The minimal curvaton-higgs (MCH) model

Rose Lerner

Based on: Kari Enqvist, RL, Tomo Takahashi [arXiv:1310.1374] Kari Enqvist, RL, Stanislav Rusak [arXiv:1308.3321] Kari Enqvist, Daniel Figueroa, RL [arXiv:1211.5028] Kari Enqvist, RL, Olli Taanila, Anders Tranberg [1205.5446] RL, Scott Melville, [1402.3176] RL, Anders Tranberg [to appear]

> rose.lerner@desy.de DESY, Hamburg October 2014

Overview

Motivation Perturbations in the CMB Minimal models Curvaton models

The MCH model Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NL}

Initial conditions

Summary

▲御★ ▲理★ ▲理★

Perturbations in the CMB Minimal models Curvaton models

CMB perturbations

Rose Lerner The minimal curvaton-higgs (MCH) model

Perturbations in the CMB Minimal models Curvaton models

CMB perturbations

Rose Lerner

Perturbations in the CMB Minimal models Curvaton models

What does a complete cosmological model require?

Observational:

- inflation
- perturbations: ζ , n, r, f_{NL} ...
- reheating
- dark matter
- baryogenesis
- ▶ ...

イロト イポト イヨト イヨト

3

Perturbations in the CMB Minimal models Curvaton models

What does a complete cosmological model require?

Observational:

- inflation
- perturbations: ζ , n, r, f_{NL} ...
- reheating
- dark matter
- baryogenesis

▶ .

Theoretical:

...

- specify all fields in the theory
- consider all interactions
- quantum corrections
- explain initial conditions

Rose Lerner The minimal curvaton-higgs (MCH) model

Perturbations in the CMB Minimal models Curvaton models

What does a complete cosmological model require?

Observational:

- inflation
- perturbations: ζ , n, r, f_{NL} ...
- reheating

- dark matter
- baryogenesis

Theoretical:

. . .

- specify all fields in the theory
- consider all interactions
- quantum corrections
- explain initial conditions

Minimal extensions to the standard model allow precise calculations of cosmological processes

Perturbations in the CMB Minimal models Curvaton models

Where is SUSY?

Rose Lerner

うくい

Perturbations in the CMB Minimal models Curvaton models

What is a curvaton model?

Single field inflaton: A single field ϕ both drives inflation and is the source of the perturbations.

・ロン ・雪 と ・ ヨ と ・ ヨ と …

Perturbations in the CMB Minimal models Curvaton models

What is a curvaton model?

Single field inflaton: A single field ϕ both drives inflation and is the source of the perturbations.

Curvaton paradigm:

One field ϕ drives inflation but has negligible perturbations; a second field σ is the source of perturbations but is negligible during inflation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Perturbations in the CMB Minimal models Curvaton models

Energy densities in the curvaton paradigm

Perturbations in the CMB Minimal models Curvaton models

Why study curvaton models?

because they exist!

Rose Lerner The minimal curvaton-higgs (MCH) model

ヘロン 人間 とくほと 人ほとう

Perturbations in the CMB Minimal models Curvaton models

Why study curvaton models?

- because they exist!
- because they can give measurable non-Gaussianity and isocurvature

・ロン ・部 と ・ ヨ と ・ ヨ と …

Perturbations in the CMB Minimal models Curvaton models

Why study curvaton models?

- because they exist!
- because they can give measurable non-Gaussianity and isocurvature
- ▶ because light scalar fields (m < H) might exist and it is important to calculate their consequences

・ロン ・雪 と ・ ヨ と ・ ヨ と …

Perturbations in the CMB Minimal models Curvaton models

Why study curvaton models?

- because they exist!
- because they can give measurable non-Gaussianity and isocurvature
- ▶ because light scalar fields (m < H) might exist and it is important to calculate their consequences
- because the curvaton mechanism gives more freedom for the inflation model

・ロン ・雪 と ・ ヨ と ・ ヨ と …

Perturbations in the CMB Minimal models Curvaton models

Why study curvaton models?

- because they exist!
- because they can give measurable non-Gaussianity and isocurvature
- ▶ because light scalar fields (m < H) might exist and it is important to calculate their consequences
- because the curvaton mechanism gives more freedom for the inflation model
- because they have interesting, constrainable dynamics after inflation

イロト イポト イヨト イヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

The minimal curvaton-higgs (MCH) model

MCH Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma + \frac{1}{2}m_{\sigma}^{2}\sigma^{2} + \frac{\lambda}{4!}\sigma^{4} + \frac{1}{2}g^{2}\sigma^{2}\Phi^{\dagger}\Phi$$

イロン 不同 とくほう イロン

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

The minimal curvaton-higgs (MCH) model

MCH Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma + \frac{1}{2} m_{\sigma}^{2} \sigma^{2} + \frac{\lambda}{4!} \sigma^{4} + \frac{1}{2} g^{2} \sigma^{2} \Phi^{\dagger} \Phi$$

- ▶ assume $\sigma \rightarrow -\sigma$ symmetry
- assume $\lambda = 0$
- assume instant inflaton decay
- free parameters: $g, m_{\sigma}, H_*, \sigma_*$

イロト イポト イヨト イヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Consequences of coupling g

• correction to $V(\sigma)$

$$\Delta V(\sigma) = \frac{\left(g^2 \sigma^2 + m_h^2\right)^2}{64\pi^2} \log\left(\frac{g^2 \sigma^2 + m_h^2}{\mu^2}\right)$$

[choose
$$\mu = m_h = 126 \text{ GeV}$$
]

ヘロン 人間 とくほと 人ほとう

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Consequences of coupling g

correction to V(σ)

$$\Delta V(\sigma) = \frac{\left(g^2 \sigma^2 + m_h^2\right)^2}{64\pi^2} \log\left(\frac{g^2 \sigma^2 + m_h^2}{\mu^2}\right)$$

[choose $\mu = m_h = 126 \text{ GeV}]$

 $\blacktriangleright~\sigma$ can feel any thermal background of Higges

$$m_\sigma^2
ightarrow m_\sigma^2 + rac{1}{12} g^2 T^2$$

イロト イポト イヨト イヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Consequences of coupling g

• correction to $V(\sigma)$

$$\Delta V(\sigma) = rac{\left(g^2\sigma^2+m_h^2
ight)^2}{64\pi^2}\log\left(rac{g^2\sigma^2+m_h^2}{\mu^2}
ight)$$

[choose $\mu = m_h = 126 \text{ GeV}]$

• σ can feel any thermal background of Higges

$$m_\sigma^2
ightarrow m_\sigma^2 + rac{1}{12} g^2 T^2$$

▶ homogeneous σ can decay: $\Gamma_{eff} = \Gamma_{NP} + \Gamma_{pert} + \Gamma_5$

- 1. non-perturbative decay
- 2. perturbative scattering with thermal bath
- 3. dimension-5 operators

Rose Lerner

イロト イポト イヨト イヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: non-perturbative decay

Summary

- after inflation, higgs is thermalised and gains large thermal mass $\propto g_{\tau} T$, where $g_{\tau}^2 = 0.1$
- curvaton couples to higgs and could also get a thermal mass
- ▶ these thermal masses block resonant preheating until *T* falls

イロト イポト イヨト イヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: Broad and narrow resonances

- After inflation, usually in broad resonance regime, $q(t) = \left(\frac{g\Sigma(t)}{2m_{\sigma}}\right)^2 \gg 1$
- We found that the broad resonance is almost always blocked
- Curvaton amplitude $\Sigma(t)$ decreases and we eventually reach narrow resonance region with $q \ll 1$
- narrow resonance is a continuous process; excites modes within a thin momentum band
- this is where we start our (outline) calculation
- ► assume we have already calculated the decaying Σ(t) and form of oscillations in the relevant background.

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: The narrow resonance

• Higgs equation of motion: $\ddot{\phi}_{\alpha} + 3H\dot{\phi}_{\alpha} + \left(\frac{k^2}{a^2} + g^2\Sigma^2(t)\sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2T^2\right)\phi_{\alpha} = 0$

・ロン ・部 と ・ ヨ と ・ ヨ と …

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: The narrow resonance

- Higgs equation of motion: $\ddot{\phi}_{\alpha} + 3H\dot{\phi}_{\alpha} + \left(\frac{k^2}{a^2} + g^2\Sigma^2(t)\sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2T^2\right)\phi_{\alpha} = 0$
- conservation of energy: $2m_{\sigma} = 2E(k)$

イロト イポト イヨト イヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: The narrow resonance

- Higgs equation of motion: $\ddot{\phi}_{\alpha} + 3H\dot{\phi}_{\alpha} + \left(\frac{k^2}{a^2} + g^2\Sigma^2(t)\sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2T^2\right)\phi_{\alpha} = 0$
- conservation of energy: $2m_{\sigma} = 2E(k)$
- energy of produced higgs: $E(k) = \frac{k^2}{a^2} + 4q(t)m_{\sigma}^2 \sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2 T^2$

・ロト ・四ト ・ヨト ・

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: The narrow resonance

- Higgs equation of motion: $\ddot{\phi}_{\alpha} + 3H\dot{\phi}_{\alpha} + \left(\frac{k^2}{a^2} + g^2\Sigma^2(t)\sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2T^2\right)\phi_{\alpha} = 0$
- conservation of energy: $2m_{\sigma} = 2E(k)$
- energy of produced higgs: E(k) = \frac{k^2}{a^2} + 4q(t)m_{\sigma}^2 \sin^2 (m_{\sigma}t + \frac{\pi}{8}) + g_{\tau}^2 T^2

 Require: g_{\tau}^2 T^2 + 4q(t)m_{\sigma}^2 \sin^2 (m_{\sigma}t + \frac{\pi}{8}) \le m_{\sigma}^2

Rose Lerner The minimal curvaton-higgs (MCH) model

ヘロン 人間 とくほとう ほん

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: The narrow resonance

- Higgs equation of motion: $\ddot{\phi}_{\alpha} + 3H\dot{\phi}_{\alpha} + \left(\frac{k^2}{a^2} + g^2\Sigma^2(t)\sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2T^2\right)\phi_{\alpha} = 0$
- conservation of energy: $2m_{\sigma} = 2E(k)$
- energy of produced higgs: $E(k) = \frac{k^2}{a^2} + 4q(t)m_{\sigma}^2 \sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2 T^2$
- Require: $g_{\tau}^2 T^2 + 4q(t)m_{\sigma}^2 \sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) \le m_{\sigma}^2$
- Remember that $q \ll 1$

・ロト ・回ト ・ヨト ・ヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: The narrow resonance

- Higgs equation of motion: $\ddot{\phi}_{\alpha} + 3H\dot{\phi}_{\alpha} + \left(\frac{k^2}{a^2} + g^2\Sigma^2(t)\sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2T^2\right)\phi_{\alpha} = 0$
- conservation of energy: $2m_{\sigma} = 2E(k)$
- energy of produced higgs: $E(k) = \frac{k^2}{a^2} + 4q(t)m_{\sigma}^2 \sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) + g_{\tau}^2 T^2$
- Require: $g_{\tau}^2 T^2 + 4q(t)m_{\sigma}^2 \sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) \le m_{\sigma}^2$
- Remember that $q \ll 1$
- ▶ Thus, narrow resonance can only occur for $T \leq \frac{m_{\sigma}}{g_{\tau}}$

イロト イポト イヨト イヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 1: Thermal blocking

From previous slide

$$g_{\tau}^2 T^2 + 4q(t)m_{\sigma}^2 \sin^2\left(m_{\sigma}t + \frac{\pi}{8}\right) \leq m_{\sigma}^2$$

Notes

- If the higgs had no coupling to the thermal background $(g_{\tau} = 0)$, then there would be no blocking of the resonance!
- Rate of energy transfer typically very slow
- Thermal blocking typically lasts for a huge number of oscillations
- The curvaton's thermal mass modifies $\Sigma(t)$ (see paper)
- Without thermal blocking, the curvaton would quickly disappear and may not be a good curvaton candidate

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 2: perturbative scattering with thermal bath

Simple calculation:

$$\Gamma_{pert} = \frac{1}{576\pi} \frac{g^4 T^2}{m_{\sigma}(T)}$$

ヘロト ヘヨト ヘヨト ヘヨト

3

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 2: perturbative scattering with thermal bath

Simple calculation:

$$\Gamma_{pert} = \frac{1}{576\pi} \frac{g^4 T^2}{m_{\sigma}(T)}$$

- process efficient at $\Gamma(t) \ge H(t)$
- $H \propto T^2$
- ▶ so if $m_{\sigma}(T) = m_{\sigma}$, occurs immediately or never!
- if $m_{\sigma}(T) = \frac{1}{\sqrt{12}}gT$, efficient process if

$$g \geq 4.9 g_*^{1/8} \left(rac{m_\sigma}{M_{_{Pl}}}
ight)^{1/4}$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 2: perturbative scattering with thermal bath

Simple calculation:

$$\Gamma_{pert} = \frac{1}{576\pi} \frac{g^4 T^2}{m_{\sigma}(T)}$$

- this is a very simple calculation
- ignores e.g. fact that momenta are soft
- many recent papers give improvement e.g. Mukaida, Nakayama, Takimoto [1308.4394]

・ロン ・部 と ・ ヨ と ・ ヨ と …

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Decay 3: dimension-5 operators

Example dimension-5 coupling:

$$\mathcal{L}_5 \propto rac{1}{M_P} \sigma ar{f} \Phi f$$

Gives:

$$\Gamma_5 pprox rac{m_\sigma^3}{M_P^2}$$

イロン 不同 とくほう イロン

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Other constraints

- big bang nucleosynthesis (BBN)
 - neutrinos decouple at 4 MeV
 - avoid spoiling BBN if curvaton decay occurs before this
 - requires $m_{\sigma} > 8 \times 10^4$ GeV
- dark matter
 - isocurvature if dark matter freezes out before curvaton decay
 - large isocurvature is ruled out by WMAP and Planck
 - \blacktriangleright standard WIMP scenario with decoupling at ${\cal T}=10~GeV$ gives $\Gamma>10^{-16}~GeV$
 - from Γ_5 , we get $m_\sigma = 10^7$ GeV

イロト イポト イヨト イヨト

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Methodology

- split into two solutions
- include full $V = V_0 + \Delta V + V(T)$
- numerically follow oscillations
- use scaling law evolution between transitions
- use δN formalism to obtain ζ, f_{NL} and g_{NL}

イロト イポト イヨト イヨト
Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Parameter space for large σ_*

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NL}

$f_{_{NI}}$ for large σ_*

▶ $H_* = 10^{12} \text{ GeV}$

æ

Rose Lerner

The minimal curvaton-higgs (MCH) model

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Constraints including $f_{_{NL}}$ for small σ_*

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Constraints including $f_{_{NL}}$ for small σ_*

 pale blue is allowed

イロト イポト イヨト イヨト

▶ $H_* = 10^{11} \text{ GeV}$

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Remaining unknowns are (in principle!) calculable

Including:

- numerical (lattice) consideration of thermal blocking
- baryogenesis
- dark matter
- running of coupling constant and other quantum corrections
- spectral index n and tensor-to-scalar ratio r, once inflaton specified
- ► ...
- value of initial condition (?)

イロン 不同 とくほう イロン

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Thermal blocking on the lattice (PRELIMINARY!)

Is the analytical analysis of thermal blocking sufficient?

Figure 1: The (log of) the particle number after preheating for $m_{\sigma}t = 1000$, corresponding to approximately 160 inflaton oscillations. Inset is the energy in the preheated field(s). The Higgs field is self-interacting and coupled to the "by-hand" inflaton, but has no coupling to any other fields. Without an additional mass (left), and with a mass of $M^2 = 0.5m_{\sigma}^2$ (right)

< ロ > < 同 > < 回 > < 回 >

Lagrangian and assumptions Three decay modes Parameter space: ζ and f_{NI}

Thermal blocking on the lattice (PRELIMINARY!)

- Is the analytical analysis of thermal blocking sufficient?
- Preliminary results say "yes"

Figure 3: The position of the resonance peaks as a function of the corresponding effective (LO) mass, when varying T. Filled symbols: With the leading order effective mass and Higgs self-interaction. Open symbols: Interacting with full dynamical light fields. Shaded symbols: Interacting with $N_f = 6$ full dynamical light fields.

< ∃⇒

The questions

- if (non-inflaton) scalar fields exist in a theory, do they either rule out the theory or otherwise affect observational predictions?
- 2. if we design a curvaton model, does this have natural or fine-tuned initial conditions?

Initial Condition

The curvaton field value σ_* when observable scales exit the horizon determines the observational predictions (given model parameters).

Rose Lerner The minimal curvaton-higgs (MCH) model

同 ト イ ヨ ト イ ヨ ト

We did this:

Rose Lerner

The minimal curvaton-higgs (MCH) model

Specify model: minimal curvaton-higgs (MCH)

Reminder: MCH Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma + \frac{1}{2}m_{\sigma}^{2}\sigma^{2} + \frac{\lambda}{4!}\sigma^{4} + \frac{1}{2}g^{2}\sigma^{2}\Phi^{\dagger}\Phi$$

Rose Lerner The minimal curvaton-higgs (MCH) model

イロン 不同 とくほう イロン

э

Specify model: effective mass from the Higgs

 during inflation, curvaton gets a contribution to effective mass from interaction with higgs

•
$$m_{eff}^2 = m_{\sigma}^2 + \frac{1}{2}g^2h_*^2$$

after inflation the higgs contribution quickly disappears

Two regimes:

- 1. $gh_* \gg m_\sigma$: g determines m_{eff} , m_σ determines Γ_{eff}
- 2. $gh_* \ll m_\sigma$: m_σ determines both

イロト イポト イヨト イヨト

Rose Lerner The minimal curvaton-higgs (MCH) model

Interpretation of $P(\sigma)$

- 1. set up background inflation
- 2. add a curvaton
- 3. curvaton experiences slow roll and random quantum kicks
- 4. find value of σ_* in our patch
- 5. run the simulation many times
- 6. plot final σ_* from all runs this is $P(\sigma)$

The distribution of σ_*

Fokker-Planck equation

 $\dot{P}(\sigma, N) = \frac{1}{3H_*^2} V''(\sigma) P(\sigma, N) + \frac{1}{3H_*^2} V'(\sigma) P'(\sigma, N) + \frac{H_*^2}{8\pi^2} P''(\sigma, N)$ Derivation:

- Integrate out short wavelength modes with $k \gg H_*$
- Langevin equation $\dot{\sigma} = \frac{V'(\sigma)}{3H_*} + \xi(t)$
- ► random Gaussian noise: $\langle \xi(t)\xi(t')\rangle = \delta(t-t')\frac{H_*^3}{8\pi^2}$

- 4 同 2 4 回 2 4 U

Evolution of $P(\sigma, N)$ for $V(\sigma) = \frac{1}{2}m_{eff}^2\sigma^2$

 $(N = 1, 10, 100; m_{eff} = 0.2H_*; \sigma_0 = 0.)$ Rose Lerner The minimal curvaton-higgs (MCH) model

Solution for quadratic potential $V(\sigma) = \frac{1}{2}m_{eff}^2\sigma^2$

$$P(\sigma, N) = \frac{1}{\sqrt{2\pi w^2(N)}} \exp\left(-\frac{(\sigma - \sigma_c(N))^2}{2H_*^2 w^2(N)}\right)$$

where

$$\sigma_c(N) = \sigma_c(0) \exp\left(-\frac{m_{eff}^2}{3H_*^2}N\right)$$

and

$$w^{2}(N) = \frac{3H_{*}^{2}}{8\pi^{2}m_{eff}^{2}} - \left(\frac{3H_{*}^{2}}{8\pi^{2}m_{eff}^{2}} - \frac{w^{2}(0)}{H_{*}^{2}}\right)\exp\left(-\frac{2m_{eff}^{2}}{3H_{*}^{2}}N\right)$$

- initial central value of the distribution: $\sigma_c(0) \equiv \sigma_0$
- ▶ initial width: w(0)

・ロト ・四ト ・モト・ モー

э

Rose Lerner The minimal curvaton-higgs (MCH) model

Translate to ζ : valid for $V(\sigma) = \frac{1}{2}m_{eff}^2\sigma^2$

• Probability distribution of ζ given by

$$P(\zeta, N) = P[\sigma_*^-, N] \left| \frac{d\sigma_*}{d\zeta} \right|_{\sigma_*^-} + P[\sigma_*^+, N] \left| \frac{d\sigma_*}{d\zeta} \right|_{\sigma_*^+}$$

... resulting in

$$P(\zeta, N) = \frac{1}{\sqrt{2\pi w^2(N)}} \exp\left(-\frac{\left(\left[\frac{H_*}{6\pi\zeta}(1-Y(\zeta))\right] - \sigma_c(N)\right)^2}{2H_*^2 w^2(N)}\right) \frac{H_*(1-Y(\zeta))}{6\pi\zeta^2 Y(\zeta)} + \frac{1}{\sqrt{2\pi w^2(N)}} \exp\left(-\frac{\left(\left[\frac{H_*}{6\pi\zeta}(1+Y(\zeta))\right] - \sigma_c(N)\right)^2}{2H_*^2 w^2(N)}\right) \frac{H_*(1+Y(\zeta))}{6\pi\zeta^2 Y(\zeta)} + Y(\zeta) \equiv \sqrt{1 - \frac{288\pi^2 M_{Pl} m_\sigma \zeta^2}{H_*^2}}$$

... and something similar for f_{NL} .

Add opinion: defining "observable", "negligible" and "excluded"

As working definitions, we take:

observable $0.1\zeta_{WMAP} \leq \zeta \leq \zeta_{WMAP}$ or $5 < f_{_{NL}} < 14.3$

negligible

 $\zeta < 0.1 \zeta_{WMAP} ~{\rm and}~ f_{_{NL}} < 5$

excluded

- $\zeta > \zeta_{WMAP} \text{ or } f_{_{NL}} > 14.3$
 - ► Note that we must integrate over ζ to obtain P(0.1ζ_{WMAP} < ζ_{curvaton} < ζ_{WMAP})

イロト イポト イヨト イヨト

Wait ages and ages: P(observable)

Rose Lerner

Wait ages and ages: P(negligible)

Rose Lerner

Wait ages and ages: P(excluded)

Rose Lerner

Wait just a little

- ζ is calculated when the perturbations leave the horizon, about 60 *e*-foldings before the end of inflation
- ► the N shown here is the number of e-foldings before horizon exit
- timescale to reach equilibrium given by $N_{dec} = \frac{3H_*^2}{2m^2}$
- ► N_{dec} can be large

Rose Lerner The minimal curvaton-higgs (MCH) model

P(observable) for $\sigma_0 = 0$; N = 10

Rose Lerner The minimal curvaton-higgs (MCH) model

・ロト ・回ト ・ヨト ・ヨト

P(observable) for $\sigma_0 = 0$; $N = 10^2$

Rose Lerner The minimal curvaton-higgs (MCH) model

・ロト ・回ト ・ヨト ・ヨト

P(observable) for $\sigma_0 = 0$; $N = 10^4$

Rose Lerner

P(observable) for $\sigma_0=0;~N=10^6$

Rose Lerner The minimal curvaton-higgs (MCH) model

▲日> ▲圖> ▲屋> ▲屋>

P(observable) for $\sigma_0 = 0$; $N = 10^{12}$

Rose Lerner

The minimal curvaton-higgs (MCH) model

Rose Lerner The minimal curvaton-higgs (MCH) model

P(negligible) for $\sigma_0 = 0$; N = 10

Rose Lerner The minimal curvaton-higgs (MCH) model

・ロト ・回ト ・ヨト ・ヨト

P(negligible) for $\sigma_0 = 0$; $N = 10^2$

Rose Lerner The minimal curvaton-higgs (MCH) model

P(negligible) for $\sigma_0 = 0$; $N = 10^4$

Rose Lerner The minimal curvaton-higgs (MCH) model

P(negligible) for $\sigma_0 = 0$; $N = 10^6$

Rose Lerner The minimal curvaton-higgs (MCH) model

<ロ> <部> < 部> < き> < き> < き</p>

P(negligible) for $\sigma_0 = 0$; $N = 10^{12}$

Rose Lerner The minimal curvaton-higgs (MCH) model

<ロ> <部> < 部> < き> < き> < き</p>
Rose Lerner The minimal curvaton-higgs (MCH) model

P(excluded) for $\sigma_0 = 0$; N = 10

Rose Lerner The minimal curvaton-higgs (MCH) model

・ロト ・回ト ・ヨト ・ヨト

P(excluded) for $\sigma_0 = 0$; $N = 10^2$

Rose Lerner The minimal curvaton-higgs (MCH) model

▲日> ▲圖> ▲屋> ▲屋>

P(excluded) for $\sigma_0 = 0$; $N = 10^4$

Rose Lerner The minimal curvaton-higgs (MCH) model

P(excluded) for $\sigma_0 = 0$; $N = 10^6$

Rose Lerner The minimal curvaton-higgs (MCH) model

P(excluded) for $\sigma_0 = 0$; $N = 10^{12}$

Rose Lerner Th

The minimal curvaton-higgs (MCH) model

<ロ> <部> < 部> < き> < き> < き</p>

Rose Lerner The minimal curvaton-higgs (MCH) model

P(observable) for $\sigma_0 = M_P$; $N = 10^4$

Rose Lerner The minimal curvaton-higgs (MCH) model

・ロト ・回ト ・ヨト ・ヨト

P(observable) for $\sigma_0 = M_P$; $N = 10^6$

Rose Lerner The minimal curvaton-higgs (MCH) model

・ロト ・回ト ・ヨト ・ヨト

э

P(observable) for $\sigma_0 = M_P$; $N = 10^8$

Rose Lerner The minimal curvaton-higgs (MCH) model

▲日> ▲圖> ▲屋> ▲屋>

P(observable) for $\sigma_0 = M_P$; $N = 10^{10}$

Rose Lerner The minimal curvaton-higgs (MCH) model

P(observable) for $\sigma_0 = M_P$; $N = 10^{12}$

Rose Lerner The

The minimal curvaton-higgs (MCH) model

Notes

 "probable" regions of parameter space exist for some range of model parameters

- ► large masses m_σ > 2 × 10⁷ GeV are (dis)favoured
- ► m_σ < 8 × 10⁴ GeV are excluded due to a late curvaton decay
- results valid for $g < (m_\sigma/M_P)^{1/4}$
- ► very little dependence on the initial conditions for large effective mass $m_{\text{off}}^2 = m_{\pi}^2 + g^2 h_*^2$
- scalars with certain properties should not be a society

Speculate: new observations

New information?

- tensor-to-scalar ratio $r \rightarrow H_*$
- Planck $\rightarrow f_{_{NL}}$
- Planck \rightarrow spectral index n_s \rightarrow constrains g and m_σ

(once V_{inf} specified)

• WIMP dark matter detection \rightarrow increased lower bound on m_{σ}

イロト イポト イヨト イヨト

Speculate: linking N, g and m_{σ}

- if large m_σ favoured, would need very large N.
- if small m_σ and large g was instead favoured,

N = O(10 - 100) would be sufficient, if $\sigma_0 = 0$ justified.

 Conversely, knowledge from fundamental theories about N could give information about m_σ and g.

・ロト ・同ト ・ヨト ・ヨト

The questions

- if (non-inflaton) scalar fields exist in a theory, do they either rule out the theory or otherwise affect observational predictions?
- 2. if we design a curvaton model, does this have natural or fine-tuned initial conditions?

See also arxiv/1402.3176

Rose Lerner

The minimal curvaton-higgs (MCH) model

The MCH model: summary

- MCH model is standard model + one real scalar curvaton
- non-perturbative decay into higgses is thermally blocked
- decay via dimension-5 operators determines predictions
- BBN, DM and interactions with the thermal background impose constraints
- \blacktriangleright distribution of initial field value σ_* could be determined under assumptions
- scalars with certain properties should not be ignored as possible curvatons!