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Effective field theory approach 
to physics beyond the SM 

EFT Higgs basis developed within LHCHXSWG 

Current precision constraints from LEP-1 pole 
observables and from LEP-2 WW production



Effective Field Theory 
approach to BSM physics 



SM is a very good approximation of fundamental physics 
at the weak scale, including the Higgs sector  

There’s no sign of new light particles from BSM

In other words, SM is probably a correct effective 
theory at the weak scale 

In such a case,  possible new physics effects can be 
encoded into higher dimensional operators added to the 
SM 

EFT framework offers a systematic expansion around the 
SM organized in terms of operator dimensions, with 
higher dimensional operator suppressed by the mass scale 
of new physics 

Where do we stand



New physics scale Λ separated from 
EW scale v, Λ >> v 

Linearly realized SU(3)xSU(2)xU(1) 
local symmetry spontaneously broken 
by VEV of Higgs doublet field

Effective Theory Approach to BSM

Basic assumptions

Alternatively, 
non-linear Lagrangians

with derivative expansion



If coefficients of higher dimensional operators are O(1), 
Λ corresponds to mass scale on BSM theory with 
couplings of order 1
[more generally, Λ ∼ Mass f(couplings)]

Slightly simpler (and completely equivalent) is to use EW 
scale v in denominators and work with small coefficients 
of higher  dimensional operators c∼(v/Λ)^(d-4)   

Effective Theory Approach to BSM
Building effective Lagrangian



Couplings of gauge bosons to fermions universal and 
fixed by fermion’s quantum numbers 

Z and W boson mass ratio related to Weinberg angle

Higgs coupling to gauge bosons proportional to their 
mass squared 

Higgs coupling to fermions proportional to their mass 

Triple and quartic vector boson couplings proportional 
to gauge couplings 

Standard Model Lagrangian

Some predictions at lowest order
+h.c.

All these predictions can be perturbed by higher-dimensional operators 



At dimension 5, only operators one can construct are so-
called Weinberg operators, which violate lepton number

After EW breaking they give rise to Majorana mass terms 
for SM (left-handed) neutrinos

Neutrino oscillation experiments strongly suggest these 
operators are present  

However, to match the measurements,  their coefficients 
have to be extremely small, c ∼ 10^-11 

Therefore dimension 5 operators can have no observable 
impact on LHC phenomenology 

Dimension 5 Lagrangian



4-fermion 
operators

2-fermion 
dipole 

operators

2-fermion 
vertex 

corrections

 Self-
interactions of 
gauge bosons 

2-fermion 
Yukawa 

interactions

Higgs 
interactions 
with gauge 

bosons

e.g.

e.g. e.g.

e.g.

e.g.

e.g.

Dimension 6 Lagrangian

Higgs 
interactions 
with itself

e.g.

(all hell breaks loose)



First attempt to classify dimension-6 
operators back in 1986

First fully non-redundant set of operators 
explicitly written down only in 2010

Operators can be traded for other operators 
using integration by parts, field redefinition, 
equations of motion, Fierz transformation, etc

Because of that, one can choose many 
different bases == non-redundant sets of 
operators 

All bases are equivalent, but some are more 
equivalent convenient

EFT approach to BSM

Grządkowski et al.
 1008.4884
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Example: Warsaw Basis
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eH†q

Od �(H†H � v2

2 )
¯dH†q

V 3D3

O3G g3sf
abcGa

µ⌫G
b
⌫⇢G

c
⇢µ

Of3G g3sf
abc eGa

µ⌫G
b
⌫⇢G

c
⇢µ

O3W g3✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

Og3W g3✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

V 2H2

OGG
g2s
4 H

†H Ga
µ⌫G

a
µ⌫

OgGG
g2s
4 H

†H eGa
µ⌫G

a
µ⌫

OWW
g2

4 H
†HW i

µ⌫W
i
µ⌫

O]WW
g2

4 H
†H fW i

µ⌫W
i
µ⌫

OBB
g02

4 H†H Bµ⌫Bµ⌫

OgBB
g02

4 H†H eBµ⌫Bµ⌫

OWB gg0H†�iHW i
µ⌫Bµ⌫

OgWB
gg0H†�iH fW i

µ⌫Bµ⌫

f2H2D

OH` i¯`�µ`H† !DµH

O0
H` i¯`�i�µ`H†�i !DµH
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Table 1: A complete, non-redundant set of baryon-and-lepton-number-conserving
dimension-6 operators built from SM fields [5]. In this table, e, u, d are always right-
handed fermions, while ` and q are left-handed. A flavor index is implicit for each fermion
field. For complex operators the complex conjugate operator is implicit. Including the
flavor structure and complex conjugates, this table contains 2499 distinct operators [8].
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59 different
 kinds of operators,

of which 17 are complex  

Grządkowski et al.
 1008.4884

2499 distinct operators, 
including flavor structure

 and CP conjugates
Alonso et al 1312.2014

http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1303.3876


EFT approach to BSM

Generally,  EFT has maaaaany parameters 

After imposing baryon and lepton number conservation, there  are 
2499 non-redundant parameters at dimension-6 level

Flavor symmetries dramatically reduce number of parameters. E.g., 
assuming flavor blind couplings the number of parameters is 
reduced down to 76  

Some of these couplings are constrained by Higgs searches, some 
by dijet measurements, some by measurements of W and Z boson 
production, some by LEP electroweak precision observables, etc.

Important to explore synergies between different measurements 
and different colliders to get the most out of existing data   

Alonso et al 1312.2014



Higgs Basis
for LHCXSWG 



There’s so many coefficients. Which 
ones do I vary in my analysis? 

Maybe the operator I’m probing is 
already strongly constrained by 
another analysis. How could I know?

How do I treat non-canonical 
normalization and kinetic mixing 
induced by dimension-6 operators?  

Possible practical problems

E.g in the Warsaw basis 
h→4l is affected by

while EWPT constrains combinations of



Map a basis of dimension-6 operators into equivalent set of variables  
that is more directly connected to collider observables

Also, isolate parameters strongly constrained by electroweak 
precision tests 

I call it the Higgs basis (because developed for LHC Higgs studies) 

Higgs Basis Inspired by 
“EFT Primaries”
of Gupta et al 

1405.0181 

2499x2499 dimensional
transformation matrix

Linear transformation



For practical reasons, more convenient to introduce the Higgs basis via coefficients of  
Lagrangian terms expressed by mass eigenstates after electroweak  symmetry 
breaking (rather than via SU(3)xSU(2)xU(1) invariant dimension-6 operators).

By construction, all eigenstates canonically normalized, and no kinetic mixing. This 
greatly simplifies connection between couplings and observables. 

Since a typical dimension-6 operator spawns several different Lagrangian terms, 
there will be relations between coefficients of different Lagrangian terms (much as 
in the SM there are, e.g., relations between Higgs boson couplings and particle 
masses)    

We single out a set of (2499) coefficients that define the Higgs basis and call them 
the  independent couplings. Coefficients of remaining terms  are expressed by the 
independent couplings. We call them the dependent couplings. 

It is a matter of convention and convenience which couplings are chosen to as 
independent and which are chosen as dependent.   

Higgs Basis: independent and dependent couplings



In the next few slides, I discuss the Lagrangian in the 
Higgs basis

Only a subset of  interactions relevant for this talk  
(Higgs couplings to gauge bosons, vertex correction to Z 
and W boson couplings, triple gauge couplings) is 
presented. For more details and the rest of the 
Lagrangian, see LHCHXSWG-INT-2015-001

Higgs basis summary



By construction, photon and gluon couplings as in the SM. Only W and Z couplings 
are affected 

Strongly constrained by single Z and W production and decay at LEP, and W mass 
measurements (see later in this talk)

Higgs Basis:  Z and W couplings 

Dependent Couplings

These parameters do not a↵ect the pole observables, therefore they are only weakly
constrained; typically the strongest limits on these parameters come from Higgs studies
at the LHC. The couplings listed in the first line of Eq. (3.3) are defined via the Higgs
boson couplings to the SM gauge bosons:
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Here Xµ⌫ = @µX⌫ � @⌫Xµ, and X̃µ⌫ = ✏µ⌫⇢�@⇢X�. The parameters �y and sin� listed
in the second line of Eq. (3.3) are 3⇥ 3 real matrices each, defined via the Higgs boson
couplings to the SM fermions:
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One could also introduce another set of independent Higgs couplings corresponding to
the dipole interaction terms in the Lagrangian of the form hf̄�µ⌫fFµ⌫ , which could a↵ect
h ! 4f decays. However, precision measurements (in particular, anomalous magnetic
and electric moments of fermions) imply that these couplings must be suppressed at the
level that makes them unobservable at the LHC. Moreover, the contribution from the
dipole terms does not interfere with the SM amplitudes, which means the corresponding
couplings enter at the quadratic level and are therefore suppressed for the size of the
couplings within the validity regime of the EFT. Therefore, for simplicity, we do not
explicitly write these couplings in this note.

At the level of the dimension-6 Lagrangian, several other Higgs couplings can be
expressed by the independent couplings in Eq. (3.1) and Eq. (3.3); we call them the
dependent couplings. Of course, the choice which couplings are independent and which
are dependent is subjective and dictated by convenience; in our case, it is motivated
by the fact that the couplings in Eq. (3.1) and Eq. (3.3) are more easily mapped to
observables constrained by electroweak precision tests and Higgs searches. One group of
dependent couplings are the couplings of the Z boson to neutrinos, and of the W boson
to quarks:
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which can be expressed by the independent couplings as:
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Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-
nos) as our independent couplings, because in the flavor non-universal case the former
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Relations enforced by 
linearly realized SU(3)xSU(2)xU(1) symmetry

find it more transparent to define the independent couplings via the interaction terms
of SM mass eigenstates in the Lagrangian after electroweak symmetry breaking. See
the next section for the expressions of the independent couplings in terms of Wilson
coe�cients of SU(3)⇥ SU(2)⇥ U(1) invariant operators.

Several other Higgs couplings can be expressed by the independent couplings; we
call them the dependent couplings. The relations between dependent and independent
couplings displayed below hold at the level of the dimension-6 Lagrangian, and they are
in general not respected by dimension-8 and higher operators. Of course, the choice
which couplings are independent and which are dependent is subjective and dictated
by convenience. in our case, the independent couplings are more easily mapped to
observables constrained by electroweak precision tests and Higgs searches. However,
other choices can be envisaged, and may be more convenient for other applications.

3.1 Couplings relevant for precision observables

We choose the following set of independent and dependent couplings relevant, at tree-
level, for precision observables related to Z and W boson decays:
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where all �g are 3 ⇥ 3 Hermitian matrices in the generation space, and �m is a real
parameter. These couplings are defined via corrections of the W and Z couplings to the
SM fermions in Eq. (2.3) and to the W boson mass in Eq. (2.2):
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L can be expressed by the independent couplings
as:
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Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-
nos) as our independent couplings, because in the flavor non-universal case the former are
more directly constrained by experiment (in particular, in leptonic W decays measured
at LEP).

The parameters in Eq. (3.1) form a complete set to describe all single on-shell Z and
W decay and production processes within an EFT with linear realization of electroweak
symmetry. They are free parameters from the e↵ective field theory viewpoint but, as we
argue in more detail near the end of this section, they are typically strongly constrained
by precision measurements of Z and W production and decays at LEP.
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Higgs couplings to gauge bosons are probed by multiple Higgs production and decay 
processes (ggF, VBF, VH; γγ, Zγ, VV^*→4f)  

Higgs Basis:  Higgs couplings to gauge bosons

Enforced by linearly realized 
SU(3)xSU(2)xU(1) symmetry

Dependent Couplings

3.2 Couplings relevant for single Higgs

In order to describe the single Higgs production and decay in various channels we need
in addition the following set of independent and dependent couplings:

Independent : �cw, �cz, cgg, c��, cz� , czz, c̃gg, c̃��, c̃z� , c̃zz,

�yu, �yd, �ye, sin�u, sin�d, sin�`. (3.5)

Dependent : cww, c̃ww, cw2, c̃�2, c̃z2,
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where �yf , sin�f , and cV f are 3 ⇥ 3 real matrices. These couplings do not a↵ect the
precision W and Z observables at tree-level, therefore they are only weakly constrained.
Typically, the strongest limits on the independent couplings in Eq. (3.5) come from
Higgs studies at the LHC.

The couplings listed in the first lines of Eq. (3.5) and Eq. (3.6) are defined via the
Higgs boson couplings to the SM gauge bosons:
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Here Xµ⌫ = @µX⌫ � @⌫Xµ, and X̃µ⌫ = ✏µ⌫⇢�@⇢X�. The dependent couplings can be
expressed by the independent couplings as2
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The independent couplings �yf and sin�f listed in the second line of Eq. (3.5) are
defined via the Higgs boson couplings to the SM fermions:
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2
The relation between cww, c̃ww and other parameters can also be viewed as a consequence of the

accidental custodial symmetry at the level of the dimension-6 operators [12].
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Higgs studies at the LHC.

The couplings listed in the first lines of Eq. (3.5) and Eq. (3.6) are defined via the
Higgs boson couplings to the SM gauge bosons:
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Here Xµ⌫ = @µX⌫ � @⌫Xµ, and X̃µ⌫ = ✏µ⌫⇢�@⇢X�. The dependent couplings can be
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The independent couplings �yf and sin�f listed in the second line of Eq. (3.5) are
defined via the Higgs boson couplings to the SM fermions:
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The relation between cww, c̃ww and other parameters can also be viewed as a consequence of the

accidental custodial symmetry at the level of the dimension-6 operators [12].
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3.2 Couplings relevant for single Higgs
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Cubic couplings of EW gauge bosons that appear at dimension-6 level can be 
described by 9 parameters: 5 CP even and 4 CP odd

Only 2 of those are independent couplings; the other  are dependent couplings: 
they can be expressed by Higgs couplings to gauge bosons  

Higgs Basis:  triple gauge couplings

Finally, the dependent couplings cV f listed in the second line of Eq. (3.6) are defined via
the contact interactions between the Higgs, electroweak gauge bosons, and fermions:

LD=6
hvff =

p
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v
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⇣
ūL�µc

Wq
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⌘
+ h.c.
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"
X

f=u,d,e,⌫
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Zf
L fL +

X
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f̄R�µc
Zf
R fR

#
, (3.10)

cZf = �gZf , cWf = �gWf . (3.11)

One could also introduce another set of independent Higgs couplings corresponding to
the dipole interaction terms in the Lagrangian of the form hf̄�µ⌫fFµ⌫ , which could a↵ect
h ! 4f decays. However, precision measurements (in particular, anomalous magnetic
and electric moments of fermions) imply that these couplings must be suppressed at the
level that makes them unobservable at the LHC. Moreover, the contribution from the
dipole terms does not interfere with the SM amplitudes, which means the corresponding
couplings enter at the quadratic level and are therefore suppressed for the size of the
couplings within the validity regime of the EFT. Therefore, for simplicity, we do not
explicitly write these couplings in this note.

Note that, using equations of motion, we could get rid of certain 2-derivative inter-
actions between the Higgs and gauge bosons: hZµ@⌫Z⌫µ, hZµ@⌫A⌫µ, and hW±

µ @⌫W⌥
⌫µ.

These interactions would than be traded for couplings in Eq. (3.10), which would change
the relation between cV f and independent couplings. We find the current representation
more convenient in practice. Namely, since �gV f are strongly constrained by precision
observables, they can be set to zero in LHC analyses. If that is done, all the contact
interaction terms are consequently also set to zero.

3.3 Couplings relevant for electroweak vector boson pair pro-
duction

In order to describe WW and WZ production processes we need, apart from the vertex
correction introduced in Section 3.1, the following independent and dependent couplings:

Independent : �z, �̃z,

Dependent : �g1,z, ��, �z, ��, ̃�, ̃z, �̃�. (3.12)

These couplings are defined via cubic interactions of electroweak gauge boson in addition
to the SM ones in Eq. (2.6). In the customary parametrization of Ref. [10]:
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tgc = ie

h
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+
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⌫
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i
,

(3.13)
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where the dependent couplings can be expressed by the independent couplings as

�g1,z = �g2 + g02

2

✓
c��

e2

g2 + g02
+ cz�

g2 � g02

g2 + g02
� czz

◆
+

g2 + g02

2g02
(�cz � �cw + 4�m) ,

�� = �g2

2

✓
c��

e2

g2 + g02
+ cz�

g2 � g02

g2 + g02
� czz

◆
,

̃� = �g2

2

✓
c̃��

e2

g2 + g02
+ c̃z�

g2 � g02

g2 + g02
� c̃zz

◆
,

�z = �g1,z � t2✓��, ̃z = �t2✓̃�,

�� = �z, �̃� = �̃z. (3.14)

Other possible cubic gauge interactions do not appear at the dimension-6 level. Similarly,
cubic gauge interactions with only neutral electroweak gauge bosons do not appear at
the dimension-6 level.

Note that �g1,z, ��, and ̃� are dependent couplings here, unlike in Ref. [1]. Our
motivation is that the Higgs basis should be parametrized such that the connection
with Higgs observables is the simplest. However, for the sake of studying WW and
WZ production a di↵erent set of independent couplings would be more convenient. For
example, one could chose the independent couplings as �g1,z, ��, �z, ̃�, �̃z, and consider
czz, c̃zz, and �cw � �cz as dependent couplings expressed by this set.

3.4 Couplings relevant for Higgs pair production

To describe double Higgs production process gg ! hh at the LHC we need, apart from
the single Higgs couplings introduced in Section 3.2, the following independent and
dependent couplings

Independent : ��3, (3.15)

Dependent : c(2)gg , c̃(2)gg , y(2)u , y(2)d , y(2)e . (3.16)

The independent coupling is defined via the correction to the triple Higgs boson coupling
in Eq. (2.5)

LD=6
h3 = ��3h

3. (3.17)

The dependent couplings are defined via double Higgs interaction with fermions and
gluons (which are not present in the SM):

LD=6
hhff =

h2

v2
g2s
8

⇣
c(2)gg G

a
µ⌫G

a
µ⌫ + c̃(2)gg G

a
µ⌫G̃

a
µ⌫

⌘
+

h2

v2

X

ij

p
mfimfj

h
f̄i,R[y

(2)
f ]ijfj,L + h.c.

i
.

(3.18)
They are related to the independent couplings by

c(2)gg = cgg, c̃(2)gg = c̃gg,

[�y(2)f ]ij =
1

2
(3[�yf ]ij +X�ij) ,

X ⌘ 2g2
✓
c��

e2

g2 + g02
+ cz�

g2 � g02

g2 + g02
� czz

◆
� �cw + 4�m+

g2

g02
(�cw � �cz � 4�m) .

(3.19)
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Translation to dimension-6 operators

constant. To undo these e↵ects, we need to ensure that the photon and the gluon couple
to the electromagnetic and strong currents as in Eq. (2.3). Furthermore, the Z boson
mass term in the Lagrangian should be as in Eq. (2.2), and the tree-level µ ! e⌫̄e⌫µ

decay width should be given by � =
m5

µ

384⇡3v4
. This is achieved by the following redefinition

of the coupling constants and the VEV:

gs ! gs

✓
1� cGG

g2s
4

◆
,

g ! g

✓
1� cWW

g2

4
� cWB

g2g02

g2 � g02
+ (cT � �v)

g2

g2 � g02

◆
,

g0 ! g0
✓
1� cBB

g02

4
+ cWB

g2g02

g2 � g02
� (cT � �v)

g02

g2 � g02

◆
,

v ! v (1 + �v) , (4.8)

where �v = ([c0H`]11 + [c0H`]22)/2� c0``.
After the transformations in Eq. (4.3), Eq. (4.4), Eq. (4.5), Eq. (4.8), the Lagrangian

takes the same form as LHiggsBasis. The dictionary between the coe�cients of dimension-
6 operators and the couplings in LHiggsBasis goes as follows. The shift of the W boson
mass is given by

�m =
1

g2 � g02
⇥�g2g02cWB + g2cT � g02�v

⇤
(4.9)

The shift of W and Z boson couplings to leptons are given by

�gW `
L = c0H` + f(1/2, 0)� f(�1/2,�1),

�gZ⌫
L =

1

2
c0H` �

1

2
cH` + f(1/2, 0),

�gZe
L = �1

2
c0H` �

1

2
cH` + f(�1/2,�1),

�gZe
R = �1

2
cHe + f(0,�1), (4.10)

where

f(T 3, Q) = I3


�QcWB

g2g02

g2 � g02
+ (cT � �v)

✓
T 3 +Q

g02

g2 � g02

◆�
, (4.11)

and I3 is the 3 ⇥ 3 identity matrix. The shifts of W and Z boson couplings to quarks
are given by

�gWq
L = c0Hq + f(1/2, 2/3)� f(�1/2,�1/3),

�gWq
R = �1

2
cHud,

�gZu
L =

1

2
c0Hq �

1

2
cHq + f(1/2, 2/3),

�gZd
L = �1

2
c0Hq �

1

2
cHq + f(�1/2,�1/3),

�gZu
R = �1

2
cHu + f(0, 2/3),

�gZd
R = �1

2
cHd + f(0,�1/3). (4.12)
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The shifts of the Higgs couplings to W and Z are given by

�cw = �cH � cWB
2g2g02

g2 � g02
+ 2cT

g2

g2 � g02
� �v

g2 + g02

g2 � g02
,

�cz = �cH � 2cT � �v. (4.13)

The two-derivative Higgs couplings to gauge bosons are given by

cgg = cGG, c(2)gg = cGG,

c�� = cWW + cBB � 4cWB,

czz =
g4cWW + g04cBB + 4g2g02cWB

(g2 + g02)2
,

cz� =
g2cWW � g02cBB � 2(g2 � g02)cWB

g2 + g02
,

cww = cWW , (4.14)

and the same for the CP-odd couplings with c ! c̃. The Yukawa interactions are given
by

�yfij cos�
f
ij =

vRe[cf ]ijp
2mfimfj

� �ij (cH + �v) ,

�yfij sin�
f
ij =

vIm[cf ]ijp
2mfimfj

. (4.15)

The contact interactions between a Higgs, a gauge boson, and 2 fermions are given by

cW `
L = c0H`, cWq

L = c0Hq, cWq
R = �1

2
c0Hud, (4.16)

cZ⌫
L =

1

2
c0H` �

1

2
cH`, cZe

L = �1

2
c0H` �

1

2
cH`, cZe

R = �1

2
cHe, (4.17)

cZu
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1
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c0Hq �

1

2
cHq, cZd

L = �1

2
c0Hq �

1

2
cHq, cZu

R = �1

2
cHu, cZd

R = �1

2
cHd. (4.18)

The anomalous triple gauge couplings of electroweak gauge bosons are given by

�g1,z =
g2 + g02

g2 � g02
��g02cWB + cT � �v

�
,

�� = g2cWB,

�z = �2cWB
g2g02

g2 � g02
+

g2 + g02

g2 � g02
(cT � �v) ,

�� = �3

2
g4c3W ,

�z = �3

2
g4c3W ,

̃� = g2c̃WB,

̃z = �g02c̃WB,

�̃� = �3

2
g4c̃3W ,

�̃z = �3

2
g4c̃3W . (4.19)
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constant. To undo these e↵ects, we need to ensure that the photon and the gluon couple
to the electromagnetic and strong currents as in Eq. (2.3). Furthermore, the Z boson
mass term in the Lagrangian should be as in Eq. (2.2), and the tree-level µ ! e⌫̄e⌫µ

decay width should be given by � =
m5

µ

384⇡3v4
. This is achieved by the following redefinition

of the coupling constants and the VEV:

gs ! gs

✓
1� cGG

g2s
4

◆
,

g ! g

✓
1� cWW

g2

4
� cWB

g2g02

g2 � g02
+ (cT � �v)

g2

g2 � g02

◆
,

g0 ! g0
✓
1� cBB

g02

4
+ cWB

g2g02

g2 � g02
� (cT � �v)

g02

g2 � g02

◆
,

v ! v (1 + �v) , (4.8)

where �v = ([c0H`]11 + [c0H`]22)/2� c0``.
After the transformations in Eq. (4.3), Eq. (4.4), Eq. (4.5), Eq. (4.8), the Lagrangian

takes the same form as LHiggsBasis. The dictionary between the coe�cients of dimension-
6 operators and the couplings in LHiggsBasis goes as follows. The shift of the W boson
mass is given by

�m =
1

g2 � g02
⇥�g2g02cWB + g2cT � g02�v

⇤
(4.9)

The shift of W and Z boson couplings to leptons are given by

�gW `
L = c0H` + f(1/2, 0)� f(�1/2,�1),

�gZ⌫
L =

1

2
c0H` �

1

2
cH` + f(1/2, 0),

�gZe
L = �1

2
c0H` �

1

2
cH` + f(�1/2,�1),

�gZe
R = �1

2
cHe + f(0,�1), (4.10)

where

f(T 3, Q) = I3


�QcWB

g2g02

g2 � g02
+ (cT � �v)

✓
T 3 +Q

g02

g2 � g02

◆�
, (4.11)

and I3 is the 3 ⇥ 3 identity matrix. The shifts of W and Z boson couplings to quarks
are given by

�gWq
L = c0Hq + f(1/2, 2/3)� f(�1/2,�1/3),

�gWq
R = �1

2
cHud,

�gZu
L =

1

2
c0Hq �

1

2
cHq + f(1/2, 2/3),

�gZd
L = �1

2
c0Hq �

1

2
cHq + f(�1/2,�1/3),

�gZu
R = �1

2
cHu + f(0, 2/3),

�gZd
R = �1

2
cHd + f(0,�1/3). (4.12)
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Directly measured couplings correspond to non-trivial linear 
combinations of SU3xSU2xU1 invariant operators



Warsaw Basis
H4D2

and H6

OH

⇥
@µ(H†H)

⇤2

OT

⇣
H† !DµH

⌘2

O6H (H†H)

3

f2H3

Oe �(H†H � v2

2 )ēH
†`

Ou �(H†H � v2

2 )ū
eH†q

Od �(H†H � v2

2 )
¯dH†q

V 3D3

O3G g3sf
abcGa

µ⌫G
b
⌫⇢G

c
⇢µ

Of3G g3sf
abc eGa

µ⌫G
b
⌫⇢G

c
⇢µ

O3W g3✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

Og3W g3✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

V 2H2

OGG
g2s
4 H

†H Ga
µ⌫G

a
µ⌫

OgGG
g2s
4 H

†H eGa
µ⌫G

a
µ⌫

OWW
g2

4 H
†HW i

µ⌫W
i
µ⌫

O]WW
g2

4 H
†H fW i

µ⌫W
i
µ⌫

OBB
g02

4 H†H Bµ⌫Bµ⌫

OgBB
g02

4 H†H eBµ⌫Bµ⌫

OWB gg0H†�iHW i
µ⌫Bµ⌫

OgWB
gg0H†�iH fW i

µ⌫Bµ⌫

f2H2D

OH` i¯`�µ`H† !DµH

O0
H` i¯`�i�µ`H†�i !DµH

OHe iē�µēH† !DµH

OHq iq̄�µqH† !DµH

O0
Hq iq̄�i�µqH†�i !DµH

OHu iū�µuH† !DµH

OHd i ¯d�µdH† !DµH

OHud iū�µd ˜H†DµH

f2V HD

OeW g¯`�µ⌫e�iHW i
µ⌫

OeB g0¯`�µ⌫eHBµ⌫

OuG gsq̄�µ⌫T au eH Ga
µ⌫

OuW gq̄�µ⌫u�i eHW i
µ⌫

OuB g0q̄�µ⌫u eH Bµ⌫

OdG gsq̄�µ⌫T adH Ga
µ⌫

OdW gq̄�µ⌫d�iHW i
µ⌫

OdB g0q̄�µ⌫dH Bµ⌫

(

¯LL)(¯LL) and (

¯LR)(

¯LR)

O`` (

¯`�µ`)(¯`�µ`)

Oqq (q̄�µq)(q̄�µq)

O0
qq (q̄�µ�iq)(q̄�µ�iq)

O`q (

¯`�µ`)(q̄�µq)

O0
`q (

¯`�µ�i`)(q̄�µ�iq)

Oquqd (q̄ju)✏jk(q̄kd)

O0
quqd (q̄jT au)✏jk(q̄kT ad)

O`equ (

¯`je)✏jk(q̄ku)

O0
`equ (

¯`j�µ⌫e)✏jk(q̄k�µ⌫u)

O`edq (

¯`je)( ¯dqj)

(

¯RR)(

¯RR)

Oee (ē�µe)(ē�µe)

Ouu (ū�µu)(ū�µu)

Odd (

¯d�µd)( ¯d�µd)

Oeu (ē�µe)(ū�µu)

Oed (ē�µe)( ¯d�µd)

Oud (ū�µu)( ¯d�µd)

O0
ud (ū�µT au)( ¯d�µT ad)

(

¯LL)( ¯RR)

O`e (

¯`�µ`)(ē�µe)

O`u (

¯`�µ`)(ū�µu)

O`d (

¯`�µ`)( ¯d�µd)

Oqe (q̄�µq)(ē�µe)

Oqu (q̄�µq)(ū�µu)

O0
qu (q̄�µT aq)(ū�µT au)

Oqd (q̄�µq)( ¯d�µd)

O0
qd (q̄�µT aq)( ¯d�µT ad)

Table 1: A complete, non-redundant set of baryon-and-lepton-number-conserving
dimension-6 operators built from SM fields [5]. In this table, e, u, d are always right-
handed fermions, while ` and q are left-handed. A flavor index is implicit for each fermion
field. For complex operators the complex conjugate operator is implicit. Including the
flavor structure and complex conjugates, this table contains 2499 distinct operators [8].
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Simple enough that should be accessible 
for those not acquainted with nuts and 
bolts of EFTs 

Transparent connection between 
independent couplings and 
(pseudo-)observables

Constraints on EFT parameters from 
electroweak precision observables can be 
easily imposed, which greatly reduces 
the number of parameters and should 
simplify LHC analyses

Simple to implement in monte carlo codes

Higgs Basis: Pros and Cons

SU(3)xSU(2)xU(1) not manifest 
(hidden in relations between 
dependent and independent 
couplings)

Connection to BSM models less 
straightforward than in other 
existing bases. Mixes tree and 
loop induced couplings

Renormalization group running 
of the couplings less 
straightforward to compute  
than in other bases

Pros Cons



I’m only taking into account corrections to observables who are linear in new physics 
parameters, that is to say, only interference terms between SM and new physics. 
Quadratic corrections are formally of the same order as dimension-8 operators.

I restrict to observables that do not depend on 4-fermion operators (more general 
approach left for  future work)

Higgs basis summary

In the rest if the talk I will discuss 
electroweak constraints on the 
parameters in the Higgs basis 

Assumptions

For more details and the rest of the 
Lagrangian, see LHCHXSWG-INT-2015-001



Model-independent
EW precision constraints
on dimension 6 operators 



Constraints from
Pole Observables 



For observables with Z or W bosons on-shell, interference between SM amplitudes and 
4-fermion operators is suppressed by Γ/m and can be neglected

Corrections from dimension-6 Lagrangian to pole observables can be expressed just by 
vertex corrections δg and W mass correction δm

I will not assume anything about δg and δm: they are allowed to be arbitrary, flavor 
dependent, and all can be simultaneously present

Pole observables (LEP-1 et al)
find it more transparent to define the independent couplings via the interaction terms
of SM mass eigenstates in the Lagrangian after electroweak symmetry breaking. See
the next section for the expressions of the independent couplings in terms of Wilson
coe�cients of SU(3)⇥ SU(2)⇥ U(1) invariant operators.

Several other Higgs couplings can be expressed by the independent couplings; we
call them the dependent couplings. The relations between dependent and independent
couplings displayed below hold at the level of the dimension-6 Lagrangian, and they are
in general not respected by dimension-8 and higher operators. Of course, the choice
which couplings are independent and which are dependent is subjective and dictated
by convenience. in our case, the independent couplings are more easily mapped to
observables constrained by electroweak precision tests and Higgs searches. However,
other choices can be envisaged, and may be more convenient for other applications.

3.1 Couplings relevant for precision observables

We choose the following set of independent and dependent couplings relevant, at tree-
level, for precision observables related to Z and W boson decays:

Independent : �gZe
L , �gZe

R , �gW `
L , �gZu

L , �gZu
R , �gZd

L , �gZd
R , �gWq

R , �m, (3.1)

Dependent : �gZ⌫
L , �gWq

L , (3.2)

where all �g are 3 ⇥ 3 Hermitian matrices in the generation space, and �m is a real
parameter. These couplings are defined via corrections of the W and Z couplings to the
SM fermions in Eq. (2.3) and to the W boson mass in Eq. (2.2):

LD=6
ewpt =

gp
2

⇣
W+

µ ⌫̄L�µ�g
W `
L eL +W+

µ ū�µ�g
Wq
L VCKMdL +W+

µ ūR�µ�g
Wq
R dR + h.c.

⌘

+
p
g2 + g02Zµ

"
X

f2u,d,e,⌫

f̄L�µ�g
Zf
L fL +

X

f2u,d,e

f̄R�µ�g
Zf
R fR

#

+ 2�m
g2v2

4
W+

µ W�
µ , (3.3)

where the dependent couplings �gZ⌫
L , �gWq

L can be expressed by the independent couplings
as:

�gZ⌫
L = �gZe

L + �gW `
L , �gWq

L = �gZu
L � �gZd

L . (3.4)

Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-
nos) as our independent couplings, because in the flavor non-universal case the former are
more directly constrained by experiment (in particular, in leptonic W decays measured
at LEP).

The parameters in Eq. (3.1) form a complete set to describe all single on-shell Z and
W decay and production processes within an EFT with linear realization of electroweak
symmetry. They are free parameters from the e↵ective field theory viewpoint but, as we
argue in more detail near the end of this section, they are typically strongly constrained
by precision measurements of Z and W production and decays at LEP.

6

find it more transparent to define the independent couplings via the interaction terms
of SM mass eigenstates in the Lagrangian after electroweak symmetry breaking. See
the next section for the expressions of the independent couplings in terms of Wilson
coe�cients of SU(3)⇥ SU(2)⇥ U(1) invariant operators.

Several other Higgs couplings can be expressed by the independent couplings; we
call them the dependent couplings. The relations between dependent and independent
couplings displayed below hold at the level of the dimension-6 Lagrangian, and they are
in general not respected by dimension-8 and higher operators. Of course, the choice
which couplings are independent and which are dependent is subjective and dictated
by convenience. in our case, the independent couplings are more easily mapped to
observables constrained by electroweak precision tests and Higgs searches. However,
other choices can be envisaged, and may be more convenient for other applications.

3.1 Couplings relevant for precision observables

We choose the following set of independent and dependent couplings relevant, at tree-
level, for precision observables related to Z and W boson decays:

Independent : �gZe
L , �gZe

R , �gW `
L , �gZu

L , �gZu
R , �gZd

L , �gZd
R , �gWq

R , �m, (3.1)

Dependent : �gZ⌫
L , �gWq

L , (3.2)

where all �g are 3 ⇥ 3 Hermitian matrices in the generation space, and �m is a real
parameter. These couplings are defined via corrections of the W and Z couplings to the
SM fermions in Eq. (2.3) and to the W boson mass in Eq. (2.2):

LD=6
ewpt =

gp
2

⇣
W+

µ ⌫̄L�µ�g
W `
L eL +W+
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For observables with Z or W bosons on-shell, interference between SM amplitudes and 
4-fermion operators is suppressed by Γ/m and can be neglected

Corrections from dimension-6 Lagrangian to pole observables can be expressed just by 
vertex corrections δg and W mass correction δm

I will not assume anything about δg and δm: they are allowed to be arbitrary, flavor 
dependent, and all can be simultaneously present

Pole observables (LEP-1 et al)

Input: mZ, α, Γμ Couplings: gL, gY, v ⇒

In Higgs basis, by construction, the SM relation 
between input and couplings is unchanged 



Z-pole observables 
Observable Experimental value Ref. SM prediction Definition

�Z [GeV] 2.4952± 0.0023 [21] 2.4950
P

f �(Z ! ff̄)

�had [nb] 41.541± 0.037 [21] 41.484 12⇡
m2

Z

�(Z!e+e�)�(Z!qq̄)
�2
Z

Re 20.804± 0.050 [21] 20.743
P

q �(Z!qq̄)

�(Z!e+e�)

Rµ 20.785± 0.033 [21] 20.743
P

q �(Z!qq̄)

�(Z!µ+µ�)

R⌧ 20.764± 0.045 [21] 20.743
P

q �(Z!qq̄)

�(Z!⌧+⌧�)

A0,e
FB 0.0145± 0.0025 [21] 0.0163 3

4
A2

e

A0,µ
FB 0.0169± 0.0013 [21] 0.0163 3

4
AeAµ

A0,⌧
FB 0.0188± 0.0017 [21] 0.0163 3

4
AeA⌧

Rb 0.21629± 0.00066 [21] 0.21578 �(Z!bb̄)P
q �(Z!qq̄)

Rc 0.1721± 0.0030 [21] 0.17226 �(Z!cc̄)P
q �(Z!qq̄)

AFB
b 0.0992± 0.0016 [21] 0.1032 3

4
AeAb

AFB
c 0.0707± 0.0035 [21] 0.0738 3

4
AeAc

Ae 0.1516± 0.0021 [21] 0.1472
�(Z!e+Le�L )��(Z!e+Re�R)

�(Z!e+e�)

Aµ 0.142± 0.015 [21] 0.1472
�(Z!µ+

Lµ�
L )��(Z!e+µ µ�

R)

�(Z!µ+µ�)

A⌧ 0.136± 0.015 [21] 0.1472
�(Z!⌧+L ⌧�L )��(Z!⌧+R ⌧�R )

�(Z!⌧+⌧�)

Ab 0.923± 0.020 [21] 0.935 �(Z!bLb̄L)��(Z!bRb̄R)

�(Z!bb̄)

Ac 0.670± 0.027 [21] 0.668 �(Z!cLc̄L)��(Z!cRc̄R)
�(Z!cc̄)

As 0.895± 0.091 [22] 0.935 �(Z!sLs̄L)��(Z!sRs̄R)
�(Z!ss̄)

Ruc 0.166± 0.009 [23] 0.1724 �(Z!uū)+�(Z!cc̄)
2
P

q �(Z!qq̄)

µttZ 0.81± 0.24 [24,25] 1.00
(gZt

L )2+(gZt
R )2

(gZu
L,SM)2+(gZu

R,SM)2

Table 1: Z boson pole observables. The experimental errors of the observables between the
double lines are correlated, which is taken into account in the fit. The results for Ae,µ,⌧ listed above
come from the combination of leptonic polarization and left-right asymmetry measurements at the
SLD; we also include the results A⌧ = 0.1439± 0.0043, Ae = 0.1498± 0.0049 from tau polarization
measurements at LEP-1 [21]. For the theoretical predictions we use the best fit SM values from
GFitter [20]. We also include the model-independent measurement of on-shell Z boson couplings
to light quarks in D0 [26].
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W-pole observables 

Observable Experimental value Ref. SM prediction Definition

mW [GeV] 80.385± 0.015 [27] 80.364 gLv
2

(1 + �m)

�W [GeV] 2.085± 0.042 [23] 2.091
P

f �(W ! ff 0)

Br(W ! e⌫) 0.1071± 0.0016 [28] 0.1083 �(W!e⌫)P
f �(W!ff 0)

Br(W ! µ⌫) 0.1063± 0.0015 [28] 0.1083 �(W!µ⌫)P
f �(W!ff 0)

Br(W ! ⌧⌫) 0.1138± 0.0021 [28] 0.1083 �(W!⌧⌫)P
f �(W!ff 0)

RWc 0.49± 0.04 [23] 0.50 �(W!cs)
�(W!ud)+�(W!cs)

R� 0.998± 0.041 [29] 1.000 gWq3
L /gWq3

L,SM

Table 2: W-boson pole observables. Measurements of the 3 leptonic branching fractions are
correlated. For the theoretical predictions of mW and �W , we use the best fit SM values from
GFitter [20], while for the leptonic branching fractions we take the value quoted in [28].

where ��2
ij = [�Oi⇢ij,exp�Oj]�1 is calculated from the known experimental errors �Oi and their

correlations ⇢ij,exp (whenever they are quoted). Minimizing �2 with respect to �g we obtain the
following central values and 1 � errors:

[�gWe
L ]ii =

0

@
�1.01± 0.64
�1.37± 0.59
1.95± 0.79

1

A·10�2, [�gZe
L ]ii =

0

@
�0.22± 0.28
0.1± 1.2
0.18± 0.58

1

A·10�3, [�gZe
R ]ii =

0

@
�0.33± 0.27
0.0± 1.4
0.42± 0.62

1

A·10�3,

(3.4)

[�gZu
L ]ii =

0

@
�0.8± 3.1
�0.17± 0.31
�0.3± 3.8

1

A · 10�2, [�gZu
R ]ii =

0

@
1.3± 5.1

�0.37± 0.52
8± 14

1

A · 10�2, (3.5)

[�gZd
L ]ii =

0

@
�1.0± 4.4
0.9± 2.8
0.33± 0.17

1

A · 10�2, [�gZd
R ]ii =

0

@
2± 16

3.4± 4.9
2.30± 0.87

1

A · 10�2. (3.6)

The 21⇥ 21 correlation matrix ⇢ is shown in Fig 1.
Using these central values �g0, uncertainties �g� and the correlation matrix ⇢ one can re-

construct the dependence of the global �2 function on the vertex corrections: �2 =
P

ij[�g �
�g0]i�

�2
ij [�g � �g0]j, where ��2

ij = [[�g�]i⇢ij[�g�]j]�1. In concrete extensions of the SM, the vertex
corrections will be functions of a (typically smaller) number of the model parameters. In this case
the global �2 function can be minimized with respect to the new parameters, and thus limits on
this particular model can be obtained.

From Eq. (3.4), corrections to the Z boson couplings to charged leptons are constrained at the
level of O(10�3). We stress that these stringent constraints are completely model independent, in
particular they are independent on whether or not flavor universality is assumed. On the other
hand, W couplings to leptons are somewhat less tightly constrained - at the level of O(10�2)
- than in the flavor universal case. Due to the relation in Eq. (2.4), the Z boson couplings to
neutrinos are constrained with the same precision. For the Z boson couplings to quarks the
situation is more complicated. Some of these couplings, specifically the ones to charm and bottom,
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Including leading order new physics corrections 
amount to replacing Z coupling to fermions with 
effective couplings

These effective couplings encode the effect of 
vertex and oblique corrections 

Shift of the effective couplings in the presence of 
dimension-6 operators allows one to read off the 
dependence of observables on dimension-6 operators

In general, pole observables constrain complicated 
combinations of coefficients of dimension-6 operators

However, in Higgs basis, oblique corrections are 
absent (except for δm) thus δg directly constrained 

On-shell Z decays: nuts and bolts

Lowest order:

w/ new physics:



Z coupling to leptons constrained at 0.1% level

W couplings to leptons constrained at 1% level

Some couplings to quarks (bottom, charm) also constrained at 1% level 

Some couplings very weakly constrained in a model-independent way, in 
particular Z coupling to right-handed quarks, and to light quarks

Pole constraints
All diagonal vertex corrections except for δgWqR simultaneously constrained 

in a completely  model-independent way

Observable Experimental value Ref. SM prediction Definition

mW [GeV] 80.385± 0.015 [27] 80.364 gLv
2

(1 + �m)

�W [GeV] 2.085± 0.042 [23] 2.091
P

f �(W ! ff 0)

Br(W ! e⌫) 0.1071± 0.0016 [28] 0.1083 �(W!e⌫)P
f �(W!ff 0)

Br(W ! µ⌫) 0.1063± 0.0015 [28] 0.1083 �(W!µ⌫)P
f �(W!ff 0)

Br(W ! ⌧⌫) 0.1138± 0.0021 [28] 0.1083 �(W!⌧⌫)P
f �(W!ff 0)

RWc 0.49± 0.04 [23] 0.50 �(W!cs)
�(W!ud)+�(W!cs)

R� 0.998± 0.041 [29] 1.000 gWq3
L /gWq3

L,SM

Table 2: W-boson pole observables. Measurements of the 3 leptonic branching fractions are
correlated. For the theoretical predictions of mW and �W , we use the best fit SM values from
GFitter [20], while for the leptonic branching fractions we take the value quoted in [28].

where ��2
ij = [�Oi⇢ij,exp�Oj]�1 is calculated from the known experimental errors �Oi and their

correlations ⇢ij,exp (whenever they are quoted). Minimizing �2 with respect to �g we obtain the
following central values and 1 � errors:

[�gWe
L ]ii =

0

@
�1.01± 0.64
�1.37± 0.59
1.95± 0.79

1

A·10�2, [�gZe
L ]ii =

0

@
�0.22± 0.28
0.1± 1.2
0.18± 0.58

1

A·10�3, [�gZe
R ]ii =

0

@
�0.33± 0.27
0.0± 1.4
0.42± 0.62

1

A·10�3,

(3.4)

[�gZu
L ]ii =

0

@
�0.8± 3.1
�0.17± 0.31
�0.3± 3.8

1

A · 10�2, [�gZu
R ]ii =

0

@
1.3± 5.1

�0.37± 0.52
8± 14

1

A · 10�2, (3.5)

[�gZd
L ]ii =

0

@
�1.0± 4.4
0.9± 2.8
0.33± 0.17

1

A · 10�2, [�gZd
R ]ii =

0

@
2± 16

3.4± 4.9
2.30± 0.87

1

A · 10�2. (3.6)

The 21⇥ 21 correlation matrix ⇢ is shown in Fig 1.
Using these central values �g0, uncertainties �g� and the correlation matrix ⇢ one can re-

construct the dependence of the global �2 function on the vertex corrections: �2 =
P

ij[�g �
�g0]i�

�2
ij [�g � �g0]j, where ��2

ij = [[�g�]i⇢ij[�g�]j]�1. In concrete extensions of the SM, the vertex
corrections will be functions of a (typically smaller) number of the model parameters. In this case
the global �2 function can be minimized with respect to the new parameters, and thus limits on
this particular model can be obtained.

From Eq. (3.4), corrections to the Z boson couplings to charged leptons are constrained at the
level of O(10�3). We stress that these stringent constraints are completely model independent, in
particular they are independent on whether or not flavor universality is assumed. On the other
hand, W couplings to leptons are somewhat less tightly constrained - at the level of O(10�2)
- than in the flavor universal case. Due to the relation in Eq. (2.4), the Z boson couplings to
neutrinos are constrained with the same precision. For the Z boson couplings to quarks the
situation is more complicated. Some of these couplings, specifically the ones to charm and bottom,
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• The electroweak parameters (that we need to evaluate new physics corrections) are extracted
at tree-level from the muon lifetime ⌧µ = 384⇡3v4/m5

µ (equivalently, from the Fermi constant

GF = 1/
p
2v2), the electromagnetic constant ↵(mZ) = e2/4⇡, and the Z boson mass mZ =p

g2L + g2Y v/2. With this choice, the tree-level values of the electroweak parameters are
gL = 0.648, gY = 0.358, and v = 246.2 GeV.

• We work at the level of dimension-6 operators and we neglect possible contributions of
dimension-8 operators. Consistently, for observables where the SM contribution is non-zero,
we only include the leading corrections that are formally O(v2/⇤2) in EFT counting. These
come from interference terms between new physics and SM contributions to the amplitudes
of relevant processes, and they are linear in �m and �g. Quadratic corrections in �g and �m
are in this case neglected, since they are formally of order O(v4/⇤4), much as contributions
from neglected dimension-8 operators. On the other hand, for observables where the SM
contribution vanishes (such as lepton- or quark-flavor violating Z decays), we take into ac-
count quadratic corrections in �g because they are the leading ones. In these case, possible
corrections from dimension-8 operators are of order O(v6/⇤6).

• We ignore all loop-suppressed e↵ects proportional to �g and �m. In particular, we only take
into account the interference terms between tree-level new physics corrections and tree-level
SM contributions, while we ignore the interference with loop-level SM contributions. This is
the largest source of uncertainty on the central values and standard deviations of �g and �m
that we quote below. From the magnitude of the k-factors between the tree-level and NNLO
SM predictions, we estimate this uncertainty to be of order 15%.

• All the observables in Table 1 and Table 2 are measured for Z or W boson close to the
mass shell. Thanks to that, we can ignore the contribution of 4-fermion operators, which is
suppressed by �Z/mZ or �W/mW . For a longer discussion of this point see Ref. [16].

First, from the measurement of the W mass we can directly derive the constraint on �m:

�m = (2.6± 1.9) · 10�4. (3.1)

The constraints on �g’s are far more entangled. We take into account only the corrections to the
pole observables that are linear in �g, while quadratic terms, formally higher-order in the e↵ective
theory expansion, are neglected. We also neglect CKM-suppressed corrections. This way, the pole
observables depend only on diagonal elements of �g. Furthermore, corrections proportional to �gWq

R

do not interfere with the SM amplitudes; therefore they enter only quadratically and are neglected.
All in all, at the tree level, the pole observables depend linearly on 3 ⇥ 7 = 21 diagonal elements
of �gZe

L , �gZe
R , �gW `

L , �gZu
L , �gZu

R , �gZd
L , �gZd

R . All these couplings are simultaneously constrained by
the the observables Oi listed in Table 1 and Table 2. To construct a global �2 function, we write
the observables as

Oi,th = ONNLO
i,SM + ~�g · ~OLO

i,BSM (3.2)

The state-of-art SM predictions ONNLO
i,SM are provided in the literature, while the tree-level new

physics corrections ~�g ~OLO
i,BSM linear �g is computed analytically. Then we construct the �2 function

as
�2 =

X

ij

[Oi,exp �Oi,th] �
�2
ij [Oj,exp �Oj,th] , (3.3)
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Full correlation matrix is also 
derived

From that, one can reproduce 
full likelihood function

If dictionary from Higgs basis 
to other bases exists, results 
can be easily recast

Similarly, results can be easily 
recast for particular BSM 
models in which vertex and 
mass corrections are functions 
of (fewer) model parameters

Pole constraints

1σ 
Errors

Correlation
Matrix

Central
Values



Only c-hat combinations can be  constrained! 

combinations of the latter can be constrained by the pole observables. We define

(ĉ0HL)ij = (c0HL)ij +

✓
g2LcWB � g2L

g2Y
cT

◆
�ij,

(ĉHL)ij = (cHL)ij � cT �ij,

(ĉHE)ij = (cHE)ij � 2cT �ij,

(ĉ0HQ)ij = (c0HQ)ij +

✓
g2LcWB � g2L

g2Y
cT

◆
�ij,

(ĉHQ)ij = (cHQ)ij +
1

3
cT �ij,

(ĉHU)ij = (cHU)ij +
4

3
cT �ij,

(ĉHD)ij = (cHD)ij � 2

3
cT �ij, (1.5)

The pole observable constrain all 21 diagonal elements of ĉ. For these combinations, we obtain the
following central values and 1-sigma errors:

(ĉ0HL)ii =

0

@
�1.09± 0.64
�1.46± 0.59
1.86± 0.79

1

A · 10�2, (ĉHL)ii =

0

@
1.02± 0.63
1.32± 0.63
�2.01± 0.80

1

A · 10�2, (1.6)

(ĉHE)ii =

0

@
0.13± 0.66
�0.6± 2.7
�1.4± 1.3

1

A · 10�3, c0ll = (�1.21± 0.41) · 10�2, (1.7)

(ĉ0HQ)ii =

0

@
0.1± 2.7
�1.2± 2.8
�0.7± 3.8

1

A · 10�2, (ĉHQ)ii ==

0

@
1.7± 7.1
�0.8± 2.9
�0.1± 3.8

1

A · 10�2, (1.8)

(ĉHU)ii =

0

@
�2± 10
0.8± 1.0
�16± 28

1

A · 10�2, (ĉHD)ii =

0

@
�6± 32

�6.9± 9.8
�4.6± 1.7

1

A · 10�2. (1.9)

We stress that only the combinations in Eq. (1.5) are strongly constrained by the pole observables.
Conversely, the pole observables calculated in the Warsaw basis are completely independent on the
Wilson coe�cients along the flat directions defined by [ĉHF ]ii = 0. Therefore, individually, cHF ,
cWB, and cT cannot be constrained by the pole observables alone. To this end, the input from
o↵-pole and/or Higgs observables has to be included.
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(ĉHQ)ij = (cHQ)ij +
1

3
cT �ij,
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Pole observables depend, at linear level, on 30 
dimension-6 operators in Warsaw basis

One can constrain only 27  combinations of EFT 
parameters: c-hats to the right 

Only combinations of vertex and oblique 
corrections are constrained, not separately 

This leaves 2 flat EFT directions

These 2 directions are related to usual S and T 
parameters

From pole observables alone there’s no model 
independent constraints on S and T!  

Gupta et al, 1405.0181

Flat directions of pole observables

Cacciapaglia et al
hep-ph/0604111

http://arxiv.org/abs/arXiv:1405.0181
http://arxiv.org/abs/arXiv:1405.0181


The flat directions arise due to EFT operator identities

Obviously, operators OW and OB do  not affect Z and W couplings to fermions

They only affect gauge boson propagators (same way as OWB) and Higgs couplings to 
gauge bosons. Moreover, OW affects triple gauge couplings   

They are not part of  Warsaw basis, because they are redundant with vertex 
corrections.  

Conversely, this means that there are 2 combinations of vertex corrections whose 
effect on pole observables is identical to that of S and T parameter!

These 2 flat directions are lifted only when non-W/Z pole data are included

Flat directions of pole observables



Constraints from
WW production at LEP-2



WW production 

e+ W+

νe

e− W−

e+

e−
γ
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W−
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e−
Z
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W−

Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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Depends on triple gauge couplings

Also depends on electron and neutrino couplings to 
W and Z bosons and on operators modifying EW 
gauge boson propagators 

Indirectly, depends on operators shifting the SM 
reference parameters (GF, α, mZ)

WW production at LEP-2



WW production amplitude depends on the 
same effective couplings gZeff and gWeff as 
the pole observables 

It also depends on effective electromagnetic 
couplings which does not change in the 
presence of dimension-6 operators 

Finally, it depends on 3 effective triple gauge 
couplings

e+e-→W+W-  nuts and bolts

Eq. (16) shows the possibility to parametrize the effects of the dimension-6 Lagrangian, using
only the modifications of the Z-couplings to fermions. Indeed, it is possible, using field redefinitions
proportional to the equations of motions and by taking appropriate linear combinations of the
dimension-6 operators, to obtain a non-redundant operator basis in which all propagator corrections
vanish, δΠV V = 0, and there are only vertex corrections δgfZ [11] (modifications to theW couplings
are related to the Z couplings by an accidental custodial symmetry at the level of the dimension-6
Lagrangian, δglL,W = δgνL,Z−δgeL,Z , δgqL,Z = δguL,Z−δgdL,Z). Such parametrization is particularly
useful to compare with experiments, and we will further discuss it in Appendix A.3.

In the next section we discuss model-independent constraints on these flat directions from
vector boson pair production at LEP-2 and the LHC

4 Constraints from electroweak gauge boson pair produc-

tion at LEP-2

The e+e− → W+W− process was studied at LEP-2 at several center-of-mass energies. The total
cross sections and differential distributions in the W scattering angle are reported in Ref. [28]. In
principle, from these measurements one can extract different tensor structure of gauge bosons self-
couplings and separate the t- and s-channel photon and Z contributions, thanks to their different
angular and energy dependence.

Our first step is to understand which combinations of dimension-6 operators are constrained
by WW production. To this end we define a set of effective couplings that fully describe the
e+e− →W+W− process in the presence of new physics. One simplifying assumption we introduce
at this point is that there are only up to p2 corrections to the gauge boson propagators.4 This
implies δΠV V (m2

V ) = δΠ(0)
V V +m2

W δΠ(2)
V V , and δΠ′

V V (m
2
V ) = δΠ(2)

V V .
The e+e− → W+W− amplitude can be split into t- and s-channel contributions: M = Mt +

∑

V=γ,Z MV
s . The first piece is the t-channel neutrino exchange amplitude:

Mt = −
g2#W,L;eff

2t
ε̄µ(pW−)ε̄ν(pW+)ȳ(pe+)σ̄νσ · (pe− − pW−)σ̄µx(pe−), (19)

where t = (pe− − pW−)2, ε’s are polarization vectors of W±, and x, y are spinor wave-functions of
e± (see Ref. [19]). The effective W coupling to leptons g#W,L;eff is defined in Eq. (15), and it include
the effects of vertex corrections and W wave-function renormalization due to oblique corrections.
It is the same coupling that determines the W decay width into leptons, therefore this part of the
amplitude constrains the same combination of dimension-6 operators as the pole observables.

The remaining part of the amplitude describes the s-channel photon and Z exchange:

MV
s = −

1

s−m2
V

[geV,L;eff ȳ(pe+)σ̄ρx(pe−) + geV,R;effx(pe+)σρȳ(pe−)] ε̄µ(pW−)ε̄ν(pW+)F V
µνρ, (20)

where s = (pe− − pe+)2. For the photon diagram, the effective coupling is geγ;eff = eeff ≡ e√
1−δΠ

(2)
γγ

for both left- and right-handed fermions. One finds δeeff = 0, that is to say, the photon couplings to

4 This is true for most of the operators in Eq. (3) except for O2W , O2B . Therefore, in the rest of this section we
will assume that, using equations of motion, these two have been traded for other operators in Eq. (3) and 4-fermion
operators. Dropping these operators greatly simplifies the discussion of oblique corrections to the WW production,
and avoids dealing with the complicated tensor structure of gauge boson self-interactions introduced by O2W .
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matter are not affected by dimension-6 operators. For the Z boson diagram, the effective couplings
geZ;eff , defined in Eq. (15), are again the same as the ones that determine the Z-boson decay widths
into left- and right-handed leptons. Qualitatively new effects of dimension-6 operators enter via
the triple gauge boson vertex function:

F V
µνρ = g1,V ;eff

[

ηρµp
ν
W− − ηρνp

µ
W+ + ηµν(pW+ − pW−)ρ

]

+ κV ;eff [ηρµ(pW+ + pW−)ν − ηρν(pW+ + pW−)µ]

+
gVWWλV

m2
W

[ηρµ (pW+(pW+ + pW−)pνW− − pW+pW−(pW+ + pW−)ν)

+ ηρν
(

pW+pW−(pW+ + pW−)µ − pW−(pW+ + pW−)pµW+

)]

. (21)

where gγWW = e, gZWW = gL cos θW . The effective TGCs are defined as

g1,γ;eff = eeff , κγ;eff = eeff [1 + δκγ ] ,

g1,Z;eff =
gL cos θW
√
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This accounts for the correction to the WW production cross section due to oblique corrections
to the propagators of electroweak gauge bosons and Z-γ mixing, while vertex corrections are
accounted for in the definition of g$W ;eff and geZ;eff. In the presence of dimension-6 operators the
shift of the effective TGCs is given by
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We can see that the WW production is sensitive to 3 new combinations of dimension-6 operators
appearing in δĝ1,Z , δκ̂γ , and λZ in Eq. (23). At the dimension-6 level, all other new physics
corrections can be expressed either by these three combinations (δκZ,eff and δλγ;efff in Eq. (24))
or by the combinations that enter in the pole observables (δg$W,L;eff, δg$Z,L;eff , and δg$Z,R;eff). For
vanishing oblique and vertex corrections, the shifts of our effective TGCs in Eq. (23) reduce to
the usual anomalous TGCs defined by Eq. (10), which are commonly used in the literature to
parameterize the vector boson pair production. However, our formulation is more general and
is also valid in the presence of oblique and vertex corrections. It can be used with any basis of
dimension-6 operators, also when some anomalous TGCs do not appear in that basis. For example,
in the Warsaw basis of Ref. [4], the anomalous TGC δg1,Z does not receive direct contributions
from new physics. Instead, a combination of vertex and oblique corrections has exactly the same
effect as δg1,Z , which is captured by our formalism. The analogous formalism applies to the WW
production at the LHC, with δg$W ;eff, δg$Z;eff replaced by the W and Z couplings to quarks.
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≡ δĝ1,Z =

(

g2L + g2Y
)

[

cWB + cB − cHW

g2L
−

cT
4g2Y
−
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Again, in Higgs basis things greatly simplify thanks to lack of oblique corrections

Usual triple gauge couplings become directly related to observable WW production 
cross section 

At dimension-6 level, the process depends on 3 vertex corrections to Z and W 
couplings to electrons and neutrinos, and  5 TGCs: 3 CP even and 2 CP odd

If we focus on WW differential distributions only (ignoring decays), CP odd TGCs 
enter quadratically and can be ignored, leaving only 3 TGCs   

e+e-→W+W- in Higgs basis



Precision of WW measurements is only O(1)%  in LEP-2, compared with O(0.1%) 
precision of LEP measurement of leptonic vertex corrections

Therefore the relevant vertex corrections are already strongly constrained in a 
model independent way and can be safely set to zero in this analysis

Then we can use a simplified treatment of WW production, with only 3 triple 
gauge couplings as free parameters 

WW production constraints



Total and differential WW production cross 
section at different energies of LEP-2

Single W production cross section at different 
energies of LEP-2

Constraints from VV production
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Figure 5.1: Measurements of the W-pair production cross-section, compared to the predictions
of RACOONWW [168] and YFSWW [161, 167]. The shaded area represents the uncertainty
on the theoretical predictions, estimated as ±2% for

√
s < 170 GeV and ranging from 0.7 to

0.4% above 170 GeV. The W mass is fixed at 80.35 GeV; its uncertainty is expected to give a
significant contribution only at threshold energies.91

Fitting to following data:
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Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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Total and differential WW production cross 
section at different energies of LEP-2

Single W production cross section at different 
energies of LEP-2

Constraints from VV production
Fitting to following data:
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Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.

e+

e−

γ/Z

W+

W−

γ

e+

e−

γ/Z

W+

W−

Z

Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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√
s Single-W hadronic cross-section (pb)

(GeV) ALEPH DELPHI L3 LEP

182.7 0.44 + 0.29
− 0.24 0.11 + 0.31

− 0.14 0.58 + 0.23
− 0.20 0.42± 0.15

188.6 0.33 + 0.16
− 0.15 0.57 + 0.21

− 0.20 0.52 + 0.14
− 0.13 0.47± 0.09

191.6 0.52 + 0.52
− 0.40 0.30 + 0.48

− 0.31 0.84 + 0.44
− 0.37 0.56± 0.25

195.5 0.61 + 0.28
− 0.25 0.50 + 0.30

− 0.27 0.66 + 0.25
− 0.23 0.60± 0.14

199.5 1.06 + 0.30
− 0.27 0.57 + 0.28

− 0.26 0.37 + 0.22
− 0.20 0.65± 0.14

201.6 0.72 + 0.39
− 0.33 0.67 + 0.40

− 0.36 1.10 + 0.40
− 0.35 0.82± 0.20

204.9 0.34 + 0.24
− 0.21 0.99 + 0.33

− 0.31 0.42 + 0.25
− 0.21 0.54± 0.15

206.6 0.64 + 0.21
− 0.19 0.81 + 0.23

− 0.22 0.66 + 0.20
− 0.18 0.69± 0.12

Table 5.10: Single-W hadronic production cross-section from the LEP experiments and com-
bined values for the eight energies between 183 and 207 GeV, in the hadronic decay channel of
the W boson. The χ2/dof of the combined fit is 13.2/16.
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Figure 5.7: Measurements of the single-W production cross-section in the hadronic decay
channel of the W boson, compared to the predictions of WTO [198], WPHACT [195] and
grc4f [187]. The shaded area represents the ±5% uncertainty on the predictions.
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The limits are rather weak, in part due to an accidental flat direction of 
LEP-2 constraints along λz ≈ -δg1Z

This implies that dimension-6 operator coefficients are constrained at the 
O(1) level  

In fact, the limits are sensitive to whether terms quadratic in dimension-6 
operator are included or not 

This in turn implies that the limits might be affected by dimension-8 
operators if, as expected from EFT counting,  c8∼c6^2  

Constraints from WW production

see also
1405.1617

Central values and 1 sigma errors: 
AA,Riva

1411.0669

http://arxiv.org/abs/arXiv:1405.1617
http://arxiv.org/abs/arXiv:1405.1617
http://arxiv.org/abs/arXiv:1405.1617
http://arxiv.org/abs/arXiv:1405.1617


These limits can be affected by dimension-8 operators if, as expected from 
EFT counting,  c8∼c6^2  

Still, they are useful to constrain specific BSM models that predict TGCs 
away from the flat direction

In particular, many models predict λZ<< δg1Z, κγ, because the 
corresponding operator O3W can be generated only at the loop level

For  λZ=0 much stronger limits follow:

Constraints from WW production
Central values and 1 sigma errors: 



In Higgs basis formalism, all but 2 TGCs are dependent couplings and can be 
expressed by Higgs couplings to gauge bosons 

Therefore constraints on δg1z and δκγ imply constraint on Higgs couplings.  Note 
that cZγ and cZZ are especially difficult to access experimentally in Higgs physics

Important to combine Higgs and TGC data! 

TGC - Higgs Synergy

Finally, the dependent couplings cV f listed in the second line of Eq. (3.6) are defined via
the contact interactions between the Higgs, electroweak gauge bosons, and fermions:

LD=6
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X
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#
, (3.10)

cZf = �gZf , cWf = �gWf . (3.11)

One could also introduce another set of independent Higgs couplings corresponding to
the dipole interaction terms in the Lagrangian of the form hf̄�µ⌫fFµ⌫ , which could a↵ect
h ! 4f decays. However, precision measurements (in particular, anomalous magnetic
and electric moments of fermions) imply that these couplings must be suppressed at the
level that makes them unobservable at the LHC. Moreover, the contribution from the
dipole terms does not interfere with the SM amplitudes, which means the corresponding
couplings enter at the quadratic level and are therefore suppressed for the size of the
couplings within the validity regime of the EFT. Therefore, for simplicity, we do not
explicitly write these couplings in this note.

Note that, using equations of motion, we could get rid of certain 2-derivative inter-
actions between the Higgs and gauge bosons: hZµ@⌫Z⌫µ, hZµ@⌫A⌫µ, and hW±

µ @⌫W⌥
⌫µ.

These interactions would than be traded for couplings in Eq. (3.10), which would change
the relation between cV f and independent couplings. We find the current representation
more convenient in practice. Namely, since �gV f are strongly constrained by precision
observables, they can be set to zero in LHC analyses. If that is done, all the contact
interaction terms are consequently also set to zero.

3.3 Couplings relevant for electroweak vector boson pair pro-
duction

In order to describe WW and WZ production processes we need, apart from the vertex
correction introduced in Section 3.1, the following independent and dependent couplings:

Independent : �z, �̃z,

Dependent : �g1,z, ��, �z, ��, ̃�, ̃z, �̃�. (3.12)

These couplings are defined via cubic interactions of electroweak gauge boson in addition
to the SM ones in Eq. (2.6). In the customary parametrization of Ref. [10]:

LD=6
tgc = ie

h
��Aµ⌫ W

+
µ W�

⌫ + ̃�Ãµ⌫ W
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(3.13)
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where the dependent couplings can be expressed by the independent couplings as

�g1,z = �g2 + g02
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�� = �z, �̃� = �̃z. (3.14)

Other possible cubic gauge interactions do not appear at the dimension-6 level. Similarly,
cubic gauge interactions with only neutral electroweak gauge bosons do not appear at
the dimension-6 level.

Note that �g1,z, ��, and ̃� are dependent couplings here, unlike in Ref. [1]. Our
motivation is that the Higgs basis should be parametrized such that the connection
with Higgs observables is the simplest. However, for the sake of studying WW and
WZ production a di↵erent set of independent couplings would be more convenient. For
example, one could chose the independent couplings as �g1,z, ��, �z, ̃�, �̃z, and consider
czz, c̃zz, and �cw � �cz as dependent couplings expressed by this set.

3.4 Couplings relevant for Higgs pair production

To describe double Higgs production process gg ! hh at the LHC we need, apart from
the single Higgs couplings introduced in Section 3.2, the following independent and
dependent couplings

Independent : ��3, (3.15)

Dependent : c(2)gg , c̃(2)gg , y(2)u , y(2)d , y(2)e . (3.16)

The independent coupling is defined via the correction to the triple Higgs boson coupling
in Eq. (2.5)
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3. (3.17)

The dependent couplings are defined via double Higgs interaction with fermions and
gluons (which are not present in the SM):
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(3.18)
They are related to the independent couplings by

c(2)gg = cgg, c̃(2)gg = c̃gg,
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1
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(3.19)
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Take away
There are strong constraints on certain combinations of 
dimension-6 operators from the pole observables 
measured at LEP-1 and other colliders

Simplest way to describe them is to use the so-called 
Higgs basis developed within LHCXSWG

In this language, model-independent constraints on 
vertex corrections and triple gauge couplings  

Current model independent LEP-2 constraints on triple 
gauge couplings are weak, due to an accidental flat 
direction. But they can still be useful in combination 
with other measurements or additional assumptions

Synergy of TGC and Higgs coupling measurements



Outlook

More general analysis that includes off-pole 
observables sensitive to 4-fermion operators

Constraints on EFT parameters from Higgs 
data in the Higgs basis language 

Model-independent constraints from WW and 
WZ production at the LHC 


