# Flavour physics after the first run of the LHC: status and perspectives

based on 1402.6677 with R. Barbieri, F. Sala and D. Straub, 1408.0728, and 1503.02693 with A. J. Buras, J. Girrbach and R. Knegjens

#### Dario Buttazzo

Institute for Advanced Study - TU Munich







Warsaw, 16.03.2015

# Naturalness (in one slide)

• The Standard Model alone has **no hierarchy problem** 

$$\frac{d m_h^2(\mu)}{d \log \mu} = \frac{3m_h^2}{8\pi^2} \left(2\lambda + y_t^2 - \frac{3g_2^2}{4} - \frac{g_Y^2}{4}\right)$$

running Higgs mass

• Generic new particles at a scale M higher than the EW scale, coupled to the Higgs boson, generate large corrections to the Higgs mass



# The CKM picture of flavour



Remarkable accuracy (~ 20%) of the CKM picture of flavour changing interactions

 Explore the highest energies indirectly testable, assuming generic flavour effects: in several cases up to 10<sup>4÷5</sup> TeV

2. Physics at the TeV scale must have a very peculiar structure: symmetries

EFT approach: only a limited set of effective operators is present, size controlled by the CKM matrix V  $(\xi_{ij} = V_{ti}^* V_{tj})$ 

 $\xi_{ij}^2 (\bar{d}_L^i \gamma_\mu d_L^j)^2 \qquad \xi_{ij} (\bar{d}_L^i \gamma_\mu d_L^j) \mathcal{O}^\mu_\alpha \qquad \xi_{ij} m_j (\bar{d}_L^i \sigma_{\mu\nu} d_R^j) \mathcal{O}^{\mu\nu}_\beta$ 

How to get a flavour scenario close to CKM, beyond the SM?

#### Direct searches

| A                                                 | TLAS SUSY Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | arches                                                                                                                                                                                         | s* - 95                                                                                                                          | 5% (                                                               | CL L                                                                                                           | ower Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>AS</b> Preliminary                                                                                                                                                                                                                                           |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sta                                               | atus: SUSY 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                  |                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sqrt{s}$ = 7, 8 TeV                                                                                                                                                                                                                                           |
|                                                   | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e, μ, τ, γ                                                                                                                                                                                     | Jets                                                                                                                             | E <sup>miss</sup> T                                                | ∫£ dt[fb                                                                                                       | <sup>b-1</sup> ] Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reference                                                                                                                                                                                                                                                       |
| Inclusive Searches                                | $ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q} \bar{a}, \overline{q} \rightarrow \overline{q} \tilde{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{x}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{g} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{g} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{g} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{0} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q W^{+} \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s}, \overline{s} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \rightarrow q \overline{s} \tilde{v}_{1}^{1} \\ \overline{g} \bar{s} \bar{s} \bar{s} \bar{s} \bar{s} \bar{s} \bar{s} s$ | $\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1.2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$          | 2-6 jets<br>3-6 jets<br>2-6 jets<br>2-6 jets<br>3-6 jets<br>3-6 jets<br>0-3 jets<br>0-2 jets<br>-<br>1 b<br>0-3 jets<br>mono-jet | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>4.7<br>20.7<br>4.8<br>4.8<br>4.8<br>4.8<br>5.8<br>10.5 | 4.8         1.7 TeV           8         1.2 TeV           8         1.1 TeV           9         740 GeV           8         1.1 TeV           8         1.1 TeV           8         1.1 TeV           8         1.18 TeV           8         1.12 TeV           8         1.2 TeV           8         900 GeV           8         900 GeV           8         619 GeV           8         600 GeV           8         600 GeV           8         645 GeV | (m(ā)=m(ā)<br>any m(ā)<br>ary m(ā)<br>m(t <sup>2</sup> )=0.GeV<br>m(t <sup>2</sup> )=0.GeV<br>m(t <sup>2</sup> )=0.GeV<br>m(t <sup>2</sup> )=0.GeV<br>tan/c+15<br>tan/c+15<br>tan/c +15<br>tan/c +15 | ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-062<br>1308.1841<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-026<br>1209.0753<br>ATLAS-CONF-2012-144<br>1211.1167<br>ATLAS-CONF-2012-144<br>1214.2147 |
| 3 <sup>rd</sup> gen.<br>ĝ med.                    | $\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0-1 e, µ<br>0-1 e, µ                                                                                                                                                                 | 3 b<br>7-10 jets<br>3 b<br>3 b                                                                                                   | Yes<br>Yes<br>Yes<br>Yes                                           | 20.1<br>20.3<br>20.1<br>20.1                                                                                   | š         1.2 TeV           š         1.1 TeV           š         1.3 TeV           š         1.3 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} m(\tilde{v}_1^0){<}600~\text{GeV} \\ m(\tilde{v}_1^0){<}350~\text{GeV} \\ m(\tilde{v}_1^0){<}400~\text{GeV} \\ m(\tilde{v}_1^0){<}300~\text{GeV} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATLAS-CONF-2013-061<br>1308.1841<br>ATLAS-CONF-2013-061<br>ATLAS-CONF-2013-061                                                                                                                                                                                  |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $ \begin{array}{l} \tilde{b}_{1} \tilde{b}_{1} - \tilde{b}_{1}^{*0} + \tilde{b}_{1}^{*0} \\ \tilde{b}_{1} \tilde{b}_{1} - \tilde{b}_{1}^{*1} + \tilde{b}_{1}^{*1} \\ \tilde{b}_{1} \tilde{b}_{1} - \tilde{b}_{1}^{*1} + \tilde{b}_{1}^{*0} \\ \tilde{t}_{1} \tilde{t}_{1} (light), \tilde{t}_{1} \rightarrow b \tilde{b}_{1}^{*1} \\ \tilde{t}_{1} \tilde{t}_{$                                                                                                                                 | $\begin{array}{c} 0\\ 2\ e,\mu\ (SS)\\ 1-2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array}$                                                         | 2 b<br>0-3 b<br>1-2 b<br>0-2 jets<br>2 jets<br>2 b<br>1 b<br>2 b<br>nono-jet/c-ta<br>1 b<br>1 b                                  | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.1<br>20.7<br>4.7<br>20.3<br>20.3<br>20.1<br>20.7<br>20.5<br>20.3<br>20.7<br>20.7                            | b₁         100-620 GeV           b₁         275-430 GeV           t₁         110-167 GeV           t₁         130-220 GeV           t₁         225-525 GeV           t₁         200-610 GeV           t₁         200-610 GeV           t₁         200-610 GeV           t₁         90-200 GeV           t₁         90-200 GeV           t₁         90-200 GeV           t₁         90-200 GeV                                                                                                                                                                                                                                                                                                                         | $\begin{split} m(\tilde{\xi}_{1}^{0})90 \ GeV \\ m(\tilde{\xi}_{1}^{0})92 \ m(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0})55 \ GeV \\ m(\tilde{\xi}_{1}^{0})m(\tilde{\xi}_{1}^{0})m(\tilde{\chi}_{1}^{0})6V \\ m(\tilde{\xi}_{1}^{0})0 \ GeV \\ m(\tilde{\xi}_{1}^{0})10 \ GeV \\ m(\tilde{\xi}_{1}^{0})150 \ GeV \\ m(\tilde{\xi}_{1}^{0}).+180 \ GeV \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1308.2631<br>ATLAS-CONF-2013-007<br>1208.4305,1209.2102<br>ATLAS-CONF-2013-065<br>1308.2631<br>ATLAS-CONF-2013-065<br>ATLAS-CONF-2013-068<br>ATLAS-CONF-2013-068<br>ATLAS-CONF-2013-025<br>ATLAS-CONF-2013-025                                                  |
| EW<br>direct                                      | $ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{r}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{r} \nu(r \tilde{r}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{r} \nu), \ell \tilde{\tau} \tilde{\ell}_{L} \ell(\tilde{r} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \delta Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{1} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 e, μ<br>2 e, μ<br>2 τ<br>3 e, μ<br>3 e, μ<br>1 e, μ                                                                                                                                          | 0<br>0<br>-<br>0<br>2 b                                                                                                          | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                             | 20.3<br>20.3<br>20.7<br>20.7<br>20.7<br>20.7<br>20.3                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} m(\tilde{r}_{1}^{0})=0 \mbox{ GeV } \\ m(\tilde{r}_{1}^{0})=0 \mbox{ GeV } m(\tilde{r}, \tilde{\gamma})=0.5(m(\tilde{r}_{1}^{0})+m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{0})=0 \mbox{ GeV } m(\tilde{r}, \tilde{\gamma})=0.5(m(\tilde{r}_{1}^{0})+m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{2}^{0}),m(\tilde{r}_{1}^{0})=0,m(\tilde{r}, \tilde{\gamma})=0.5(m(\tilde{r}_{1}^{0})+m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{0})-m(\tilde{r}_{2}^{0}),m(\tilde{r}_{1}^{0})=0.5sptons decoupled \\ m(\tilde{r}_{1}^{0})-m(\tilde{r}_{2}^{0}),m(\tilde{r}_{2}^{0})=0.5sptons decoupled \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-028<br>ATLAS-CONF-2013-035<br>ATLAS-CONF-2013-035<br>ATLAS-CONF-2013-033                                                                                                                          |
| Long-lived<br>particles                           | Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$<br>Stable, stopped $\tilde{g}$ R-hadron<br>GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_{+}\tau(e_{1}, \tilde{\mu})_{+}\tau$                                                                                                                  | Disapp. trk<br>0<br>e, μ) 1-2 μ<br>2 γ<br>1 μ, displ. vtz                                                                                                                                      | 1 jet<br>1-5 jets<br>-<br>-                                                                                                      | Yes<br>Yes<br>Yes                                                  | 20.3<br>22.9<br>15.9<br>4.7<br>20.3                                                                            | x1         270 GeV           ž         832 GeV           x1         475 GeV           x1         230 GeV           q         1.0 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{l} m(\tilde{\chi}_{1}^{2})\!+\!m(\tilde{\chi}_{1}^{0})\!=\!160 \; \text{MeV}, \tau(\tilde{\chi}_{1}^{*})\!=\!0.2 \; \text{ns} \\ m(\tilde{\chi}_{1}^{0})\!=\!100 \; \text{GeV}, 10 \; \mu \text{s}\!<\!\tau(\tilde{g})\!<\!1000 \; \text{s} \\ 10 \cdot \text{tan} \beta \!<\!50 \\ 0.4 \! <\!\tau(\tilde{\chi}_{1}^{0})\!<\!2 \; \text{ns} \\ 1.5 <\!cr\!<\!156 \; \text{cm}, \; \text{BR}(\mu)\!=\!1, \; m(\tilde{\chi}_{1}^{0})\!=\!108 \; \text{GeV} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATLAS-CONF-2013-069<br>ATLAS-CONF-2013-057<br>ATLAS-CONF-2013-058<br>1304.6310<br>ATLAS-CONF-2013-092                                                                                                                                                           |
| RPV                                               | $ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ \tilde{v}_{\tau}  \tilde{v}_{\tau} \rightarrow NF^{0}_{\tau}, \ \tilde{x}_{\tau}^{1} \rightarrow NF^{0}_{\tau}, \ \tilde{x}_{\tau}^{0} \rightarrow e\tilde{v}_{\mu}, e\mu\tilde{v} \\ \tilde{x}_{\tau}^{1} \tilde{x}_{\tau}, \ \tilde{x}_{\tau}^{1} \rightarrow NF^{0}_{\tau}, \ \tilde{x}_{\tau}^{1} \rightarrow NF^{0}_{\tau}, \ \tilde{x}_{\tau}^{1} \rightarrow NF^{0}_{\tau}, e\mu\tilde{v} \\ \tilde{x}_{\tau}^{1} \tilde{x}_{\tau}, \ \tilde{x}_{\tau}^{1} \rightarrow NF^{0}_{\tau}, \ \tilde{x}_{\tau}^{1} \rightarrow NF^{0}_{\tau}, e\mu\tilde{v} \\ \tilde{g} \rightarrow qq \\ \tilde{g} \rightarrow \tilde{t}_{1}, \ \tilde{t}_{\tau} \rightarrow bs \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \tau \\ \phi_{e} \\ 4 \ e, \mu \\ \phi_{\tau} \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \left( \text{SS} \right) \end{array}$ | 7 jets<br>6-7 jets<br>0-3 <i>b</i>                                                                                               | Yes<br>Yes<br>Yes<br>Yes                                           | 4.6<br>4.6<br>4.7<br>20.7<br>20.7<br>20.3<br>20.7                                                              | \$\vec{v}_r\$         1.61 TeV           \$\vec{v}_r\$         1.1 TeV           \$\vec{v}_e\$         1.1 TeV           \$\vec{v}_e\$         1.2 TeV           \$\vec{v}_1\$         760 GeV           \$\vec{v}_1\$         350 GeV           \$\vec{v}_2\$         916 GeV           \$\vec{v}_2\$         880 GeV                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} \lambda_{111}'=0.10, \lambda_{112}'=0.05\\ \lambda_{111}'=0.10, \lambda_{1(2)13}=0.05\\ m(\tilde{q})=m(\tilde{g}), cr_{LS}<1  mm\\ m(\tilde{q}_1^{(1)})=0.05\\ m(\tilde{\chi}_1^{(1)})>300  GeV, \lambda_{122}>0\\ m(\tilde{\chi}_1^{(1)})>300  GeV, \lambda_{123}>0\\ BR(t)=BR(b)=BR(c)=0\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1212.1272<br>1212.1272<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-091<br>ATLAS-CONF-2013-007                                                                                                                       |
| Other                                             | Scalar gluon pair, sgluon $\rightarrow q\bar{q}$<br>Scalar gluon pair, sgluon $\rightarrow t\bar{t}$<br>WIMP interaction (D5, Dirac $\chi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>2 e, μ (SS)<br>0                                                                                                                                                                          | 4 jets<br>1 <i>b</i><br>mono-jet                                                                                                 | -<br>Yes<br>Yes                                                    | 4.6<br>14.3<br>10.5                                                                                            | sgluon 100-287 GeV 800 GeV<br>ggluon 800 GeV<br>M" scale 704 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | incl. limit from 1110.2693<br>m(χ)<80 GeV, limit of<687 GeV for D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1210.4826<br>ATLAS-CONF-2013-051<br>ATLAS-CONF-2012-147                                                                                                                                                                                                         |
|                                                   | $\sqrt{s} = 7 \text{ TeV}$<br>full data p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sqrt{s} = 8 \text{ TeV}$                                                                                                                                                                     | √s = 8<br>full c                                                                                                                 | B TeV<br>data                                                      |                                                                                                                | 10 <sup>-1</sup> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                               |

\*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 $\sigma$  theoretical signal cross section uncertainty.

How do flavour measurements compare with direct searches at the LHC (e.g. in SUSY)?





# 1. The way of flavour symmetries

•  $U(3)^3 \equiv U(3)_q \times U(3)_u \times U(3)_d$  broken by the SM Yukawa's

 $Y_u \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}), \quad Y_d \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})$ 

Chivukula, Georgi Hall, Randall D'Ambrosio *et al.* 

- At leading order in the breaking parameters  $\neq y_t$ :
  - Quark bilinears:

$$\bar{q}_L \, I_3 \gamma_\mu \, q_L$$

$$\bar{q}_L I_3 Y_d \sigma_{\mu\nu} d_R$$

 $Y_u Y_u^{\dagger} \sim I_3 = \operatorname{diag}(0, 0, 1)$ 

Effective operators:

$$\Delta F = 2: \qquad c_{LL} \xi_{ij}^2 (\bar{d}_L^i \gamma_\mu d_L^j)^2$$
  
$$\Delta F = 1: \qquad c_{cc}^\alpha \xi_{ij} (\bar{d}_L^i \gamma_\mu d_L^j) \mathcal{O}_\mu^\alpha$$

$$(\xi_{ij} \equiv V_{ti}^* V_{tj})$$

 $\overline{c_{c}}^{\beta} e^{i\phi^{\beta}} \xi_{ij} m_j (\bar{d}_L^i \sigma_{\mu\nu} d_R^j)$ 

# Minimal U(2)<sup>3</sup>

- $U(2)^3 \equiv U(2)_q \times U(2)_u \times U(2)_d$  broken by the spurions  $\mathcal{V} \sim (\mathbf{2}, \mathbf{1}, \mathbf{1}), \quad \Delta_u \sim (\mathbf{2}, \mathbf{\overline{2}}, \mathbf{1}), \quad \Delta_d \sim (\mathbf{2}, \mathbf{1}, \mathbf{\overline{2}})$  $q_L = (\mathbf{q}_L, q_L^3), \quad d_R = (\mathbf{d}_R, b_R), \quad u_R = (\mathbf{u}_R, t_R)$
- At leading order in the breaking parameters:

Barbieri *et al.* '11 Barbieri, B, Sala, Straub '12

| Quark bilinears:                                                                                 | $ar{q}_L q_L$                        | $ar{m{q}}_{m{L}} \mathcal{V} q_L^3$                                                                    | $ar{q}_L^3 q_L^3$                                 |
|--------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                  | $ar{m{q}}_{m{L}}\Delta_dm{d}_{m{R}}$ | $ar{m{q}}_{m{L}} \mathcal{V} b_R$                                                                      | $ar{q}_L^3 b_R$                                   |
| Effective operators:                                                                             |                                      | $G_{\rm cb}^{\beta} e^{i\phi^{eta}} \xi_{ij} m_j (\bar{d}_L^i \sigma)$                                 | $\sigma_{\mu u} d_R^j) \mathcal{O}^{eta}_{\mu u}$ |
| $c^{\scriptscriptstyle K}_{\scriptscriptstyle LL}\xi^2_{ds}(ar d_L\gamma_\mu s_L)^2$             | С                                    | $\xi^{\scriptscriptstyle K,lpha}_{ m cc} \xi_{ds} (ar{d}_L \gamma_\mu s_L) {\cal C}$                   | $\mathcal{O}^{lpha}_{\mu}$                        |
| $c^{\scriptscriptstyle B}_{\scriptscriptstyle LL} e^{i\phi_B} \xi^2_{ib} (ar d^i_L \gamma_\mu b$ | $(L)^2$ c                            | $E^{\scriptscriptstyle B,lpha}_{\scriptscriptstyle m cc}e^{i\phi^lpha}\xi_{ib}(ar{d}^i_L\gamma_\mu b)$ | $(\mathcal{O}_L)\mathcal{O}_\mu^lpha$             |

# Minimal U(2)<sup>3</sup>

• Weakly broken: a good symmetry of the SM Yukawa sector



- Potentially more observable effects w.r.t. MFV
- Naturally arises from a minimum principle in the dynamical breaking of U(3)<sup>3</sup>
   Alonso et al. '13
- The only continuous symmetry along with U(3)<sup>3</sup> which gives a near-CKM structure of flavour violation, <u>if no further assumptions</u> <u>on the underlying model</u> Barbieri, B, Sala, Straub '14

#### Are there other pictures naturally close to CKM?

•  $U(2)_q \times U(2)_u \times U(3)_d$ , broken by  $\Delta_u \sim (\mathbf{2}, \mathbf{\overline{2}}, \mathbf{1}), \ \Delta_d \sim (\mathbf{2}, \mathbf{1}, \mathbf{\overline{3}})$ , and  $\tilde{\Delta}_d \sim (\mathbf{1}, \mathbf{1}, \mathbf{\overline{3}})$ , gives rise to MFV (*i.e.* has <u>the same effective</u> <u>operators</u>)

#### Are there other pictures naturally close to CKM?

- $U(2)_q \times U(2)_u \times U(3)_d$  gives rise to MFV
- Reducing the U(2)<sup>3</sup> group:
  - Distinction between left- and right-handed fermions is essential (e.g.  $U(2)_{q+u+d}$  has large non-CKM LR currents);
  - U(2)<sub>L</sub> × U(2)<sub>R</sub> broken by Δ<sub>u</sub> ~ (2, 2), Δ<sub>d</sub> ~ (2, 2), V ~ (2, 1), generates non-CKM chirality breaking op.s in ΔC = 1 and ΔS = 1: distinction between *u* and *d* quarks is needed;
  - $U(2)_L \times SU(2)_R \times U(1)_u \times U(1)_d$ , broken by  $\mathcal{V} \sim (\mathbf{2}, \mathbf{1})_{(0,0)}$ ,  $\Delta_u \sim (\mathbf{2}, \mathbf{2})_{(-1,0)}, \ \Delta_d \sim (\mathbf{2}, \mathbf{2})_{(0,-1)}$ , is equivalent to U(2)<sup>3</sup> at leading order in the breaking parameters

#### Are there other pictures naturally close to CKM?

- $U(2)_q \times U(2)_u \times U(3)_d$  gives rise to MFV
- Reducing the U(2)<sup>3</sup> group:
  - Distinction between left- and right-handed fermions is essential
  - Distinction between u and d quarks is needed;
  - $U(2)_L \times SU(2)_R \times U(1)_u \times U(1)_d$  is equivalent to U(2)<sup>3</sup>
- Alignment: e.g.  $U(3)_d \times U(1)_{(q+u)_1} \times U(1)_{(q+u)_2} \times U(1)_{(q+u)_3}$ broken by  $\Delta_1 \sim \mathbf{3}_{(1,0,0)}, \ \Delta_2 \sim \mathbf{3}_{(0,1,0)}, \ \Delta_3 \sim \mathbf{3}_{(0,0,1)}$  Barbieri *et al.* '10

gives rise to the bilinear  $\left((c_3-c_1)\xi_{ij}+(c_2-c_1)V_{ci}^*V_{cj}\right)(\bar{d}_L^i\gamma_\mu d_L^j)$ 

Non CKM effects unless  $c_2 \sim c_1$ : this can work in specific contexts.

#### Fit of $\Delta F = 2$ observables

$$\Delta M_{s,d} = \Delta M_{s,d}^{\rm SM} \left| 1 + h_B e^{2i\sigma_B} \right| \qquad \epsilon_K = \epsilon_K^{\rm SM} + h_K \epsilon_K^{\rm SM,tt}$$
$$S_{\psi K_S} = \sin \left( 2\beta + \arg(1 + h_B e^{2i\sigma_B}) \right)$$



#### Fit of $\Delta F = 2$ observables

$$\Delta M_{s,d} = \Delta M_{s,d}^{\rm SM} \left| 1 + \boldsymbol{h}_{B} e^{2i\boldsymbol{\sigma}_{B}} \right| \qquad \epsilon_{K} = \epsilon_{K}^{\rm S}$$
$$S_{\psi K_{S}} = \sin \left( 2\beta + \arg (1 + \boldsymbol{h}_{B} e^{2i\boldsymbol{\sigma}_{B}}) \right)$$

$$\epsilon_K = \epsilon_K^{\rm SM} + h_K \epsilon_K^{\rm SM, tt}$$



#### Flavour and supersymmetry



- "Natural" spectrum with light stops and gluino, and heavy squarks of 1st & 2nd generation: compatible with U(2)<sup>3</sup>
- What is the impact on flavour physics of the direct bounds on s-particle masses from the LHC?

 $h_K \simeq F_{H^{\pm}} + |\xi_L|^4 F_{\tilde{g},1} + |\xi_L|^2 \delta F_{\tilde{g},2} + |\delta|^2 F_{\tilde{g},3} \xrightarrow{} \text{second-order effects}$   $h_B e^{2i\sigma_B} \simeq F_{H^{\pm}} + |\xi_L|^2 e^{2i\gamma_L} F_{\tilde{g},1} + |\xi_L \xi_R| e^{i(\gamma_L + \gamma_R)} F_{\tilde{g},4} \text{ (only for } B_s) \tag{gluino only}$ 



 $h_K \simeq F_{H^{\pm}} + |\xi_L|^4 F_{\tilde{g},1} + |\xi_L|^2 \delta F_{\tilde{g},2} + |\delta|^2 F_{\tilde{g},3} \xrightarrow{} \text{second-order effects}$   $h_B e^{2i\sigma_B} \simeq F_{H^{\pm}} + |\xi_L|^2 e^{2i\gamma_L} F_{\tilde{g},1} + |\xi_L \xi_R| e^{i(\gamma_L + \gamma_R)} F_{\tilde{g},4} \text{ (only for } B_s) \tag{gluino only}$ 



 $h_K \simeq F_{H^{\pm}} + |\xi_L|^4 F_{\tilde{g},1} + |\xi_L|^2 \delta F_{\tilde{g},2} + |\delta|^2 F_{\tilde{g},3} \xrightarrow{\text{second-order effects}}$   $h_B e^{2i\sigma_B} \simeq F_{H^{\pm}} + |\xi_L|^2 e^{2i\gamma_L} F_{\tilde{g},1} + |\xi_L \xi_R| e^{i(\gamma_L + \gamma_R)} F_{\tilde{g},4} \quad \text{(only for } B_s) \quad \text{(gluino only)}$ 



observable deviations from the SM only for large values of  $\xi_L$ 

 $h_K \simeq F_{H^{\pm}} + |\xi_L|^4 F_{\tilde{g},1} + |\xi_L|^2 \delta F_{\tilde{g},2} + |\delta|^2 F_{\tilde{g},3} \xrightarrow{} \text{second-order effects}$   $h_B e^{2i\sigma_B} \simeq F_{H^{\pm}} + |\xi_L|^2 e^{2i\gamma_L} F_{\tilde{g},1} + |\xi_L \xi_R| e^{i(\gamma_L + \gamma_R)} F_{\tilde{g},4} \text{ (only for } B_s) \tag{gluino only}$ 



- Consider all the contributions. Many free parameters: scan Crivellin over the parameter space (analysis with **SUSY FLAVOR**) Rosiek
- ATLAS and CMS mass bounds:



• Scan ranges:  $\xi_{\alpha} \in [1/3, 3]$ 

 $\tilde{m}_3 \in [0.1, 1.5] \text{ TeV}, \quad m_{\tilde{q}} \in [0.1, 3] \text{ TeV},$  $m_{\tilde{\chi}} \in [0.1, 0.8] \text{ TeV}, \quad \tan \beta \in [1, 5]$ 



heavy spectrum
compressed spectrum
excluded by  $b \to s\gamma$ 

★ SM
 ◯ U(2)<sup>3</sup> fit
 ◯ generic fit





heavy spectrum
compressed spectrum
excluded by  $b \to s\gamma$ 

★ SM
 ◯ U(2)<sup>3</sup> fit
 ◯ generic fit



#### Rare B decays

- Main  $\Delta B = 1$  effects in U(2)<sup>3</sup> arise from (chromo-)magnetic dipole operators
- Higgsino and charged Higgs contributions MFV-like, constrained by  $B \to X_s \gamma$
- Gluino (and Wino) contributions, Secontribute to the CP asymmetries: angular asymmetry A<sub>7</sub> in  $B \rightarrow K^* \mu^+ \mu^-$  at low  $\mu\mu$  invariant mass



•  $B_{d,s} \rightarrow \mu^+ \mu^-$  not relevant for moderate tan ß (get tan ß enhanced contributions from scalar operators)

#### A different example: composite Higgs models

- In composite Higgs models large flavour effects are generated by the strongly interacting dynamics.
- In general, the bounds from flavour are stronger than the direct constraints on composite resonances.

Direct bounds:  $m_{\psi} \gtrsim 700, \text{GeV}$ 

|                  | doublet          | triplet          | bidoublet         |  |  |  |  |  |  |  |
|------------------|------------------|------------------|-------------------|--|--|--|--|--|--|--|
| $\bigotimes$     | $4.9^{\dagger}$  | $1.7^\dagger$    | $1.2^{*\dagger}$  |  |  |  |  |  |  |  |
| $U(3)^3_{ m LC}$ | 6.5              | 6.5              | 5.3               |  |  |  |  |  |  |  |
| $U(3)^3_{ m RC}$ | -                | -                | 3.3               |  |  |  |  |  |  |  |
| $U(2)^3_{ m LC}$ | $4.9^{\ddagger}$ | $0.6^{\ddagger}$ | $0.6^{\ddagger}$  |  |  |  |  |  |  |  |
| $U(2)^3_{ m RC}$ | -                | -                | $1.1^{*}$         |  |  |  |  |  |  |  |
|                  |                  | Barbieri, B,     | Sala, Straub 2013 |  |  |  |  |  |  |  |

Minimal fermion resonance mass [TeV]

\* f > 500 GeV and  $g_{\psi} \approx 2.5$ † excluding  $\varepsilon_{K}$ , up to  $\mathcal{O}(1)$  factors ‡  $r_{b} = 0.2$ 

## A different example: composite Higgs models

- In composite Higgs models large flavour effects are generated by the strongly interacting dynamics.
- In general, the bounds from flavour are stronger than the direct constraints on composite resonances.

Direct bounds:  $m_{\psi} \gtrsim 700, \text{GeV}$ 

| Minimal fermion resonance mass [TeV] |                       |                  |                   |  |  |  |  |  |  |
|--------------------------------------|-----------------------|------------------|-------------------|--|--|--|--|--|--|
|                                      | doublet triplet bidou |                  |                   |  |  |  |  |  |  |
| $\bigotimes$                         | $4.9^{\dagger}$       | $1.7^\dagger$    | $1.2^{*\dagger}$  |  |  |  |  |  |  |
| $U(3)^3_{ m LC}$                     | 6.5                   | 6.5              | 5.3               |  |  |  |  |  |  |
| $U(3)^3_{ m RC}$                     | -                     | -                | 3.3               |  |  |  |  |  |  |
| $U(2)^3_{ m LC}$                     | $4.9^{\ddagger}$      | $0.6^{\ddagger}$ | $0.6^{\ddagger}$  |  |  |  |  |  |  |
| $U(2)^3_{ m RC}$                     | -                     | _                | 1.1*              |  |  |  |  |  |  |
|                                      |                       | Barbieri, B,     | Sala, Straub 2013 |  |  |  |  |  |  |

 Only a few models can accommodate a 125 GeV composite Higgs with light top partners.

\* f > 500 GeV and  $g_{\psi} \approx 2.5$  $\dagger$  excluding  $\varepsilon_{K}$ , up to  $\mathcal{O}(1)$  factors  $\ddagger r_b = 0.2$ 

# Conclusions (part 1)

- Precision measurements in the flavour sector require a <u>near-CKM</u> picture of flavour-changing interactions.
- Two possible scenarios, <u>based on symmetries only</u>: U(3)<sup>3</sup>, U(2)<sup>3</sup>
- Updated fit of meson mixings in U(2)<sup>3</sup> (improved measurement of CP asymmetries in B decays and new lattice results)
- SUSY: direct bounds on s-particle masses are becoming competitive with flavour constraints
- Still <u>room for observable deviations</u> from SM in meson mixings, if s-particles in the reach of LHC14

# 2. High-scale flavour physics

#### What are the highest scales testable through rare decays?

 Heavy vector resonance with flavour-changing quark couplings: a toy model to mimic FCNC



• All the 4-fermion amplitudes depend only on the ratios



#### Projections for the coming years

| Ob                                        | servable                          |                                                 | 2014                                                                   | :                  |                    | 20                | 19      | 2024    | 2030              |
|-------------------------------------------|-----------------------------------|-------------------------------------------------|------------------------------------------------------------------------|--------------------|--------------------|-------------------|---------|---------|-------------------|
| $\mathcal{B}(K^+$                         | $ \to \pi^+ \nu \bar{\nu})$       | (17.3]                                          | $\left( \begin{array}{c} +11.5 \\ -10.5 \end{array} \right) \times 10$ | -11                | [32]               | 10%               | [33]    | 5% [34] |                   |
| $\mathcal{B}(K_{\mathrm{I}})$             | $\Delta \to \pi^0 \nu \bar{\nu})$ | < 2.6                                           | $\times 10^{-8}$ (9                                                    | $0\% \mathrm{CI}$  | (35]               |                   |         | 5% [34] |                   |
| $\mathcal{B}(B^+)$                        | $\rightarrow K^+ \nu \bar{\nu})$  | $< 1.3 \times 10^{-5} \ (90\% \mathrm{CL})[36]$ |                                                                        |                    |                    |                   | 30%[37] |         |                   |
| $\mathcal{B}(B^0_d)$                      | $\to K^{*0} \nu \bar{\nu})$       | < 5.5                                           | $\times 10^{-5}$ (9                                                    | $0\% \mathrm{CI}$  | (-1)[38]           |                   |         | 35%[37] |                   |
| $\overline{\mathcal{B}}(B_s)$             | $\rightarrow \mu^+ \mu^-)$        | $(2.9 \pm$                                      | $(0.7) \times 10$                                                      | $^{-9}$ [3]        | 9-41]              | 15%[4             | [2, 43] | 12%[42] | 10-12%[42,43]     |
| $\mathcal{B}(B_d$                         | $\to \mu^+\mu^-)$                 | $(3.6^{+1}_{-1})$                               | $^{1.6}_{1.4}$ × 10 <sup>-1</sup>                                      | <sup>LO †</sup> [3 | 9-41]              | 66%               | [42]    | 45%[42] | $18\% \ [42]$     |
| $\mathcal{B}(B_d \to \mu^+ \mu^-)$        | $(B_s \to \mu^+ \mu^-)$           |                                                 |                                                                        |                    |                    | 71%               | [42]    | 47%[42] | 21 - 35% [42, 43] |
|                                           | 2014                              |                                                 | 2019                                                                   | )                  | 202                | 24                | 2030    |         |                   |
| $F_{B_s}$                                 | $(227.7 \pm 4.5) \text{ MeV}$     | / [44]                                          | < 1%                                                                   | [45]               |                    |                   |         |         |                   |
| $F_{B_d}$                                 | $(190.5 \pm 4.2) \text{ MeV}$     | 7 [44]                                          | < 1%                                                                   | [45]               |                    |                   |         |         |                   |
| $F_{B_s}\sqrt{\hat{B}_{B_s}}$             | $(266 \pm 18) \text{ MeV}$        | [44]                                            | 2.5%                                                                   | [45]               | < 1%               | 6 [46]            |         |         |                   |
| $F_{B_d}\sqrt{\hat{B}_{B_d}}$             | $(216 \pm 15) \text{ MeV}$        | [44]                                            | 2.5%                                                                   | [45]               | < 1%               |                   |         |         |                   |
| $\dot{\hat{B}_K}$                         | $0.766 \pm 0.010$                 | [44]                                            | < 1%                                                                   | [45]               |                    |                   |         |         |                   |
| $ V_{ub} _{\text{incl}}$                  | $(4.40 \pm 0.25) \times 10$       | $^{-3}[44]$                                     | 5%                                                                     | [37]               | 3%                 | [37]              |         |         |                   |
| $ V_{ub} _{\text{excl}}$                  | $(3.42 \pm 0.31) \times 10$       | $^{-3}[44]$                                     | 12% <sup>††</sup>                                                      | [37]               | $5\%$ $^{\dagger}$ | <sup>†</sup> [37] |         |         |                   |
| $ V_{cb} _{ m incl}$                      | $(42.4 \pm 0.9) \times 10^{-1}$   | $^{-3}$ [47]                                    | 1%                                                                     | [48]               | < 1%               |                   |         |         |                   |
| $ V_{cb} _{ m excl}$                      | $(39.4 \pm 0.6) \times 10^{-1}$   | $^{\cdot 3}$ [44]                               | 1%                                                                     | [48]               | < 1%               |                   |         |         |                   |
| $\gamma$ $(70.1 \pm 7.1)^{\circ \dagger}$ |                                   | [49]                                            | 6%                                                                     | [37]               | 1.5%               | $\left[37\right]$ | 1.3%[4  | 3]      |                   |
| $\phi_d^{\rm SM} = 2\beta$                | $(43.0^{+1.6}_{-1.4})^{\circ}$    | [50]                                            | $\sim 1^{\circ \ddagger} [51]$                                         | 1, 52]             |                    |                   |         |         |                   |
| $\phi_s^{\rm SM} = -2\beta_s$             | $(0 \pm 4)^{\circ}$               | [50]                                            | 1.4°                                                                   | [43]               | $\sim 1^{\circ}$   | <sup>‡</sup> [53] |         |         |                   |

#### Projections for the coming years

| Ob                                 | servable                                      |                                           | 2014                             |                  |                  | 20                | 019     | 2024             | 2030              |
|------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------|------------------|------------------|-------------------|---------|------------------|-------------------|
| $\mathcal{B}(K^+$                  | $ \to \pi^+ \nu \bar{\nu})$                   | $(17.3^+)$                                | $\binom{-11.5}{-10.5} \times 10$ | -11              | [32]             | $10^{\circ}_{2}$  | % [33]  | 5% [34]          |                   |
| $\mathcal{B}(K_{\mathrm{I}})$      | $\Box \to \pi^0 \nu \bar{\nu}$                | < 2.6 × 10 <sup>-8</sup> (90% CL)[35] $ $ |                                  |                  |                  |                   |         | 5% [34]          |                   |
| $\mathcal{B}(B^+)$                 | $\rightarrow K^+ \nu \bar{\nu})$              | < 1.3                                     | $\times 10^{-5}$ (9              | $0\%\mathrm{Cl}$ | L)[36]           |                   |         | 30%[37]          |                   |
| $\mathcal{B}(B^0_d)$               | $\rightarrow K^{*0} \nu \bar{\nu}$ )          | < 5.5                                     | $\times 10^{-5}$ (9)             | $0\%{ m Cl}$     | L)[38]           |                   |         | 35%[37]          |                   |
| $\overline{\mathcal{B}}(B_s$       | $\rightarrow \mu^+ \mu^-)$                    | $(2.9 \pm 0.7) \times 10^{-9}$ [39-41]    |                                  |                  | 15%[             | [42, 43]          | 12%[42] | 10 - 12%[42, 43] |                   |
| $\mathcal{B}(B_d$                  | $\rightarrow \mu^+ \mu^-)$                    | $(3.6^{+1}_{-1})$                         | $(1.4)^{(.6)} \times 10^{-1}$    | 0†[3             | 89-41]           | 66%               | % [42]  | 45%[42]          | $18\% \ [42]$     |
| $\mathcal{B}(B_d \to \mu^+ \mu^-)$ | $\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)$ |                                           |                                  |                  |                  | $71^{\circ}_{2}$  | % [42]  | 47%[42]          | 21 - 35% [42, 43] |
|                                    | 2014                                          |                                           | 2019                             | )                | 202              | 24                | 2030    |                  |                   |
| $F_{B_s}$                          | $(227.7 \pm 4.5) \text{ MeV}$                 | [44]                                      | < 1%                             | [45]             |                  |                   |         |                  |                   |
| $F_{B_d}$                          | $(190.5 \pm 4.2) \text{ MeV}$                 | [44]                                      | < 1%                             | [45]             |                  |                   |         |                  |                   |
| $F_{B_s}\sqrt{\hat{B}_{B_s}}$      | $(266 \pm 18) \text{ MeV}$                    | [44]                                      | 2.5%                             | [45]             | < 1%             | 6 [46]            |         |                  |                   |
| $F_{B_d}\sqrt{\hat{B}_{B_d}}$      | $(216 \pm 15) \text{ MeV}$                    | [44]                                      | 2.5%                             | [45]             | < 1%             | 6 [46]            |         |                  |                   |
| $\dot{\hat{B}}_K$                  | $0.766 \pm 0.010$                             | [44]                                      | < 1%                             | [45]             |                  |                   |         |                  |                   |
| $ V_{ub} _{\text{incl}}$           | $(4.40 \pm 0.25) \times 10^{-5}$              | $^{-3}[44]$                               | 5%                               | [37]             | 3%               | [37]              |         |                  |                   |
| $ V_{ub} _{\text{excl}}$           | $(3.42 \pm 0.31) \times 10^{-5}$              | $^{-3}[44]$                               | 12% <sup>††</sup>                | [37]             | 5% †             | <sup>†</sup> [37] |         |                  |                   |
| $ V_{cb} _{ m incl}$               | $(42.4 \pm 0.9) \times 10^{-3}$               | $^{3}$ [47]                               | 1%                               | [48]             | < 1%             | 0[48]             |         |                  |                   |
| $ V_{cb} _{\text{excl}}$           | $(39.4 \pm 0.6) \times 10^{-3}$               | $^{3}$ [44]                               | 1%                               | [48]             | < 1%             | 6 [48]            |         |                  |                   |
| $\gamma$                           | $(70.1 \pm 7.1)^{\circ \dagger}$              | [49]                                      | 6%                               | [37]             | 1.5%             | $\left[37\right]$ | 1.3%[4  | 3]               |                   |
| $\phi_d^{\rm SM} = 2\beta$         | $(43.0^{+1.6}_{-1.4})^{\circ}$                | [50]                                      | $\sim 1^{\circ \ \ddagger} [5]$  | 1, 52]           |                  |                   |         |                  |                   |
| $\phi_s^{\rm SM} = -2\beta_s$      | $(0 \pm 4)^{\circ}$                           | [50]                                      | $1.4^{\circ}$                    | [43]             | $\sim 1^{\circ}$ | <sup>‡</sup> [53] |         |                  |                   |

#### Projections for the coming years

| Ob                                 | servable                                      |                                        | 2014                               |                      | 20                | )19     | 2024    | 2030             |
|------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------|----------------------|-------------------|---------|---------|------------------|
| $\mathcal{B}(K^+$                  | (17.3]                                        | $^{+11.5}_{-10.5}$ × 10 <sup>-11</sup> | [32]                               | 10%                  | % [33]            | 5% [34] |         |                  |
| $\mathcal{B}(K_{\mathrm{I}})$      | < 2.6                                         | $\times 10^{-8} (90\%)$                | CL)[35]                            |                      |                   | 5% [34] |         |                  |
| $\mathcal{B}(B^+)$                 | $\rightarrow K^+ \nu \bar{\nu})$              | < 1.3                                  | $\times \; 10^{-5} \; (90\%$       | CL)[36]              | 30%[37]           |         |         |                  |
| $\mathcal{B}(B^0_d)$               | $\to K^{*0} \nu \bar{\nu})$                   | < 5.5                                  | $\times \; 10^{-5} \; (90\%$       | CL)[38]              |                   |         | 35%[37] |                  |
| $\overline{\mathcal{B}}(B_s$       | $\rightarrow \mu^+ \mu^-)$                    | $(2.9 \pm$                             | $(0.7) \times 10^{-9}$             | [39-41]              | 15%[              | 42, 43] | 12%[42] | 10-12%[42,43]    |
| $\mathcal{B}(B_d$                  | $\rightarrow \mu^+ \mu^-)$                    | $(3.6^{+1}_{-1})$                      | $^{1.6}_{1.4}) \times 10^{-10}$ †  | [39-41]              | 66%               | % [42]  | 45%[42] | 18% [42]         |
| $\mathcal{B}(B_d \to \mu^+ \mu^-)$ | $\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)$ |                                        |                                    |                      | 71%               | 6 [42]  | 47%[42] | 21 - 35%[42, 43] |
|                                    | 2014                                          |                                        | 2019                               | 20                   | 24                | 2030    |         |                  |
| $F_{B_s}$                          | $(227.7 \pm 4.5) \text{ MeV}$                 | 7 [44]                                 | < 1% [45                           | <b>[</b> ]           |                   |         |         |                  |
| $F_{B_d}$                          | $(190.5 \pm 4.2) \text{ MeV}$                 | 7 [44]                                 | < 1% [45                           | <b>[</b> ]           |                   |         |         |                  |
| $F_{B_s}\sqrt{\hat{B}_{B_s}}$      | $(266 \pm 18) \text{ MeV}$                    | [44]                                   | 2.5% [45                           | [5] < 1%             | 6 [46]            |         |         |                  |
| $F_{B_d}\sqrt{\hat{B}_{B_d}}$      | $(216 \pm 15) \text{ MeV}$                    | [44]                                   | 2.5% [45                           | [5] < 1%             | 6[46]             |         |         |                  |
| $\hat{B}_K$                        | $0.766 \pm 0.010$                             | [44]                                   | < 1% [45                           | 5]                   |                   |         |         |                  |
| $ V_{ub} _{\text{incl}}$           | $(4.40 \pm 0.25) \times 10$                   | $^{-3}[44]$                            | 5% [37                             | 7] 3%                | [37]              |         |         |                  |
| $ V_{ub} _{ m excl}$               | $(3.42 \pm 0.31) \times 10$                   | $^{-3}[44]$                            | 12% <sup>††</sup> [37              | 7] 5% <sup>†</sup>   | † [37]            |         |         |                  |
| $ V_{cb} _{ m incl}$               | $(42.4 \pm 0.9) \times 10^{-1}$               | $^{3}$ [47]                            | 1% [48                             | [8] < 1%             | 0[48]             |         |         |                  |
| $ V_{cb} _{ m excl}$               | $(39.4 \pm 0.6) \times 10^{-1}$               | $^{3}$ [44]                            | 1% [48                             | [8] < 1%             | 6[48]             |         |         |                  |
| $\gamma$                           | $(70.1 \pm 7.1)^{\circ \dagger}$              | [49]                                   | 6% [37                             | [] 1.5%              |                   | 1.3%[4  | 3]      |                  |
| $\phi_d^{\rm SM} = 2\beta$         | $(43.0^{+1.6}_{-1.4})^{\circ}$                | [50]                                   | $\sim 1^{\circ \ddagger} [51, 52]$ | 2]                   |                   |         |         |                  |
| $\phi_s^{\rm SM} = -2\beta_s$      | $(0\pm4)^{\circ}$                             | [50]                                   | $  1.4^{\circ} [43]$               | $[3] \sim 1^{\circ}$ | $^{\ddagger}[53]$ |         |         |                  |

#### How far can we go with $\Delta F = 1$ measurements?

- Assume for now only LH (or only RH) couplings to quarks
- $\Delta F = 2$  alone would constrain only the ratio  $\Delta_{ij}/M_{Z'}...$
- $\Delta F = 1$  has a different mass/coupling dependence: we can constrain mass and couplings separately

$$C_{\Delta F=2} \propto \frac{\Delta_{ij}^2}{M_{Z'}^2} \qquad \qquad C_{\Delta F=1} \propto \frac{\Delta_{ij} \Delta_{\ell \bar{\ell}}}{M_{Z'}^2}$$

$$\implies C_{\Delta F=1} \propto \sqrt{C_{\Delta F=2}} \frac{\Delta_{\ell\bar{\ell}}}{M_{Z'}}$$

does not depend on the FC coupling

• If nothing is seen in  $\Delta F = 2$ , rare decays are more effective at low mass and small couplings...

How far can we go with rare B decays?



#### How far can we go with rare K decays?



#### Removing the $\Delta F = 2$ constraint by tuning

- Of course, you can complicate the model at will, and get rid of the  $\Delta F = 2$  bounds by tuning the parameters...
- If e.g. both LH and RH flavour-changing couplings are present:  $(M_{12}^*)^{ij} = \frac{1}{2M_{Z'}^2} \Big[ \big( (\Delta_L^{ij})^2 + (\Delta_L^{ij})^2 \big) \langle \hat{Q}_1^{VLL} \rangle^{ij} + 2\Delta_L^{ij} \Delta_R^{ij} \langle \hat{Q}_1^{LR} \rangle^{ij} \Big]$



• For the largest possible flavour violation, compatibly with perturbativity (all couplings = 3):

 $M_{Z'}^{\max}(K) \approx 2000 \text{ TeV}$  $M_{Z'}^{\max}(B_{s,d}) \approx 160 \text{ TeV}$ 

Buras, B, Girrbach, Knegjens '14

# 3. $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$ in the SM

- Two golden modes that will be precisely measured in this decade
- Theoretically very clean prediction of the BR's in the SM

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ (1 + \Delta_{\rm EM}) \cdot \left[ \left( \frac{{\rm Im}\lambda_t}{\lambda^5} X_t \right)^2 + \left( \frac{{\rm Re}\lambda_c}{\lambda} P_c + \frac{{\rm Re}\lambda_t}{\lambda^5} X_t \right)^2 \right]$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \cdot \left(\frac{\mathrm{Im}\lambda_t}{\lambda^5} X_t\right)^2,$$

- Present bounds:  $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$  $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{exp} \le 2.6 \cdot 10^{-8}$
- Precision of ~ 5% by 2025 (10% by 2020)

- Two golden modes that will be precisely measured in this decade
- Theoretically very clean prediction of the BR's in the SM

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ (1 + \Delta_{\rm EM}) \cdot \left[ \left( \frac{{\rm Im}\lambda_t}{\lambda^5} X_t \right)^2 + \left( \frac{{\rm Re}\lambda_c}{\lambda} P_c + \frac{{\rm Re}\lambda_t}{\lambda^5} X_t \right)^2 \right]$$

Hadronic parameters

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \cdot \left(\frac{\mathrm{Im}\lambda_t}{\lambda^5} X_t\right)^2,$$

• Present bounds:

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\text{exp}} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$$
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\text{exp}} \le 2.6 \cdot 10^{-8}$$

Precision of ~ 5% by 2025 (10% by 2020)

- Two golden modes that will be precisely measured in this decade
- Theoretically very clean prediction of the BR's in the SM

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ (1 + \Delta_{\rm EM}) \cdot \left[ \left( \frac{{\rm Im}\lambda_t}{\lambda^5} X_t \right)^2 + \left( \frac{{\rm Re}\lambda_c}{\lambda} P_c + \frac{{\rm Re}\lambda_t}{\lambda^5} X_t \right)^2 \right]$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \cdot \left(\frac{\mathrm{Im}\lambda_t \chi_t}{\lambda^5}\right)^2,$$

Hadronic parameters

**Top-quark contribution** known at NLO in the full SM

- Present bounds:  $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$  $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{exp} \le 2.6 \cdot 10^{-8}$
- Precision of ~ 5% by 2025 (10% by 2020)

- Two golden modes that will be precisely measured in this decade
- Theoretically very clean prediction of the BR's in the SM

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ (1 + \Delta_{\rm EM}) \cdot \left[ \left( \frac{{\rm Im}\lambda_t}{\lambda^5} X_t \right)^2 + \left( \frac{{\rm Re}\lambda_c}{\lambda} P_c + \frac{{\rm Re}\lambda_t}{\lambda^5} X_t \right)^2 \right]$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \cdot \left(\frac{\mathrm{Im}\lambda_t}{\lambda^5} X_t\right)^2,$$

- Present bounds:  $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$  $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{exp} \le 2.6 \cdot 10^{-8}$
- Precision of ~ 5% by 2025 (10% by 2020)

Hadronic parameters

**Top-quark contribution** known at NLO in the full SM

Charm-quark contribution known at NLO in the full SM

- Two golden modes that will be precisely measured in this decade
- Theoretically very clean prediction of the BR's in the SM

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ (1 + \Delta_{\rm EM}) \cdot \left[ \left( \frac{{\rm Im}\lambda_t}{\lambda^5} X_t \right)^2 + \left( \frac{{\rm Re}\lambda_c}{\lambda} P_c + \left( \frac{{\rm Re}\lambda_t}{\lambda^5} X_t \right)^2 \right]$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \cdot \left(\frac{\mathrm{Im}\lambda_t}{\lambda^5} X_t\right)^2,$$

- Present bounds:  $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$  $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{exp} \le 2.6 \cdot 10^{-8}$
- Precision of ~ 5% by 2025 (10% by 2020)

Hadronic parameters

**Top-quark contribution** known at NLO in the full SM

Charm-quark contribution known at NLO in the full SM

#### **CKM matrix elements**

$$\begin{split} \lambda_t &= V_{ts} V_{td}^*, \quad \lambda_c = V_{cs} V_{cd}^*, \\ \lambda &= V_{us} \end{split}$$

#### CKM matrix elements from tree-level decays

• Tree-level measurements can safely be assumed to be free of BSM physics effects. They determine the CKM matrix elements  $V_{ub}$ ,  $V_{cb}$ ,  $V_{us}$ , and  $\gamma$ :

$$V_{us} = 0.2252(9) \qquad \gamma = (73.2^{+6.3}_{-7.0})^{\circ}$$

- Discrepancy between inclusive and exclusive determinations  $|V_{ub}|_{incl} = (4.40 \pm 0.25) \times 10^{-3}, \qquad |V_{cb}|_{incl} = (42.21 \pm 0.78) \times 10^{-3}.$  $|V_{ub}|_{excl} = (3.72 \pm 0.14) \times 10^{-3}, \qquad |V_{cb}|_{excl} = (39.36 \pm 0.75) \times 10^{-3}.$
- The full CKM matrix is fixed once these parameters are known  $\operatorname{Re} \lambda_t = |V_{ub}| |V_{cb}| \cos \gamma (1 - 2\lambda^2) + (|V_{ub}|^2 - |V_{cb}|^2) \lambda \left(1 - \frac{\lambda^2}{2}\right) + \cdots$   $\operatorname{Im} \lambda_t = |V_{ub}| |V_{cb}| \sin \gamma + \cdots \qquad \operatorname{Re} \lambda_c = -\lambda \left(1 - \frac{\lambda^2}{2}\right) + \cdots$

#### CKM matrix elements from tree-level decays



 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ 

• The main uncertainy at present comes from the CKM matrix



#### CKM matrix elements from tree-level decays



• Using an average of the previous values one gets:

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.4 \pm 0.6) \times 10^{-11}$$

• The main uncertainy at present comes from the CKM matrix



#### CKM matrix from loop processes

• Performing a fit to the loop-level observables  $\varepsilon_K, \Delta M_s, \Delta M_d, S_{\psi K_S}$ a more precise determination of the CKM matrix is obtained (assuming that all those observables are SM-like)



 $|V_{ub}| = (3.61 \pm 0.14) \times 10^{-3},$  $|V_{cb}| = (42.4 \pm 1.2) \times 10^{-3},$  $\gamma = (69.5 \pm 5.0)^{\circ}.$ 

> using the projected lattice errors from 1412.5097:

$$|V_{cb}| = (42.0 \pm 0.9) \times 10^{-3},$$
  
 $\gamma = (70.8 \pm 2.3)^{\circ}.$ 

Buras, B, Girrbach, Knegjens

 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11}, \quad \mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.00 \pm 0.31) \times 10^{-11}$ 

#### Correlation between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

In all models that do not change the phase of  $X_t$  (e.g. in MFV)

$$B_{+} = B_{L} + \left[\frac{\operatorname{Re}\lambda_{t}}{\operatorname{Im}\lambda_{t}}\sqrt{B_{L}} - \left(1 - \frac{\lambda^{2}}{2}\right)P_{c}\operatorname{sgn}(X_{t})\right]$$









#### Correlation between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

In all models that do not change the phase of X<sub>t</sub> (e.g. in MFV)

$$B_{+} = B_{L} + \left[\frac{\operatorname{Re}\lambda_{t}}{\operatorname{Im}\lambda_{t}}\sqrt{B_{L}} - \left(1 - \frac{\lambda^{2}}{2}\right)P_{c}\operatorname{sgn}(X_{t})\right]$$



# Conclusions (part 2)

- Precision measurements of rare meson decays can be used to probe high energy scales, otherwise directly unaccessible.
- In a simple Z' toy model, K decays can probe scales as high as 100 TeV, while B decays can reach only 15 – 20 TeV. (scales of 2000 and 200 TeV are reached tuning the parameters)
- Lattice calculations of hadronic parameters are improving quickly. Many errors are already dominated by CKM uncertainties.
- $K \to \pi \nu \bar{\nu}$  decays will be measured very precisely: stay tuned!
- Precise SM predictions and several correlations among observables can be used to constrain BSM physics.

#### Electric dipole moment of the electron

- New bound:  $|d_e| < 8.7 \times 10^{-29} \, e \, {\rm cm}$
- One loop chargino-sneutrino contribution:

 $m_{\tilde{\nu}_1} > 17 \, \text{TeV} \times (\sin \phi_\mu \tan \beta)^{\frac{1}{2}}$ 

• Two loop Barr-Zee type contributions



#### Flavour effects in composite Higgs models

|                              | (b) | $U(3)^3_{ m LC}$ | $U(3)^3_{ m RC}$ | $U(2)^3_{\rm LC}$ | $U(2)^3_{ m RC}$ |
|------------------------------|-----|------------------|------------------|-------------------|------------------|
| $\epsilon_K, \Delta M_{d,s}$ | *   | 0                | *                | *                 | *                |
| $\Delta M_s / \Delta M_d$    | *   | 0                | 0                | 0                 | 0                |
| $\phi_{d,s}$                 | *   | 0                | 0                | *                 | 0                |
| $\phi_s - \phi_d$            | *   | 0                | 0                | 0                 | 0                |
| $C_{10}$                     | *   | 0                | 0                | *                 | 0                |
| $C_{10}^{\prime}$            | *   | 0                | 0                | 0                 | 0                |
| $pp \rightarrow jj$          | 0   | *                | *                | 0                 | 0                |
| $pp \rightarrow q'q'$        | *   | 0                | 0                | *                 | *                |

★ effect could show up in future measurements

#### Correlation with B -> $\mu\mu$



#### CKM fit: more plots



different fits

isolines of  $\boldsymbol{\gamma}$