ENERGINGJEIS

DANIEL STOLARSKI WITH PEDRO SCHWALLER AND ANDREAS WEILER

arXiv:141?.???

Warsaw University November 24, 2014

MOTIVATION 1

Getting away from the lamp post

MOTIVATION 2

We have seen dark matter in the sky

But not in the lab ensitivity Plots

63

ASYMMETRIC DARK MATTER

$\Omega_{DM} \simeq 5\Omega_B$

Controlled by complicated (known) QCD dynamics $\Omega_B = \dot{m}_p n_B$ $\Omega_{DM} = m_{DM} n_{DM}$ Unknown dynamics of baryogenesis

MANY PAPERS

S. Nussinov, Phys.Lett.B.165 (1985) 55.

D. B. Kaplan, Phys.Rev.Lett.B.68 (1992) 741-3.

D. E. Kaplan, M. A. Luty, K. M. Zurek, Phys.Rev.D **79** 115016 (2009) [arXiv:0901.4117 [hep-ph]].

K. K. Boddy, J. L. Feng, M. Kaplinghat, and T. M. P. Tait, Phys. Rev. D. **89** 11, 115017 (2014) [arXiv:1402.3629 [hep-ph]].

For a review see K. Petraki and R. R. Volkas, Int.J.Mod.Phys.A 28, 1330028 (2013) [arXiv:1305.4939 [hep-ph]].

- - -

ASYMMETRIC DARK MATTER

$\Omega_{DM} \simeq 5\Omega_B$

Can get $n_{DM} \sim n_B$, usually have to assume $m_{DM} \sim m_B$

Can we get **both**?

GETTING THE MASS $\Omega_{DM} \simeq 5\Omega_{B}$

DARK (CD

Propose new SU(N_d) "dark QCD," dark quarks Bai, Schwaller, PRD 13.

Dark matter is dark sector baryons with mass ~ Λ_{dQCD}

Massive bifundamental fields decouple at mass $M \gg \Lambda_{
m dQCD}$

Search for model with perturbative fixed point $g = g^*$

$$\frac{dg}{dt} = \beta(g) = 0 \text{ for } g = g^*$$

$$g^* g$$

 $\beta(a)$

$SCA_{\beta_{c,d}^{(2)}} SCA_{\beta_{c,d}^{(2)}} SCA_$

<u>Example</u>

Fixed points: $\alpha_c^* = 0.090 \quad \alpha_d^* = 0.168$ $M = 870 \ GeV$

DM mass: $M_{DM} \approx 3.5 \ GeV$

```
\alpha_d(\Lambda_{dQCD}) \equiv \frac{\pi}{4}
M_{DM} \approx 1.5 * \Lambda_{dQCD}
(c, g_d) = 0
```


 α_s

 $\Lambda_{\rm U}$

 $\Lambda_{\rm QCD} \Lambda_{\rm dQCD} M$

DARK MATTER

Can co-generate DM and baryon asymmetry

$$\overline{Q} \oplus d_i \rightarrow \text{SM quark}$$

 $\downarrow \rightarrow \text{bifundamental scalar}$
 $\downarrow \rightarrow \text{dark quark}$

Dark matter is strongly self interacting — potentially solves various problems of cold dark matter

• Cusp vs core

Rocha et. al. '12. Peter et. al. '12. Vogelsberger, Zavala, Loeb, '12. Zavala, Vogelsberger, Walker '12.

- Missing satellites
- Too big to fail

PHENOMENOLOGY

DARK (CD

Confining SU(N_c) gauge group with N_f flavors $Q_i \ \overline{Q}_j \ G_d^{\mu
u}$

This sector is QCD like, and it confines at a scale $\Lambda_d \sim 1-10~{\rm GeV}$

At the confining scale we have all the usual states

$$\begin{array}{c} p_d \\ \text{Stable} \\ \text{to SM} \end{array} \begin{array}{c} \mathcal{T}_d \\ \mathcal{T}_{OO_d} \\ \mathcal{T}_{OO_d} \\ \mathcal{T}_{OO_d} \end{array} \end{array}$$

13 DANIEL STOLARSKI November 24, 2014 University of Warsaw

MEDIATORS

Motivated by getting comparable asymmetries, put in heavy mediator which couples to SM and dark sector

$M_{\Phi} \gg \Lambda_d$

<u>Example 1:</u> Φ is a scalar charged under both color and dark color

MEDIATORS

Motivated by getting comparable asymmetries, put in heavy mediator which couples to SM and dark sector

$M_{\Phi} \gg \Lambda_d$

Example 2: Z_d is a vector that couples to quarks and dark quarks Strassler, Zurek, PLB 07.

ALEPH event

PION DECAY

Operator used to generate asymmetry mediates decay

 $Q \Phi d_i$ q Q_d Q_d Dark pion Integrate out Φ decays to π_d quarks Q_d Ф

PION DECAY

Same story for Z_d model:

DECAY LENGTH

$$\frac{1}{M_X^2} \overline{Q} \gamma_\mu Q \, \bar{d}_R \gamma^\mu d_R$$

Can use (dark) chiral Lagrangian to estimate:

$$\Gamma(\pi_d \to \bar{d}d) \approx \frac{f_{\pi_d}^2 m_d^2}{32\pi M_{X_d}^4} m_{\pi_d}$$
$$c\tau \approx 5 \,\mathrm{cm} \times \left(\frac{1 \,\,\mathrm{GeV}}{f_{\pi_d}}\right)^2 \left(\frac{100 \,\,\mathrm{MeV}}{m_d}\right)^2 \left(\frac{1 \,\,\mathrm{GeV}}{m_{\pi_d}}\right) \left(\frac{M_{X_d}}{1 \,\,\mathrm{TeV}}\right)^4$$

DECAY LENGTH

~ 2 m (CMS)

Look for jets with no/few tracks in the circle

pp

Q

BACKGROUND?

QCD 4-jet production in PYTHIA 8 $p_T > 200 \text{ GeV}$

BACKGROUND COMPOSITION

Flavor of earliest decaying track

track $p_T > 1 \text{ GeV}$ jet $p_T > 200 \text{ GeV}$

TRACKLESS BACKGROUND

Composition of completely trackless background

track $p_T > 1 \text{ GeV}$ jet $p_T > 200 \text{ GeV}$

DARK SECTOR

Choose two benchmarks:

	Model A	Model \mathbf{B}
Λ_d	$10 { m GeV}$	$4 \mathrm{GeV}$
m_V	$20~{ m GeV}$	$8 { m GeV}$
m_{π_d}	$5~{ m GeV}$	$2 { m GeV}$
$c au_{\pi_d}$	$150 \mathrm{mm}$	$5 \mathrm{mm}$

$$N_c = 3$$
 and $n_f = 7$

Dark QCD already in PYTHIA!

Carloni, Sjorstrand, 2010.

Carloni, Rathsman, Sjorstrand, 2011.

Run modified version with running

$p_T (\text{GeV})$

Modify PYTHIA to include gauge coupling running

DANIEL STOLARSKI November 24, 2014 University of Warsaw

SMULATION

Check to see if simulation makes sense by 4000 looking at average particle/multiplicity

30

MESON MULTIPLICITY

Number of dark mesons in a jet

BENCHMARK MEDIATOR 1 $pp \to \Phi \Phi^{\dagger} \to \bar{q} Q_d \overline{Q}_d q$

BENCHMARK MEDIATOR 1 $pp \to \Phi \Phi^{\dagger} \to \bar{q} Q_d \overline{Q}_d q$

Final state is

- 2 QCD jets
- 2 emerging jets

Cross section is stop-like $\sigma \approx \text{ few} \times \sigma(pp \rightarrow \tilde{t}_1 \tilde{t}_1)$ $\sigma(M_{\Phi} = 1 \text{ TeV}) \approx 10 \text{ fb}$ @LHC14

BENCHMARK MEDIATOR 2 $pp \rightarrow Z_d \rightarrow Q_d \ \overline{Q}_d$

Final state is

• 2 emerging jets

Cross section depends on couplings

Work in progress

JET MOMENTA

Hardest jet p⊤

Four hard jets is enough to pass trigger

JET SHAPES

JET SHAPES

SEARCH STRATEGY

$pp \to \Phi \Phi^{\dagger} \to \bar{q} Q_d \ \bar{Q}_d \ q$

 $m_{\pi_d} = 2 \text{ GeV}$

 $c\tau_{\pi_d} = 5 \text{ mm}$

DIFFERENT MODEL POINTS

Model A'

Model A"

CUT FLOW

Cross sections in fb at LHC14:

(Cross sections in	n fb at l	LHC14:		PEI	
		Model A	Model B	QCD 4-jet	Modified PYTHIA	
	Tree level	14.6	14.6	410,000	410,000	
	$\geq 4 \text{ jets}, \eta < 2.5$ $p_T(\text{jet}) > 200 \text{ GeV}$ $H_T > 1000 \text{ GeV}$	4.9	8.4	48,000	48,000	PL

Paired di-jet resonance search very difficult! Requiring emerging jets changes the game.

ALTERNATIVE STRATEGY

Fraction of jet energy reconstructing outside of circle

Neutrals (photon, neutron) do not contribute, hard to get F=1

Much more robust to pile-up

FDSTRBUTIONS

 ≥ 1 jet: Model A

ALTERNATIVE CUT FLOW

Cross sections i	n fb:	PRELIN			
	Model A	Model B	QCD 4-jet	Modified PYTHIA	
$\geq 4 \text{ jets, } \eta < 2.5$ $p_T(\text{jet}) > 200 \text{ GeV}$ $H_T > 1000 \text{ GeV}$	4.9	8.4	48,000	48,000	Y
1 jet $F(100 \text{ mm}) > 0.5$	3.7	1.8	130	150	
2 jets $F(100 \text{ mm}) > 0.5$	1.3	0.1	0.3	0.2	

b-jet background too large at *r*=10 mm

Works pretty well at r=100 mm even for short lifetime model

CMS Physics Analysis Stimmary SEARCH

Search for long-lived neutral particles decaying to dijets

The CMS Collaboration

Abstract

A search is performed for long-lived massive neutral particles decaying to quarkantiquark pairs. The experimental signature is a distinctive topology of a pair of jets originating at a secondary vertex. Events were collected by the CMS detector at the LHC during pp collisions at $\sqrt{s} = 8$ TeV, and selected from data samples corresponding to 18.6 fb⁻¹ of integrated luminosity. No significant excess is observed above standard model expectations and an upper limit is set with 95% confidence level on the production cross section of a heavy scalar particle, H⁰, in the mass range 200 to 1000 GeV, decaying into a pair of long-lived neutral X⁰ particles in the mass range 50 to 350 GeV, which each decay to quark-antiquark pairs. For X⁰ mean proper lifetimes of 0.1 to 200 cm the upper limits are typically 0.3–300 fb.

CMS PAS EXO-12-038

sis Summary

CMS SEARCH

CMS PAS EX0-12-038

ATLA ERN SEARCH

Search for long-lived neutral particles decaying into lepton jets in proton–proton collisions at \sqrt{s} = 8 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors' linear dimensions. This paper presents the results of a search for lepton jets in proton–proton collisions at the centre-of-mass energy of $\sqrt{s} = 8$ TeV in a sample of 20.3 fb⁻¹ collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle's proper decay length.

arXiv:1409.0746v2 [hep-ex]

ATLAS SEARCH

extremely low efficiency except possibly for long lifetimes

See also ATLAS trigger paper: arXiv:1305.2204 [hep-ex].

LHCb

LHCb has excellent tracking

Limited coverage of event

LHCb

Still get a good fraction of events with dark pions in LHCb

Discussions with collaboration ongoing

POWER OF EMERGING JET

Emerging jet sear sensitive to other scenarios

- Lepton jets
- RPV neutralino

Work in progress

CONCLUSIONS

- Important to explore different ways LHC can search for NP
- DM exists, exhaustively search for different classes of models
- Emerging jets are novel and motivated, no current searches are sensitive
- Strategies presented here can reach very low cross sections, sensitive to broad class of displaced models
- ATLAS and CMS exotics groups are investigating

HANK YOU

DIFFERENT MODEL POINTS

Model A

Model **B**

SIGNAL VS BG

$$m_{\pi_d} = 5 \,\mathrm{GeV}$$

 $c \tau_{\pi_d} = 50 \,\mathrm{mm}$

MESON MOMENTUM FRACTION

Fraction of jet momentum carried by any individual dark meson

