New physics searches at the LHC and a 100 TeV collider

Kazuki Sakurai (King's College London)

In collaboration with:

John Ellis, Michihisa Takeuchi, Andreas Papaefstathiou Ian-Woo Kim, Michele Papucci, Andreas Weiler, Lisa Zeune, Bobby. Acharya, Krzysztof Bozek, Chakrit Pongkitivanichkul

Outline

- Higgs measurements:
 - anomalous ttH coupling in ttH, tHj production

• Direct BSM searches:

- 8 TeV data: Interpretation of the results
- 13/14 TeV LHC: Wino searches in split SUSY (Bino LSP case)
- a 100 TeV collider: Wino searches in split SUSY (Higgino LSP case)

Introduction

- The LHC run 1 brought a lot of successes:
 - The discovery of a Higgs boson
 - The Higgs property measurements \rightarrow SM-like
 - The direct BSM searches → strong limits

more interpretation is needed

- The LHC will resume collecting data with 13 TeV this year.
 - New Higgs property measurements
 - More direct BSM searches

Where should we look at? How should we look at? What are the prospects?

Higgs decay modes

- The Higgs is observed in various decay modes.
- The results are consistent with the SM.

Higgs production modes

- Several Higgs production modes are measured.
- Some processes have not been well or at all observed: ttH, tHj, bbH, HH

Higgs production modes

- Several Higgs production modes are measured.
- Some processes have not been well or at all observed: ttH, tHj, bbH, HH

ttH and tHj productions

- The ttH production
- At the 13 TeV L become import
- Observation of coupling.

 $\mathcal{L}_t = -$

Constraint on ttH coupling

• The ttH coupling is already constrained by the gluon-fusion Higgs production and the Higgs decay into $\gamma\gamma$.

gg→H production

H→γγ decay

Constraint on ttH coupling

• One can translate the constraint on (c_g, c_γ) into $(\kappa_{t_r} \sim \kappa_t)$.

• The CP phase ζ_t is not well constrained.

J. Ellis, KS, D.S. Hwang, M. Takeuchi (1312.5736)

J. Ellis, KS, D.S. Hwang, M. Takeuchi (1312.5736)

• For $\zeta_t > 1.2$, $\sigma(tHj)$ can become larger than $\sigma(ttH)$.

• The difference from the SM is a factor of 20 at the maximum.

• The top polarisation can be measured by the angle of the lepton w.r.t the top boost direction at the top rest frame.

 $P_t = \pm 1$ for pure right(left)-handed top

Spin measurement in tHj

- The $\cos\theta_1$ distribution but in the tHj rest frame
- Some dependency of the CP phase
- In SM the lepton prefers the opposite direction to the lepton prefers the opposite direction to the prefers the same direction, whereas for $\zeta_t = \pi/2$, it prefers the same direction.
- The asymmetry is an useful measure.

$$A_{\ell} = \frac{N(\cos \theta_{\ell} > 0) - N(\cos \theta_{\ell} < 0)}{N(\cos \theta_{\ell} > 0) + N(\cos \theta_{\ell} < 0)}$$

- tHj and tbarHj. The band is the statistic error assuming 14 TeV LHC with 100 fb⁻¹.
- $\zeta_t > 0$ and < 0 are not distinguishable.

J. Ellis, KS, D.S. Hwang, M. Takeuchi (1312.5736)

14 TeV, Parton Level

The angle from prod. plane

J. Ellis, KS, D.S. Hwang, M. Takeuchi (1312.5736)

14 TeV, Parton Level

Spin Correlation in ttH

Direct BSM searches

Supersymmetry

 A number of SUSY searches has been conducted: ~50 analyses (including preliminary ones) using the 8 TeV data.

Supersymmetry

 A number of SUSY searches has been conducted: ~50 analyses (including preliminary ones) using the 8 TeV data.

A St	TLAS SUSY Sea	arches	s* - 95	5% (ower Limits	ATLA	AS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit		Reference
Inclusive Searches	$\begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1,0}^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^1 \rightarrow q q W^{\pm} \tilde{\chi}_{1}^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q q (\ell \ell \ell v v v) \tilde{\chi}_{1}^0 \\ \tilde{G}\text{MSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM} (bino \text{ NLSP}) \\ \text{GGM} (wino \text{ NLSP}) \\ \text{GGM} (higgsino-bino \text{ NLSP}) \\ \text{GGM} (higgsino \text{ NLSP}) \\ \text{GGM} (higgsino \text{ NLSP}) \\ \text{GGM} (higgsino \text{ NLSP}) \\ \text{Gravitino LSP} \end{array}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ \tau + 0 \ - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.7 TeV $m(\tilde{q})=m(\tilde{g})$ any $m(\tilde{q})$ $m(\tilde{q}) = 0$ GeV, $m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $\tan\beta < 15$ 1.6 TeV $\tan\beta > 20$ W $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>220$ GeV $m(\tilde{\chi}_{1}^{0})>10^{-4} \text{ eV}$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ẽ med.	$\begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{0}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.25 TeV ğ 1.1 TeV ğ 1.34 T ğ 1.3 Te		1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to i\tilde{\chi}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{light}), \tilde{r}_{1} \to b\tilde{\chi}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{light}), \tilde{r}_{1} \to b\tilde{\chi}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{medium}), \tilde{r}_{1} \to k\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{medium}), \tilde{r}_{1} \to k\tilde{\chi}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{neavy}), \tilde{r}_{1} \to k\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{neatral gMSB}) \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \to \tilde{r}_{1} + Z \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b mono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20.2 20.1 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} &m(\tilde{x}_{1}^{0}){<}90GeV \\ &m(\tilde{x}_{1}^{-}){=}2m(\tilde{x}_{1}^{0}) \\ &m(\tilde{x}_{1}^{0}){=}55GeV \\ &m(\tilde{x}_{1}^{0}){=}155GeV \\ &m(\tilde{x}_{1}^{0}){=}1GeV \\ &m(\tilde{x}_{1}^{0}){=}1GeV \\ &m(\tilde{x}_{1}^{0}){=}0GeV \\ &m(\tilde{x}_{1}^{0}){=}0GeV \\ &m(\tilde{x}_{1}^{0}){=}0GeV \\ &m(\tilde{x}_{1}^{0}){=}0GeV \\ &m(\tilde{x}_{1}^{0}){=}0GeV \\ &m(\tilde{x}_{1}^{0}){=}150GeV \\ &m(\tilde{x}_{1}^{0}){=}150GeV \\ &m(\tilde{x}_{1}^{0}){<}250GeV \\ &m(\tilde{x}_{1}^{0}){<}2200GeV \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{LR}\tilde{\ell}_{L,R},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu}(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1} \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1} \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R}\ell \end{array} $	2 e, µ 2 e, µ 2 τ 3 e, µ 2-3 e, µ 1 e, µ 4 e, µ	0 0 0 2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}0 GeV \\ & m(\tilde{\chi}_{1}^{0}){=}0 GeV, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}){=}0 GeV, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, sleptons decoupled \\ & m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\chi}_{2}^{0}){=}m$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_1^0 = \tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 (μ) 1-2 μ 2 γ 1 μ , displ. vtz	1 jet 1-5 jets - - x -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} m(\tilde{\chi}_{1}^{\pm})\text{-}m(\tilde{\chi}_{1}^{0})\text{=}160 \text{ MeV}, \ \tau(\tilde{\chi}_{1}^{\pm})\text{=}0.2 \text{ ns} \\ m(\tilde{\chi}_{1}^{0})\text{=}100 \text{ GeV}, \ 10 \ \mu\text{s} < \tau(\tilde{g}) < 1000 \text{ s} \\ 10\text{-}\text{tan}\beta < 50 \\ 0.4 < \tau(\tilde{\chi}_{1}^{0})\text{<}2 \text{ ns} \\ 1.5 < c\tau < 156 \text{ mm}, \ \text{BR}(\mu)\text{=}1, \ m(\tilde{\chi}_{1}^{0})\text{=}108 \text{ GeV} \end{array}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{X}_1^{\dagger} \tilde{X}_1^{-}, \tilde{X}_1^{\dagger} \rightarrow W \tilde{X}_1^{0}, \tilde{X}_1^{0} \rightarrow ee \tilde{v}_{\mu}, e\mu \tilde{v}_e \\ \tilde{X}_1^{\dagger} \tilde{X}_1^{-}, \tilde{X}_1^{+} \rightarrow W \tilde{X}_1^{0}, \tilde{X}_1^{0} \rightarrow \tau \tau \tilde{v}_e, e\tau \tilde{v}_\tau \\ \tilde{g} \rightarrow \tilde{q}_1 \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 <i>b</i> - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	\tilde{y}_r 1. \tilde{y}_r 1.1 TeV $\tilde{q}_r \tilde{g}$ 1.35 T \tilde{x}_1^{\pm} 750 GeV \tilde{x}_1^{\pm} 450 GeV \tilde{g} 916 GeV \tilde{g} 850 GeV	.61 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ rev $\mathbf{m}(\hat{q})=\mathbf{m}(\hat{g}), c\tau_{LSP}<1 \text{ mm}$ $\mathbf{m}(\tilde{\chi}_1^0)>0.2\times\mathbf{m}(\tilde{\chi}_1^1), \lambda_{121}\neq0$ $\mathbf{m}(\tilde{\chi}_1^0)>0.2\times\mathbf{m}(\tilde{\chi}_1^1), \lambda_{133}\neq0$ $\mathbf{BR}(t)=\mathbf{BR}(b)=\mathbf{BR}(c)=0\%$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , <i>µ</i> (SS) 0	4 jets 2 b mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 0$ full o	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

~t~t, ~t->bC1 ~t~t, ~t->tN1 C1N2, via l_L C1N2, via WZ

Supersymmetry

 A number of SUSY searches has been conducted: ~50 analyses (including preliminary ones) using the 8 TeV data.

Supersymmetry

• The actual limit is much more complicated and depends on:

the LSP mass
the details of decay modes
other production modes

Wouldn't it be nice if there is a program, in which you give a SLHA file and press a button, then you get the limits from ATLAS and CMS analyses? I-W Kim, M.Papucci, KS, A.Weiler

Automated Tests Of Models)

 .1994e-05
 0.660413
 0.0157994

 .38081e-05
 1.32083
 0.0733793

 .1904e-05
 0.660413
 0.0971196

 .57121e-05
 1.98124
 0.0236707

- give HepMC event file
- compute constraints from ATLAS/CMS analyses

Analysis	Signal Region	efficiency	Nvis	Nvis/N95	Process-ID	
 ATLAS_CONF_2013_035	+ SRnoZa	3.1904e-05	0.660413	0.0157994	+ 0	
ATLAS_CONF_2013_035	SRnoZb	6.38081e-05	1.32083	0.0733793	⊙	
ATLAS_CONF_2013_035	SRnoZc	3.1904e-05	0.660413	0.0971196	⊙	
ATLAS_CONF_2013_035	SRZa	9.57121e-05	1.98124	0.0236707	⊙	
ATLAS_CONF_2013_035	SRZc	9.57121e-05	1.98124	0.304806	⊙	
ATLAS_CONF_2013_037	SRtN2	0.00185043	38.304	3.57981	0	< excluded
ATLAS_CONF_2013_037	SRtN3	0.000638081	13.2083	1.55391	0	< excluded
ATLAS_CONF_2013_037	SRbC1	0.0147078	304.451	3.65926	0	< excluded
ATLAS_CONF_2013_037	SRbC2	0.00360516	74.6267	3.82701	0	< excluded
ATLAS_CONF_2013_037	SRbC3	0.0015952	33.0207	4.34483		< excluded
ATLAS_CONF_2013_053	SRA mCT150	0.00194615	39.1175	1.02941	0	< excluded
ATLAS_CONF_2013_053	SRA mCT200	0.00146759	29.4985	1.13456	•••••••••••••••••••••••••••••••••••••••	< excluded
ATLAS_CONF_2013_053	SRA mCT250	0.000861409	17.3143	1.92381	0	< excluded
ATLAS_CONF_2013_053	SRA mCT300	0.000350944	7.05398	0.940531	0	
ATLAS CONF 2013 053	SRA mCT350	3.1904e-05	0.641271	0.123321	0_1	

ATLAS-CONF-2011-086					
Signal Region		≥ 2 jets	≥ 3	jets	\geq 4 jets
$E_{\rm T}^{\rm miss}$ [GeV]		> 130	>]	130	> 130
Leading jet $p_{\rm T}$	[GeV]	> 130	>]	130	> 130
Second jet $p_{\rm T}$ [GeV]	> 40	>	40	> 40
Third jet <i>p</i> _T [G	eV]	_	>	40	> 40
Fourth jet $p_{\rm T}$ [C	_	_		> 40	
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{m}}$	> 0.4	> 0.4		> 0.4	
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	$E_{\rm T}^{\rm miss}/m_{\rm eff}$).25	> 0.25
$m_{\rm eff}$ [GeV]		> 1000	> 1	000	> 1000
Drocess		Signal Region			
1100035	≥ 2 jets	\geq 3 jet	\geq 3 jets		4 jets
SM prediction	A prediction 12.1 ± 2.8		10.1 ± 2.3		3 ± 1.7
Observed 10		8		7	
$N_{ m BSM}^{ m UL}$	[5.77		4.95		5.77

ATLAS-CONF-20	11-086				
Signal Region	≥ 2 jets	≥ 3	jets	\geq 4 jets	
$E_{\rm T}^{\rm miss}$ [GeV]		> 130	>]	130	> 130
Leading jet $p_{\rm T}$	[GeV]	> 130	>]	130	> 130
Second jet $p_{\rm T}$ [[GeV]	> 40	>	40	> 40
Third jet p_{T} [G	eV]	_	>	40	> 40
Fourth jet $p_{\rm T}$ [0	_	_		> 40	
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{m}}$	> 0.4	> 0.4		> 0.4	
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	$E_{\rm T}^{\rm miss}/m_{\rm eff}$).25	> 0.25
$m_{\rm eff}$ [GeV]		> 1000	> 1	000	> 1000
Drocess		Signal Region			
1100055	≥ 2 jets	\geq 3 jet	S	\geq 4 jets	
SM prediction	12.1 ± 2.8	10.1 ± 2.3		7.	3 ± 1.7
Observed	Observed 10		8		7
$N_{ m BSM}^{ m UL}$	5.77	4.95	4.95		5.77

Result

ATLAS-CONF-20					
Signal Region		≥ 2 jets	≥ 3	jets	\geq 4 jets
$E_{\rm T}^{\rm miss}$ [GeV]		> 130	>]	130	> 130
Leading jet $p_{\rm T}$	[GeV]	> 130	>]	130	> 130
Second jet $p_{\rm T}$ [GeV]	> 40	>	40	> 40
Third jet p_{T} [G	eV]	_	>	40	> 40
Fourth jet $p_{\rm T}$ [0	_	—		> 40	
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{m}}$	> 0.4	> 0.4		> 0.4	
$E_{\rm T}^{\rm miss}/m_{\rm eff}$		> 0.3	> ().25	> 0.25
m _{eff} [GeV]		> 1000	> 1	000	> 1000
Drocess		Signal Region			
1100035	≥ 2 jets	\geq 3 jet	Ś	2	4 jets
SM prediction	12.1 ± 2.8	10.1 ± 2.3		7.3 ± 1.7	
Observed	10	8		7	
$N_{ m BSM}^{ m UL}$	5.77	4.95		5.77	

Result

ATLAS-CONF-2011-086						
Signal Region	≥ 2 jets	≥ 3	jets	\geq 4 jets		
$E_{\rm T}^{\rm miss}$ [GeV]		> 130	>]	130	> 130	
Leading jet $p_{\rm T}$	[GeV]	> 130	>]	130	> 130	
Second jet $p_{\rm T}$ [[GeV]	> 40	>	40	> 40	
Third jet <i>p</i> _T [G	eV]	-	>	40	> 40	
Fourth jet $p_{\rm T}$ [0	_	_		> 40		
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{m}}$	> 0.4	> 0.4		> 0.4		
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	$E_{\rm T}^{\rm miss}/m_{\rm eff}$).25	> 0.25	
m _{eff} [GeV]		> 1000	> 1	000	> 1000	
Process		Signal Region				
1100035	≥ 2 jets	\geq 3 jet	S	\geq 4 jets		
SM prediction	12.1 ± 2.8	10.1 ± 2.3		7.3 ± 1.7		
Observed	Observed 10		8		7	
$N_{ m BSM}^{ m UL}$	5.77	4.95		5.77		

Result

ATLAS-CONF-2011-086					
Signal Region	≥ 2 jets	≥ 3	jets	\geq 4 jets	
$E_{\rm T}^{\rm miss}$ [GeV]		> 130	>]	130	> 130
Leading jet $p_{\rm T}$	[GeV]	> 130	>]	130	> 130
Second jet $p_{\rm T}$ [[GeV]	> 40	>	40	> 40
Third jet $p_{\rm T}$ [G	eV]	_	>	40	> 40
Fourth jet $p_{\rm T}$ [0	_	_		> 40	
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{m}}$	> 0.4	> 0.4		> 0.4	
$E_{\rm T}^{\rm miss}/m_{\rm eff}$		> 0.3	> 0.25 > 0.2		> 0.25
m _{eff} [GeV]		> 1000	> 1	000	> 1000
Process		Signal Region			
1100035	≥ 2 jets	\geq 3 jet	S	\geq 4 jets	
SM prediction	12.1 ± 2.8	10.1 ± 2	2.3	7.3 ± 1.7	
Observed	ed 10		8		7
$N_{ m BSM}^{ m UL}$	5.77	4.95		5.77	

Result

any interpretation is possible

GMSB (M_{mess}, A) AMSB (m₀, m_{3/2}) gluino simp. model stop simp. model Little Higgs Model

I-W Kim, M.Papucci, KS, A.Weiler

• Estimate N_{BSM} for various SRs and confront N_{BSM} with N_{UL} .

database of exp. results: NUL, Nobs, Nsys, NSMBG

 $N_{\text{UL}}^{(a)} \longleftrightarrow N_{\text{BSM}}^{(a)} = \epsilon_{\text{BSM}}^{(a)} \cdot \sigma_{\text{BSM}} \cdot \mathcal{L}$ esults: NSMBG $\epsilon_{\text{BSM}}^{(a)} = \lim_{N_{\text{MC}} \to \infty} \frac{N\left(\begin{array}{c} \text{Events fall into} \\ \text{signal region } a \end{array}\right)}{N_{\text{MC}}}$

> database of ATLAS and CMS analyses: the selection cuts used in the analyses are implemented.The effect of detector resolution is taken into account.

Modelling Detector Effects

(1) reconstruct jets, MET, iso-leptons from truth level particles (not from detector cells)

(2) smear the reco-objects according to detector resolutions, apply reco efficiencies (lepton acceptances, b and τ tagging eff.)

I-W.Kim, M.Bapucci, KS, A.Weiler

Validation

The approach works surprisingly well.

Fitting Excesses

J.S.Kim,K.Rolbiecki, K.Sakurai, J.Tattersall (1406.0858)

Study	SR	Obs	Exp	SM s.d.
Atlas W^+W^- (7 TeV) [5]	Combined	1325	1219 ± 87	$1.1\text{-}\sigma$
CMS W^+W^- (7 TeV) [7]	Combined	1134	1076 ± 62	$0.8-\sigma$
CMS W^+W^- (8 TeV) [6]	Combined	1111	986 ± 60	$1.8-\sigma$
Atlas Higgs [27]	$WW \ CR$ Higgs SR	$3297 \\ 3615$	$\begin{array}{c} 3110 \pm 186 \\ 3288 \pm 220 \end{array}$	$\begin{array}{c} 0.9 \text{-} \sigma \\ 1.4 \text{-} \sigma \end{array}$
Atlas \tilde{q} and \tilde{g} (1-2 ℓ) [23]	Di-muon	7	1.7 ± 1	$2.5-\sigma$
Atlas Electroweak $(3 \ \ell) \ [24]$	m SR0 au a01 m SR0 au a06	36 13	$\begin{array}{c} 23\pm4\\ 6.6\pm1.9 \end{array}$	$2.1-\sigma$ $1.9-\sigma$

Description	\sqrt{s}	Luminosity	Number	Refs.
-	[TeV]	$[\text{fb}^{-1}]$	of SR	
		4.0	1	[X: 1010 0070]
ATLAS W W	(4.0	1	[arXiv:1210.2979]
CMS W^+W^-	7	4.9	1	[arXiv:1306.1126]
CMS W^+W^-	8	3.5	1	[arXiv:1301.4698]
Atlas Higgs	8	20.7	2	[ATLAS-CONF-2013-031]
ATLAS Electroweak (2ℓ)	8	20.3	13	[arXiv:1403.5294]
ATLAS \tilde{q} and \tilde{g} (1-2 ℓ)	8	20.1	19	[ATLAS-CONF-2013-062]
ATLAS \tilde{q} and \tilde{g} razor (2 ℓ)	8	20.3	6	[ATLAS-CONF-2013-089]
ATLAS Electroweak (3ℓ)	8	20.3	20	[arXiv:1402.7029]
Atlas \tilde{t} $(1 \ \ell)$	8	20.7	8	[ATLAS-CONF-2013-037]
Atlas \tilde{t} (2 ℓ)	8	20.3	12	[arXiv:1403.4853]
CMS $W^{\pm}Z^0$	8	19.6	4	[CMS-PAS-12-006]
Atlas $W^{\pm}Z^0$	8	13.0	4	[ATLAS-CONF-2013-021]
Atlas $\tilde{t} \to b \nu_{\tau} \tilde{\tau}_1$	8	20.3	1	[ATLAS-CONF-2014-014]

• ATLAS and CMS have observed excesses in some of the SRs.

- We fit the excess using *Checkmate* and Atom taking the relevant constraints into account.
- The following processes are included in the scan:

 $pp \to \tilde{t}_1 \tilde{t}_1 : \tilde{t}_1 \to bW^{(*)} \tilde{\chi}_1^0 \text{ (via } \tilde{\chi}_1^\pm)$ $pp \to \tilde{\chi}_1^+ \chi_1^- : \tilde{\chi}_1^\pm \to W^{(*)} \tilde{\chi}_1^0$ $pp \to \tilde{\chi}_1^+ \tilde{\chi}_2^0 : \tilde{\chi}_2^0 \to Z^{(*)} \tilde{\chi}_1^0$

Fitting Excesses

J.S.Kim,K.Rolbiecki, K.Sakurai, J.Tattersall (1406.0858)

Best f	it	poi	nt:
	En Sel	177 a 14	

 $m_{\tilde{t}_1} = 212^{+35}_{-35} \text{ GeV}$ $m_{\tilde{\chi}^0_1} = 150^{+30}_{-20} \text{ GeV}$

Study	SR	Obs	Exp	SM s.d.	Best fit exp	Best fit s.d
Atlas W^+W^- (7 TeV) [5]	Combined	1325	1219 ± 87	1.1- <i>σ</i>	119	0.1- <i>σ</i>
CMS W^+W^- (7 TeV) [7]	Combined	1134	1076 ± 62	$0.8-\sigma$	89	0.4 - σ
CMS W^+W^- (8 TeV) [6]	Combined	1111	986 ± 60	$1.8-\sigma$	83	$0.6-\sigma$
Atlas Higgs [27]	WW CR Higgs SR	$3297 \\ 3615$	$\begin{array}{c} 3110\pm186\\ 3288\pm220 \end{array}$	$\begin{array}{c} 0.9 - \sigma \\ 1.4 - \sigma \end{array}$	374 501	$0.9-\sigma$ $0.6-\sigma$
Atlas \tilde{q} and \tilde{g} (1-2 ℓ) [23]	Di-muon	7	1.7 ± 1	$2.5-\sigma$	2.7	1.2-σ
Atlas Electroweak (3 l) [24]	$SR0\tau a01$ $SR0\tau a06$	36 13	$\begin{array}{c} 23\pm 4\\ 6.6\pm 1.9 \end{array}$	$2.1-\sigma$ $1.9-\sigma$	2.8 1.5	1.6-σ 1.4-σ

A fast model testing method

Testing model points by MC simulation is time consuming.

_each point requires MC simulations

We need a fast model testing method.

-(a)BSM

•

$$Q = \tilde{q}$$
$$G = \tilde{g}$$
$$N1 = \tilde{\chi}_1^0$$

dominantly depends on BSM particle masses

$$\begin{pmatrix} N_{\mathrm{QqN1:QqN1}}^{(a)} = \epsilon_{\mathrm{QqN1:QqN1}}^{(a)} (m_{\mathrm{Q}}, m_{\mathrm{N1}}) \cdot \sigma_{\mathrm{QQ}} \cdot BR \cdot \mathcal{L} \\ \downarrow \downarrow \\ N_{\mathrm{GqqN1:GqqN1}}^{(a)} = \epsilon_{\mathrm{GqqN1:GqqN1}}^{(a)} (m_{\mathrm{G}}, m_{\mathrm{N1}}) \cdot \sigma_{\mathrm{GG}} \cdot BR \cdot \mathcal{L} \\ \downarrow \\ N_{\mathrm{GqqN1:QqN1}}^{(a)} = \epsilon_{\mathrm{GqqN1:QqN1}}^{(a)} (m_{\mathrm{G}}, m_{\mathrm{Q}}, m_{\mathrm{N1}}) \cdot \sigma_{\mathrm{GQ}} \cdot BR \cdot \mathcal{L}$$

Papucci, KS, Weiler, Zeune 1402.0492

Papucci, KS, Weiler,

Zeune 1402.0492

Papucci, KS, Weiler,

Zeune 1402.0492

No MC sim. required

output: $N_{\text{SUSY}}^{(a)}/N_{\text{UL}}^{(a)}, CL_s^{(a)}$

Papucci, KS, Weiler,

Zeune 1402.0492

http://fastlim.web.cern.ch/fastlim/

Limit on Natural SUSY

• Light stop, sbottom and Higgsinos (charginos, neutralinos).

$\mu = 100 \text{GeV}, \ M_{Q_3} = M_{U_3}$

- Distance from the origin is sensitive to the fine-tuning
 - $\Delta m_{H_u}^2 \simeq -\frac{3y_t^2}{8\pi^2} (M_{U_3}^2 + M_{Q_3}^2 + A_t^2) \ln\left(\frac{\Lambda}{m_{\tilde{t}}}\right)$

BSM searches Prospect 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} Supersymmetry breaking scale in GeV

^{10¹⁰}e to look at?

- The measured Higgs mass (~125GeV) may indicate that scalars are heavy.
- This assumption is consistent with other measurements: FCNC, CPV, direct SUSY searches, etc..
- Gauginos (Higgsinos) can still be light.
 → good for gauge coupling unification.
- In concrete models, gaugino masses are often loop suppressed compared to the scalar mass. Split SUSY
- Among the gauginos, gluinos often become the heaviest due to its colour charge.
 e.g. M₃: M₂: M₁ = 7 : 2 : 1.
- Wino, Bino (or Higginos) can be accessible at the LHC.

Wino cross section

LHC(14 TeV), $M_2 = 350 \,\text{GeV}, M_1 = 100 \,\text{GeV}, \mu = m_{\tilde{q}}$ 300 $\tan\beta = 2$ 250 ${ ilde \chi}^0_2 \, { ilde \chi}^\pm_1$ $--\tan\beta = 50$ $[\mathrm{q}]$ 200 $(\tilde{\chi}\tilde{\chi}$ 150 100 ${ ilde \chi}_1^+ { ilde \chi}_1^-$ 50 0.5 10 5 30 1 $m_{\tilde{q}} \, [\text{TeV}]$

Wino cross section

LHC(14 TeV), $M_3: M_2: M_2 = 7: 2: 1, \mu = m_{\tilde{q}} = 3$ TeV

The chargino-neutralino production exceeds the gluino production at $M_2 \sim 300$ GeV.

Wino → Bino decay

$$\begin{aligned} |C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}Z}| &\simeq \frac{e}{2} \frac{m_{Z}^{2}}{|\mu|^{2}}, \\ |C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}h}| &\simeq \frac{e}{2} \frac{m_{Z}}{|\mu|} \Big| 2\sin 2\beta + \frac{M_{1} + M_{2}}{\mu} \Big|, \end{aligned}$$

The neutralino2 decays into Higgs predominantly (except for the cancellation region)

h→TT mode

- In the split SUSY with large μ -term, we have $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W^{\pm} \tilde{\chi}_1^0 h \tilde{\chi}_1^0$
- We consider $W^{\pm} \rightarrow \ell^{\pm} \nu, h \rightarrow \tau^{+} \tau^{-}$ channel
- The BR is small (BR($h \rightarrow \tau \tau$) = 6.3×10⁻²), but the ttbar background can be controlled by b-jet veto and the requirement of τs .

sample	σ_{initial} (fb)
SUSY C350-100	5.7
WZ	767
$W(ightarrow \ell u_\ell) + ext{jets}$	$\sim 600 \times 10^3$
$W(ightarrow au u_{ au}) + ext{jets}$	$\sim 300 \times 10^3$
hV	443
$t\bar{t}h$	3.4
$t\overline{t}$	8600
$Z(ightarrow \ell\ell) + ext{jets}$	$\sim 600 \times 10^3$
$Z(ightarrow au au)+ ext{jets}$	$\sim 300 \times 10^3$

T-tagging

$M_{\min} \text{ for } WZ \text{ background } \theta \equiv \arctan\left(\frac{a}{b}\right)$

 $\begin{array}{ll} -- \mbox{ collinear approx.} -- \\ p_{\tau^+} = p_{\rho_1}/a, & p_{\tau^-} = p_{\rho_2}/b, \\ p_{\nu_1} = (1/a-1)p_{\rho_1}, & p_{\nu_2} = (1/b-1)p_{\rho_2}, \end{array}$

 a, b, \mathbf{p}_{ν} : 5 unknowns $m_Z, m_W, p_{\text{miss}}^x, p_{\text{miss}}^y$: 4 constraints

the system can be parametrised by a single parameter $\boldsymbol{\theta}$

 We define M_{min} so that it minimises the total energy in terms of θ.

$$M_{\min} \equiv \min_{\theta} \left[M_{inv}(\theta) \right]$$
$$M_{inv}^{2}(\theta) = \left[p_{\ell} + p_{\nu}(\theta) + p_{\tau}^{+}(\theta) + p_{\tau}^{-}(\theta) \right]^{2}$$

Chargino-Neutralino at a 100TeV pp collider

Wino, Higgsino cross section

B.Acharya, K.Bozek, C.Pongkitivanichkul KS (1410.1532)

Wino → Higgsino decay

• In Higgsino LSP case, both chagino and neutralino can decay to W, Z and h.

 $\tilde{W}^{\pm} \to W^{\pm} \tilde{H}^0, Z \tilde{H}^{\pm}, h \tilde{H}^{\pm} \qquad \tilde{W}^0 \to W^{\pm} \tilde{H}^{\mp}, Z \tilde{H}^0, h \tilde{H}^0$

• The decay rates are related through the *Goldstone equivalence theorem*.

Wino → Higgsino decay

 $\operatorname{BR}(\widetilde{W}^{\pm}) \simeq \begin{cases} 0.5 \quad \to W^{\pm} \widetilde{H}^{0} \\ 0.25 \quad \to h \widetilde{H}^{\pm} \\ 0.25 \quad \to Z \widetilde{H}^{\pm} \end{cases} \qquad \operatorname{BR}(\widetilde{W}^{0}) \simeq \begin{cases} 0.5 \quad \to W^{\pm} \widetilde{H}^{\mp} \\ 0.25 \quad \to h \widetilde{H}^{0} \\ 0.25 \quad \to Z \widetilde{H}^{0} \end{cases}$

B.Acharya, K.Bozek, C.Pongkitivanichkul KS (1410.1532)

3 lepton channel in *VZ* mode τ/ν_{τ}

B.Acharya, K.Bozek, C.Pongkitivanichkul KS (1410.1532)

Event selection

preselection

- exactly three isolated leptons with $p_T > 10$ GeV and $|\eta| < 2.5$
- a same-flavour opposite-sign (SFOS) lepton pair with $|m_{\ell\ell}^{\rm SFOS} m_Z| < 10 \text{ GeV}$
- no b-tagged jet

signal regions

Signal Region	3 lepton p_T [GeV]	E_T^{miss} [GeV]	$m_T \; [\text{GeV}]$
Loose	> 100, 50, 10	> 150	> 150
Medium	> 250, 150, 50	> 350	> 300
Tight	> 400, 200, 75	> 800	> 1100

Cut-flow

• Cut-flows for the signal and background processes in fb

Process	No cut	= 3 lepton	$ m_{\ell\ell}^{\rm SFOS} - m_Z < 10$	no- <i>b</i> jet
VV	3025348	2487	2338	2176
ttV	220161	792	552	318
tV	2764638	68.9	6.07	4.12
VVV	36276	76.1	56.2	56.2
BG total	6046422	3424	2952	2554
$(M_2,\mu) = (800,200)$	1.640	0.588	0.565	0.534
$(M_2,\mu) = (1200,200)$	0.397	0.124	0.119	0.111
$(M_2, \mu) = (1800, 200)$	0.0863	0.0190	0.0179	0.0170

Process	$p_T^{\ell} > (400, 200, 75)$	$E_T^{\text{miss}} > 800$	$m_T > 1100$	S/\sqrt{B}
VV	5.65	0.123	0.00166	
ttV	1.03	0.0056	0.00092	
tV	0.015	0.0001	0	
VVV	0.350	0.0109	0.00153	
BG total	7.05	0.140	0.00411	
$(M_2, \mu) = (800, 200)$	0.0460	0.0020	0.0012	1.00
$(M_2,\mu) = (1200,200)$	0.0238	0.0070	0.0052	4.45
$(M_2,\mu) = (1800,200)$	0.0053	0.0031	0.0026	2.22

B.Acharya, K.Bozek, C.Pongkitivanichkul KS (1410.1532)

Summary

- The LHC will resume with 13 TeV CoM energy and the exciting time will start.
- It opens up new measurements of Higgs bosons: e.g. ttH, tHj productions
- The BSM direct searches: important to understand how to interpret the results.
- Split SUSY is an interesting scenario after LHC run1. Light gauginos may show up at 13 TeV LHC.

T.Cohen, et.al (1311.6480)

- ΔR_{max} : the distance to the track furthest away from the jet axis.
- $f_{\rm core}$: the fraction of the total jet energy contained in the centre-most cone defined by $\Delta R < 0.1$.
- $\Delta R_{\text{max}} < 0.05.$
- $f_{\rm core} > 0.95$.

Figure 9. The distributions of $\Delta R_{\rm SFOS}$, the distance between the SFOS lepton pair, (a) after preselection cuts, (b) after additional cuts: $E_T^{\rm miss} > 500$ GeV and $m_T > 200$ GeV. For both plots, detector simulation has been done by Delphes 3 using the same detector setup as the one used in Snowmass samples but with R = 0.05.

Process	No cut	= 3 lepton	$ m_{\ell\ell}^{\rm SFOS} - m_Z < 10$	no- <i>b</i> jet
VV	3025348	2487	2338	2176
ttV	220161	792	552	318
tV	2764638	68.9	6.07	4.12
VVV	36276	76.1	56.2	56.2
BG total	6046422	3424	2952	2554
$(M_2,\mu) = (800,200)$	1.640	0.588	0.565	0.534
$(M_2,\mu) = (1200,200)$	0.397	0.124	0.119	0.111
$(M_2,\mu) = (1800,200)$	0.0863	0.0190	0.0179	0.0170

Table 3. The (visible) cross sections (in fb) for the cuts employed in the *preselection*. The column marked "No cut" shows the cross sections for the background processes (defined in Table 1) and the cross section times branching ratio into 3 leptons via WZ for signal benchmark points.

Process	$p_T^\ell > (400, 200, 75)$	$E_T^{\text{miss}} > 800$	$m_T > 1100$	S/\sqrt{B}
VV	5.65	0.123	0.00166	
ttV	1.03	0.0056	0.00092	
tV	0.015	0.0001	0	
VVV	0.350	0.0109	0.00153	
BG total	7.05	0.140	0.00411	
$(M_2, \mu) = (800, 200)$	0.0460	0.0020	0.0012	1.00
$(M_2,\mu) = (1200,200)$	0.0238	0.0070	0.0052	4.45
$(M_2, \mu) = (1800, 200)$	0.0053	0.0031	0.0026	2.22

Table 6. The visible cross sections (in fb) used in the *Tight* signal region. The last column shows S/\sqrt{B} assuming the 3000 fb⁻¹ luminosity for different benchmark points.

Figure 14. The exclusion on the M_2 - M_1 plane obtained for the signal regions defined in Table 4 at integrated luminosities of 100 fb⁻¹ (upper left), 300 fb⁻¹ (upper right) and 3000 fb⁻¹ (bottom). The solid curves show the 2σ exclusion boundary, whereas the dashed curves show the 3σ boundary.

Invariant Mass

- For ttH, the total invariant mass increases as increasing the CP phase ζ_t .
- For tHj, the total invariant mass decreases as increasing ζ_t .

14 TeV, Parton Level