2 discrete symmetry. This

symmetry breaking is soft, so that m2
22 −m2

11 is protected from quadratic

sensitivity to the cutoff scale Λ.

The other SM fermions can also be included by introducing the appropriate

mirrors such that

Π2 : d⇔ D, e⇔ E, D ⇔ D, E ⇔ E

Z2 : d⇔ −d, e⇔ −e, D ⇔ D, E ⇔ E.

The corresponding Yukawa couplings and vectorlike fermion masses are

L ⊃ yb (qΦ
∗
2d+ qΦ∗

1D) + yτ (ℓΦ
∗
2e+ ℓΦ∗

1E) +MDDD +MEEE .



Effects of the softly-broken Π2 discrete symmetry

Φ2 Φ2

q

u

Φ1 Φ1

q

U

∆m2 ≡ m2
22 −m2

11 ∼ −
3y2tM

2
U

4π2
ln(Λ/MU) ,

neglecting finite thresholds proportional to M2
U . Since Z2 is unbroken (or

at worst spontaneously broken if v2 6= 0), m2
12 is not generated in this

approximation. Assuming that ln(Λ/MU) is not much larger than O(1), we
see that there is no second fine tuning if ∆m2 <∼ O(v2), or roughly

MU <∼
πv2

mt
,

which is satisfied for MU less than a few TeV. Note that the other mirror

masses are far less constrained since the corresponding SM fermion masses

are significantly less than mt.



Integrating out the mirror fermions below the scale MU , one generates a

splitting between λ1 and λ2. Above the scale M , the diagrams

Φ2

Φ2

u

u

q q

Φ2

Φ2

Φ1

Φ1

U

U

q q

Φ1

Φ1

contribute equally to λ2(Φ
†
2Φ2)

2 and λ1(Φ
†
1Φ1)

2, respectively. Below the

scale MU , the diagrams with internal U lines decouple, which then yields

∆λ ≡ |λ1 − λ2| ∼
3y4t
4π2

log(MU/mt) ∼ 0.1 ,

for MU ∼ 1 TeV. Note: λ6 and λ7 are not generated due to the unbroken Z2.

Henceforth, we write m2
11 and m2

22 (at the scale mt) in terms of

m2 ≡ 1
2(m

2
11 +m2

22) , ∆m2 ≡ m2
22 −m2

11 .

We denote tan β ≡ v2/v1 and we neglect the effects of ∆λ which are small.



Local minima of the 2HDM scalar potential

We define λ ≡ λ1 = λ2 and

λ345 = λ3 + λ4 + λ5 , R =
λ345

λ
,

and demand that λ > 0 and R > −1 to ensure that the vacuum is bounded

from below. Solving for the potential minimum, there are two possible phases:

1. The inert phase

Assuming that ∆m2 < −2m2, the Higgs vacuum is

〈

Φ0
1

〉2
= 1

2v
2 = −

(

m2 + 1
2∆m2

λ

)

〈Φ2〉 = 0.

In this case, Z2 is unbroken by the vacuum.



2. The mixed phase5

If both v1 6= 0 and v2 6= 0, then the Z2 is spontaneously broken. Minimizing

the scalar potential yields

m2 = −1
4λ(1 +R)v2 , tan β =

√

1− ǫ

1 + ǫ
,

where

ǫ ≡ 2∆m2

λ(1−R)v2
.

The positivity of v21 and v22 and the curvature at the extremum requires

|R| < 1 , |ǫ| < 1 .

Given the constraint on R, the constraint on ǫ can also be written

m2 < 0 , ∆m2 < −2m2

(

1−R

1 +R

)

.

5There is a parameter regime in which both the inert phase and the mixed phase coexist. However, one can

check that in this case, the mixed phase minimum is deeper than the inert phase minimum.



Scalar spectrum of the inert phase

The physical neutral Higgs bosons are eigenstates of CP.

m2
h = λv2 ,

m2
H = −1

2λv
2(1−R)−∆m2 ,

m2
A = m2

H − λ5v
2 ,

m2
H± = m2

H − 1
2(λ4 + λ5)v

2 ,

where the couplings of h are precisely those of the SM Higgs boson.

Since we are interested in the case where all Higgs boson masses are of O(v),
we restrict ∆m2 ∼ O(v2) as previously stated. Of course, if MU ≫ v, then

we can make −∆m2 arbitrarily large (which is an allowed regime of the inert

phase), in which case H, A and H± become arbitrarily heavy.



Scalar spectrum of the mixed phase

In the convention where the ratio of the vevs is real, it follows from the scalar

potential minimum conditions that λ5 ≤ 0. The Higgs mass spectrum is:

m2
h,H = 1

2λv
2(1∓

√

R2 + (1−R2)ǫ2) ,

m2
A = −λ5v

2 ,

m2
H± = −1

2(λ4 + λ5)v
2 .

Requiring h to be SM-like, it follows that | cos(β − α)| ≪ 1 [the so-called

alignment limit], assuming that6

−1 < R < − ǫ2

1− ǫ2
,

and α− β is the CP-even mixing angle in the Higgs basis, with

sin(β − α) cos(β − α) =
ǫ(ǫ2 − 1)(1−R)

2
√

R2 + ǫ2(1−R2)
.

6Otherwise, H is SM-like and | sin(β − α)| ≪ 1.



When ǫ and | cos(β − α)| are small [in a convention where sin(β − α) ≥ 0],

then

cos(β − α) ≃ −ǫ(1−R)

2|R| .

In particular, the alignment limit favors small |ǫ|, which yields tan β ∼ O(1).
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It is convenient to rewrite mH in terms of mh,

m2
H = m2

h

(

1 +
√

R2 + (1−R2)ǫ2

1−
√

R2 + (1−R2)ǫ2

)

.
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The shaded regions are consistent with the Higgs couping fits taken from N. Craig et al., JHEP 1506, 137 (2015).



Phenomenological constraints and implications

• Below the scale of MU , the effective theory is that of a Type-I 2HDM.

• In the inert phase, the lightest scalar in the Φ2 doublet is a stable dark
matter candidate. There is no mixing of U with SM quarks due to the
exact discrete Z2 symmetry. But U → qΦ2 is a possible decay, which can
be discovered in the tt̄+missing energy channel. Current LHC limits yield
mU >∼ 500 GeV for mH <∼ 150 GeV.

• In the mixed phase, the discrete Z2 symmetry is broken and U can mix
with the top quark. In this case U → Wb, Zt and ht are possible decays.
LHC experimental limits require mU >∼ 700 GeV if no other decay modes
are present. If tH and bH+ are kinematically allowed, they will dominate
and the experimental limits must be reconsidered.

• In the regime of the mixed phase where the non-minimal Higgs states have
masses below 1 TeV, tan β is moderate, of order a few. This is a very
difficult regime for the LHC. Perhaps H → hh and the production of tt̄H,
tt̄A and tb̄H− provide the best opportunities for discovery.



The CP3 Model of Natural Alignment

The CP3-symmetric 2HDM scalar potential yields,7

m2
11 = m2

22 , m2
12 = 0 , λ1 = λ2 = λ3+λ4+Reλ5 , Imλ5 = λ6 = λ7 = 0 .

This results in one neutral scalar m2
A = −λ5v

2 and a neutral scalar squared-

mass matrix,

M2 ≡ λ1v
2

(

c2β sβcβ

sβcβ s2β

)

,

which yields one massless scalar (mh = 0) and a second scalar of squared-mass

m2
H = λ1v

2. The massless scalar is to be expected, since it corresponds to a

Goldstone boson of a spontaneously broken Peccei-Quinn (PQ) symmetry.

In the Higgs basis, we have Y1 = Y2 = m2
11 = −1

2λ1v
2, Y3 = 0 and

Z1 = Z2 = Z345 = λ1 , Zi = λi (for i = 3, 4, 5) , ImZ5 = Z6 = Z7 = 0 .

where Z345 ≡ Z3 + Z4 +ReZ5.
7F. D’Eramo, P. Draper, and H.E. Haber, in preparation.



It is more convenient to analyze this model in a different basis in which the

U(1)PQ ⊗Π2 symmetry is manifest. This yields.

m2
11 = m2

22 , m2
12 = 0 , λ1 = λ2 6= λ3 + λ4 , λ5 = λ6 = λ7 = 0 ,

which yields

Z1 = Z2 = Z345 =
1
2(λ1 + λ3 + λ4) , ImZ5 = Z6 = Z7 = 0 ,

Z5 =
1
2(λ3 + λ4 − λ1) ,

and

Y1 = Y2 = m2
11 = −1

4v
2(λ1 + λ3 + λ4) , Y3 = 0 .

It then follows that mA = 0 and the two other scalar squared-masses are

m2
H,h = 1

2v
2
[

λ1 ± (λ3 + λ4)
]

.

That is the SM Higgs boson has mass m2
h = Z1v

2, and the two other neutral

boson squared masses are 0 and |Z5|v2.



To avoid the massless scalar, the U(1)PQ must be softly broken. Indeed, if

we allow arbitrary soft-breaking of the CP3-symmetric scalar potential, then

m2
11 6= m2

22 and m2
12 6= 0. It is convenient to write,

m2
11 = m2 − 1

2∆m2 , m2
22 = m2 + 1

2∆m2 .

Then,

Y1 = m2 − 1
2∆m2c2β −m2

12s2β

Y2 = m2 + 1
2∆m2c2β +m2

12s2β ,

Y3 =
1
2∆m2s2β −m2

12c2β .

After imposing the the scalar potential minimum conditions, it follows that

Y1 = −1
2Z1v

2 and Y3 = 0. The latter condition fixes the angle β and yields

tan β =

√

(∆m2)2 + (2m2
12)

2 −∆m2

2m2
12

,

in a convention in which tanβ is real and non-negative.



The resulting neutral scalar mass spectrum is:

m2
A =

√

(∆m2)2 + (2m2
12)

2 ,

m2
h,H =

{

Z1v
2 ,
√

(∆m2)2 + (2m2
12)

2 + |Z5|v2
}

,

which can be rewritten as:

m2
h,H,A =

{

Z1v
2 , Y2 +

1
2(Z3 + Z4 + |Z5|) , Y2 +

1
2(Z3 + Z4 − |Z5|)

}

.

Note that even with the most general soft-CP3-breaking squared mass terms,

the resulting scalar sector still respects Y3 = Z6 = Z7 = 0, i.e. it corresponds

to the inert phase.

Remark: In the inert phase, the CP quantum numbers of H and A are not

individually well-defined, although they are relatively odd with respect to CP.



The CP3-symmetric 2HDM with mirror fermions

We introduce mirror fermions as before. In the top sector,

Z
m
2 : q ⇐⇒ q, u⇐⇒ U Ū ⇐⇒ Ū

U(1)PQ : q =⇒ q, u =⇒ e−iθu, U ←→ eiθU, Ū =⇒ e−iθŪ

The corresponding Yukawa couplings take the form,

V ⊃ yt (qΦ2u+ qΦ1U) + h.c.

We again introduce a vectorlike mass,

Lmass ⊃MUUU + h.c.

which preserves the U(1)PQ symmetry but explicitly breaks the Π2 discrete

symmetry. This symmetry breaking is soft, so that m2
22 −m2

11 is protected

from quadratic sensitivity to the cutoff scale Λ.



The other SM fermions can also be included by introducing the appropriate

mirrors such that

Z
m
2 : d⇐⇒ D, ℓ⇐⇒ ℓ, e⇐⇒ E, D̄ ⇐⇒ D̄, Ē ⇐⇒ Ē

U(1)PQ : d =⇒ eiθd, ℓ =⇒ ℓ, e =⇒ eiθe, D =⇒ e−iθD, D̄ =⇒ eiθD,

E =⇒ e−iθE, Ē =⇒ eiθE.

The corresponding Yukawa couplings and vectorlike fermion masses are

V ⊃ yb (qΦ
∗
2d+ qΦ∗

1D) + yτ (ℓΦ∗
2e+ ℓΦ∗

1E) +MDDD̄ +MEEĒ.

Due to the soft-breaking of Π2, we again generate ∆m2 = m2
22 −m2

11 6= 0

and ∆λ ≡ λ1 − λ2 6= 0. We propose to break the U(1)PQ symmetry by

introducing a complex singlet S, and adding a term

−LS = λs(|S|2 − µ2)2 + (κS2Φ†
1Φ2 + h.c.)

to the scalar sector Lagrangian. After integrating out S, one obtains an

effective m2
12 parameter.



As noted previously, including non-zero ∆m2 and m2
12 alone still respects

Y3 = Z6 = Z7 = 0, corresponding to the inert phase. However, one also

generates a non-zero ∆λ due to the soft-breaking of Π2 and a non-zero

λ5 due to the soft-breaking of U(1)PQ. As a result, the local minima of

the corresponding 2HDM potential will yield a solution corresponding to the

mixed phase, thereby producing a departure from the Higgs alignment limit.

The numerical analysis of this case is currently underway, but it is not yet

complete (so no results are shown here). We anticipate smaller departures

from the alignment limit as compared with the CP2 model considered

previously since the corrections to ∆λ and λ5 are insensitive to the cutoff Λ

and depend logarithmically on the mass of the mirror top, MU .


