Harmonia meeting

Wojciech Kotlarski

Technische Universität Dresden

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$
- Superpotential example

$$\mathcal{L} \ni \int d^2\theta \, W$$

 Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
 $e^{i\alpha Q_R}$ $e^{i\alpha (Q_R-1)}$
 $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$
- Superpotential example

(we want it to be) R-invariant $\longrightarrow \mathcal{L} \quad \ni \quad \int d^2\theta \quad W$

 Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
 $e^{i\alpha Q_R}$ $e^{i\alpha (Q_R-1)}$
 $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$

 Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
 $e^{i\alpha Q_R}$ $e^{i\alpha (Q_R-1)}$
 $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$

 Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
 $e^{i\alpha Q_R}$ $e^{i\alpha (Q_R-1)}$
 $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$

Low-energy R-symmetry realization

- Different possible models that one can construct
- "Natural" choice $e^{i\alpha Q_R}$ $e^{i\alpha Q_R}$ $e^{i\alpha (Q_R-1)}$ $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$ leptons and quarks $Q_R = 1$ $Q_R = 1$ $Q_R = 0$ Higgs $Q_R = 0$ $Q_R = 0$ $Q_R = -1$
 - Good: no barion and lepton number violating terms
 - Bad: No Majorana masses for higgsinos and gauginos

One way to fix it Minimal R-Symm Kribs et.al. arXiv:0712.2039	: <u>Dirac mas</u> etric Super	<u>ses</u> symn	netric Stai	ndardmod	el (MRS	SM)
			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$
Additional fields:	Singlet	Ŝ	1	1	0	0
	Triplet	Ť	1	3	0	0
	Octet	Ô	8	1	0	0
	R-Higgses	Â _u	1	2	-1/2	2
		Â _d	1	2	1/2	2

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$

$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$

$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

MSSM vs. MRSSM

- - soft-SUSY breaking terms
 - $\Box = B_{\mu}$ term
 - □ soft scalar masses
 - Majorana gaugino masses
 - □ A terms

- superpotencial
- $\begin{aligned} \mu_d \, \hat{R}_d \, \hat{H}_d \, + \mu_u \, \hat{R}_u \, \hat{H}_u \\ Y_d \, \hat{d} \, \hat{q} \, \hat{H}_d \, Y_e \, \hat{e} \, \hat{l} \, \hat{H}_d \, + Y_u \, \hat{u} \, \hat{q} \, \hat{H}_u \\ \Lambda_d \, \hat{R}_d \, \hat{T} \, \hat{H}_d \, + \Lambda_u \, \hat{R}_u \, \hat{T} \, \hat{H}_u \, + \lambda_d \, \hat{S} \, \hat{R}_d \, \hat{H}_d \, + \lambda_u \, \hat{S} \, \hat{R}_u \, \hat{H}_u \end{aligned}$
 - soft-SUSY breaking terms
 - \Box B_{μ} -term

A

- □ soft scalar masses
- Dirac gaugino masses
- no A-terms

One way to fix it: <u>Dirac masses</u> Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM)

Kribs et.al. arXiv:0712.2039						
			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$
	Singlet	Ŝ	1	1	0	0
Additional fields:	Triplet	Ť	1	3	0	0
	Octet	Ô	8	1	0	0
	R-Higgses	Â _u	1	2	-1/2	2
		Â _d	1	2	1/2	2

Kribs, Popitz, Weiter (2008)

MSSM vs. MRSSM

- superpotencial $\mu \hat{H}_u \hat{H}_d$ $-Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u$
 - soft-SUSY breaking terms
 - $\Box = B_{\mu}$ term
 - □ soft scalar masses
 - Majorana gaugino masses

0

□ A - terms

superpotencial							
$ \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u $ $ -Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u $ $ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u $							
∎ soft-SUS	SY breaki	ing t	terms				
o B_{μ} -	term						
🗆 soft :	soft scalar masses						
ם Dira	 Dirac gaugino masses 						
no A	no A-terms						
One way to fix it: <u>Dirac masses</u> Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM)							
			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	<i>U</i> (1) _R	
	Singlet	Ŝ	1	1	0	0	
Additional fields:	Triplet	Ť	1	3	0	0	
	Octet R-Higgsos	Û Ê	8		0 1 /2	0	
•	11-11188262	Â _d	1	2	$\frac{-1/2}{1/2}$	2	

Kribs, Popitz, Weiter (2008)

Particle content summary: MSSM vs. MRSSM

different number of physical states compl

completely new states

		Higgs			R-H	iggs	
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	1

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

Majorana fermions

Dirac fermions

Lightest Higgs boson mass in the MRSSM

one of dimensionless parameters of the model

Exemplary mass spectrum

What has been done

- Higgs masses at 1- and 2-loop order
- analysis of constraints from m_W and STU parameters
- light singlet scenario
- $\blacksquare (1 \text{ component}) \text{ dark matter}$
- analysis of pseudoscalar sgluon production at the LHC

What is to be done

- NLO SQCD corrections to pair production
 - NLO R-symmetric SQCD corrections to squark pair production
 - pheno analysis
 - remaining processes
 - 2-component dark matter

∎ g-2

MRSSM signatures at the LHC

sgluon pair production $pp \rightarrow OO$

 $\square \quad \text{complex fields O split by D-term contribution into scalar (S) and pseudoscalar (A) parts} \\ m_{O_A}^2 = m_O^2 \qquad m_{O_S}^2 = m_O^2 + 4(M_O^D)^2 \\ \end{bmatrix}$

 \Box O_S naturally heavy, O_A might decay into quarks through loop-induced coupling

Coupling proportional to m_q . If O_A is lighter than other SUSY particles but $m_{O_A} > 2m_t$ O_A decays exclusively to top quarks

same sign squark pair production $pp \rightarrow \tilde{q}_L \tilde{q}_R$

Dirac gluino \tilde{g}_D pair production, with cross section roughly twice as large as in the MSSM

NLO R-symmetric SQCD corrections

2 component dark matter

- consider scenarios where the lightest particle with R=1 is neutralino or sneutrino with mass m_{LSP1}
- if $m_{R_1^0} < 2 m_{\text{LSP1}}$, lightest neutral R-Higgs is also stable
- two SUSY dark matter candidates with relic densities Ω_1 and Ω_2

requirements

- $\Box \quad \Omega_{total} h^2 \equiv (\Omega_1 + \Omega_2) h^2 \simeq 0.11$
- \Box substantial fraction Ω_2/Ω_{total}
- (for now) best points are not collinear friendly:

$$m_{\tilde{\chi}_1^0} = 367 \text{ GeV}$$

 $m_{R_1^0} = 571 \text{ GeV}$

g-2

Backup

Sgluon pair production at 13 TeV LHC

- Analysis of the sgluon pair production with subsequent decay into $t\bar{t}$ pairs. Recasting ATLAS search in the same-sign lepton channel using 3.2/ fb of integrated luminosity
- Signal simulated at NLO using MadGraph5_aMC@NLO + FeynRules + NLOCT and matched to parton shower in the MC@NLO scheme
 - Detector response parametrized using Delphes3
- Analysis validated on background processes $t\bar{t}l^+l^-, t\bar{t}l^\pm\nu$
- Mass of pair produced real spluons decaying with $BR(O \rightarrow t\bar{t}) = 1$ excluded up to 950 GeV

Leading order analysis

LO cross-sections for sparticle production at the LHC at $\sqrt{s} = 13$ TeV