Prospects of exotics searches at the LHC

LianTao Wang University of Chicago

Work in collaboration with Da Liu and Andrea Tesi

Planck 2017. May 27, Warsaw

Strongly coupled new physics and Precision measurements at the LHC

LianTao Wang University of Chicago

Work in collaboration with Da Liu and Andrea Tesi

Planck 2017. May 27, Warsaw

Status of new physics searches From gravity to the Higgs we're still waiting for new physics

Annual physics jamboree Rencontres de Moriond has a history of revealing exciting results from colliders, and this year new theories and evidence abound

Guardian

Status of BSM

- Is X (X≈SUSY) dead?
	- No. It can always be a little heavier.
	- Concrete. Still addresses a lot of questions.
	- Can't just abandon the lamppost. Should keep going with the "standard" searches.

Status of BSM

If you know of a better hole, go to it

John Ellis on SUSY.

I probably disagree with him on the exact location and size of the "better hole"

But I share the general sentiment.

Future of Large Hadron Collider

LHC schedule beyond LS1

- Will continue and improve in the next two decades
	- $E_{cm} = 13-14$ TeV.
	- 95+% more data. \triangleright

As data accumulates

2 TeV, e.g. pair of I TeV gluino. Run 1 limit

Rapid gain initial 10s fb⁻¹, slow improvements afterwards. Reached "slow" phase after Moriond 2017

LHC will press on to search for SUSY, extraD, composite… with slower progresses

Instead of just waiting…

Do more with (95+% more) LHC data.

On-going work. Rough estimates. Goal is to point out promising directions rather than making precise projection.

Pushing boundary

stronger coupling

> SUSY, KK modes, etc. covered by exp searches

> > Will continue.

larger mass

stone unturned

Pushing boundary

In the spirit of leaving no stone unturned

Shapes of signals

- Not rate limited, but small S/B, systematics…
- Strongly coupled heavy new physics

e.g. Liu, Pomarol, Rattazzi, Riva

Naive strong coupling

m > kinematical limit. Integrate out

Best channels are usually di-lepton, di-jet and so on. Well studied

For example, Farina, Panico, Pappadopulo, Ruderman, Torre, Wulzer

With more motivation:

- The question of electroweak symmetry breaking has hinted that there should be NP not too far away from the weak scale.
	- Naturalness, etc.
	- **■** Some of these need strong dynamics
- $-$ Final states with W/Z/h/top. "Precision measurement" For example, talks of Franceschini and Miro at this conference

Broad features with di-boson, tops etc.

- Closely related to electroweak symmetry breaking
- Difficult. More data can help a lot.

Operators. We consider the following bosonic operators in the following bosonic operators in the basis of $[$ 0**r** E ⇣ *H† ^a* !*D ^µH* ⌘ *^OHW* ⁼ *ig*(*D^µH*) *† ^a*(*D*⌫*H*)*W^a* $|U/O|$ *ig* 2 ⇣ *H† O^W* = *ig* \bullet

The dimension-six operators are defined as: $\frac{1}{2}$ operators are defined as: $\frac{1}{2}$

$$
\begin{pmatrix}\n\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^a, & \mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} \overleftrightarrow{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} \\
\mathcal{O}_{HW} = ig (D^{\mu} H)^{\dagger} \sigma^a (D^{\nu} H) W_{\mu\nu}^a, & \mathcal{O}_{HB} = ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\
\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W_{\mu}^{a\nu} W_{\nu\rho}^b W^{c\rho\mu}, & \mathcal{O}_T = \frac{g^2}{2} (H^{\dagger} \overleftrightarrow{D}^{\mu} H) (H^{\dagger} \overleftrightarrow{D}_{\mu}) H \\
\mathcal{O}_R^u = ig^2 \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \overline{u}_R \gamma^{\mu} u_R, & \mathcal{O}_R^d = ig^2 \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \overline{d}_R \gamma^{\mu} d_R \\
\mathcal{O}_L^q = ig^2 \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \overline{Q}_L \gamma^{\mu} Q_L, & \mathcal{O}_L^{(3)q} = ig^2 \left(H^{\dagger} \sigma^a \overleftrightarrow{D}_{\mu} H \right) \overline{Q}_L \sigma^a \gamma^{\mu} Q_L\n\end{pmatrix}
$$

$$
\begin{bmatrix}\ns\mathcal{O}_{TWW} = g^2 \mathcal{T}_{f}^{\mu\nu} W_{\mu\rho}^a W_{\nu}^{a\rho} & s\mathcal{O}_{TBB} = g'^2 \mathcal{T}_{f}^{\mu\nu} B_{\mu\rho} B_{\nu}^{\rho} \\
s\mathcal{O}_{TWB} = gg' \mathcal{T}_{f}^{a\mu\nu} W_{\mu\rho}^a B_{\nu}^{\rho}, & s\mathcal{O}_{TH} = g^2 \mathcal{T}_{f}^{\mu\nu} D_{\mu} H^{\dagger} D_{\nu} H \\
s\mathcal{O}_{TH}^{(3)} = g^2 \mathcal{T}_{f}^{a\mu\nu} D_{\mu} H^{\dagger} \sigma^a D_{\nu} H\n\end{bmatrix}\n\dim \mathbf{8}
$$

Precision measurement at the LHC possible?

LEP precision tests probe about 2 TeV

$$
\frac{\delta\sigma}{\sigma_{\rm SM}} \sim \frac{m_W^2}{\Lambda^2} \sim 2 \times 10^{-3}
$$

LHC has potential.

Both interference and energy growing behavior crucial

Helicity structure at LHC production.

 $f_L \bar{f}_R \rightarrow W^+ W^-$

$\lambda h_{W^+}, h_{W^-}$	SM	\prime_W	HW	H B	$^{\prime}B$	$^\prime 3W$	TWW
							E^\prime
U, U			E^2		$E^2\,$		$E^4\,$ m_W^2 Γ^{2}
U,	m_W \overline{E}	$E^2\,$ m_W ാ E	$E^2\,$ m_W ៱າ г.,	$E^2\,$ m_W E	E^2 m_W ر ۱ F_{\cdot}	$E^2\,$ m_W ιO E	$E^4\,$ m_W
	m_W^2 E^2	m_W^2	m_W^2			E^2 ^ 2	$E^4\;$ m_{W}^2 E^2

 $f_R \bar{f}_L \rightarrow W^+ W^-$

- Whether interference or not depends on polarization of WW. Polarization differentiation can be crucial. ios, where omit the the *g*² in front of the amplitudes. *E* can be thought as half of the partonic center of mass energy (i.e. the energy of single *W* boson.).
	- Need large SM piece to interfere with. Longitudinal (0,0) most promising.

Helicity structure at LHC production.

 $f_L \bar{f}_R \rightarrow W^+ W^-$

- Whether interference or not depends on polarization of WW. Polarization differentiation can be crucial. ios, where omit the the *g*² in front of the amplitudes. *E* can be thought as half of the partonic center of mass energy (i.e. the energy of single *W* boson.).
	- Need large SM piece to interfere with. Longitudinal (0,0) most promising.

Growing with energy

Observables.

- LEP precision EW, high energy non-resonant WW/Wh, and Higgs measurement all relevant. mass energy.
	- Sensitive to different combination of the operators. *WA W z W altreferii Compinal*
- $-$ O_{HW} and O_{HB} contribute to h \rightarrow Z γ . d O_{HB} contribute to $h\rightarrow Z\gamma$. Table 5: 95% limit on the dividend at LHC (*L* \sim 3 abit its and L_{ep}) and L_{ep}, we consider one operator on \sim
- $-$ LEP limit on O_T dominant. LHC probably can't improve. \blacksquare LEP limit on O_{T} doming

Sensitivity to tails. Ideal case.

O

"tail" parameterized by $\frac{C}{\sqrt{d}}$ $\Lambda \approx m_{\ast}$

 Λ^d $\sigma_{\rm SM} \propto$ 1 *Eⁿ* $\sigma_{\rm signal} \propto$ 1 *Eⁿ* ✓*E* Λ \setminus^d

n: 5-8 falling parton luminosity E: energy bin of the measurement

$$
\frac{S}{\sqrt{B}} \sim \sqrt{\frac{\mathcal{L}}{E^n}} \left(\frac{E}{\Lambda}\right)^d
$$

 $L =$ integrated luminosity

- For small d, lower E with higher reach. (e.g. dim 6, d=2)
	- Limited by systematics. Þ
- Interference important. Otherwise, signal proportional to (operator)², effect further suppressed by $(E/\Lambda)^d$.

The role of systematics

An example: \mathcal{O}_W LHC contribution same as \mathcal{O}_{HW}

$$
\frac{c_W \mathcal{O}_W}{\Lambda^2} = \frac{ig c_W}{2\Lambda^2} \left(H^{\dagger} \sigma^a \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^a
$$

LEP precision test:

$$
\mathcal{L}=-\tfrac{\tan\theta_W}{2}\hat{\mathcal{S}}\mathcal{W}^{(3)}_{\mu\nu}B^{\mu\nu}
$$

$$
\hat{S} = c_W \frac{m_W^2}{\Lambda^2} \Rightarrow \Lambda > 2.5 \,\mathrm{TeV} \, \mathrm{Q} \, 95\%, \qquad c_W = 1
$$

LHC: longitudinal mode $W^+_{L}W^-_{L}, W^{\pm}_{L}Z_{L}, W^{\pm}_{L}h, Z_{L}h: \frac{\delta\sigma}{\sigma_{SM}}\sim c_{W}\frac{E_c^2}{\Lambda^2}$

SM WW, WZ processes are dominated by transverse modes

 $\sigma_{SM}^{total}/\sigma_{SM}^{LL} \sim 15-50$ Polarization tagging of W/Z crucial

SM WW, WZ processes are dominated by transverse modes

 $\sigma_{SM}^{total}/\sigma_{SM}^{LL} \sim 15-50$ Polarization tagging of W/Z crucial

Wh/Zh(bb) channels have large reducible backgroundLHC @ 8 TeV : $\sigma_b^{\text{red}}/\sigma_{\text{SM}}^{\text{Wh}} \sim 200 - 10$

SM WW, WZ processes are dominated by transverse modes

 $\sigma_{SM}^{total}/\sigma_{SM}^{LL} \sim 15-50$ Polarization tagging of W/Z crucial

Wh/Zh(bb) channels have large reducible background LHC @ 8 TeV : $\sigma_b^{\text{red}}/\sigma_{SM}^{\text{Wh}} \sim 200 - 10$

Difficult measurement. Large improvement needed. Much more data and 20 years can help! Instead of making projections based on current performance, we will give several targets (goals).

Limit projection

Crude parameterization of significance

$$
\frac{S^{h_1}}{\sqrt{B}} = \frac{\epsilon_{\text{sig}}[\epsilon_{h_1}(\mathcal{M}_{\text{sig}}^{h_1} + \mathcal{M}_{\text{SM}}^{h_1})^2 + \sum_{h \neq h_1} \epsilon_h (\mathcal{M}_{\text{sig}}^h + \mathcal{M}_{\text{SM}}^h)^2] \times \mathcal{L}}{\sqrt{[\epsilon_{h_1} \sigma_{\text{SM}}^{h_1} + \sum_{h \neq h_1} \epsilon_h \sigma_{\text{SM}}^h] \mathcal{L} + (\Delta \times n_{\text{SM}})^2}}
$$

 ϵ_{sig} signal efficiency or acceptance ε _h (mis)tag probability of polarization h Δ: systematical error

Wh channel

Wh channel

With assumptions about systematics and background.

WW, semileptonic channel

Bounds on \mathcal{O}_W at the LEP and the HL-LHC

 $L = 3 \text{ ah}^{-1}$

The selection efficiency $\epsilon = 10\%$ for semi-leptonic channels The selection efficiency $\epsilon = 50\%$ for fully leptonic channels

$$
(\epsilon_{LL} = 1.0 \& \& \epsilon_{TT} = 0, \epsilon_{LL} = 0.5 \& \& \epsilon_{TT} = 0.05, \epsilon_{LL} = 0.5 \& \& \epsilon_{TT} = 0.1)
$$

reducible background is (0, 3,10) times irreducible background

LHC benchmarks **E**

Table 5: 95% limit on ⇤ for di↵erent channels at LHC (*L* = 3 ab¹) and LEP, we consider one operator once with its Wildow Coeciest settled to 1. The bound are obtained by the bin 1 TeV - 1 TeV - 1 TeV without the bin 1 TeV with tagging eff 50%, mis-tagging rate 10%, no systematics ideal case, perfect pol tagging, no systematics reducible bkg 0, 3, 10 times of the irreducible rate interference effect not important.

⇤[TeV] *^OTWW ^OTWB ^OT H ^O*(3)

- Can beat LEP precision if some of these benchmarks can be reached. *Can beat LEP precision if some of these ber* $\frac{1}{2}$ *W±h*(` + `⌫`⌫) 0.67

Compare with direct searches

Shaded areas: current bounds

Most optimistic case can be competitive with direct narrow resonance searches.

More importantly, the resonance may be broad, not covered by direct searches.

Dimension-8

- Less sensitive. But can be leading effect in certain NP scenarios.
- Gives rise to unique signals.
	- \triangleright ZZ, $\gamma\gamma$, hh.
- Can interfere with the SM in some cases where dim-6 do not.
	- \triangleright e.g. $W_T W_T$. SM rate about 10 times $W_L W_L$.
	- Dim-6 interference with SM suppressed. Dim-8 Þ interfere with SM. Equally important.

Conclusion

- LHC is pursuing a comprehensive program which covers the ground pretty well. After Moriond 2017 slow gain with lumi.
- Long term prospect at LHC: focusing on broad features. Di-boson, ttbar, etc.
- Non-resonant, broad features. Difficult. But a lot data can make a significant difference here!
- Even without a discovery, this can have lasting impact on future directions (similar to LEP electroweak program).

$$
\mathcal{M}_f^{00} \to -\frac{\sin\theta}{2} \left\{ T_f^3 g^2 + Y_f g'^2 + \frac{s}{\Lambda^2} \left[(c_W + c_{HW}) T_f^3 g^2 + (c_B + c_{HB}) Y_f g'^2 \right] \right\} - c_{TH} \frac{g^2}{16} \frac{s^2}{\Lambda^4} \sin 2\theta - g^2 \sin\theta \frac{s}{\Lambda^2} \left[\delta_f^{u_R} c_R^u + \delta_f^{d_R} c_R^d + \delta_f^{u_L} (c_L^q + c_L^{(3)q}) + + \delta_f^{d_L} (c_L^q - c_L^{(3)q}) \right]
$$

obstruction to longitudinal WW: large irreducible bkg

largest irreducible TT background at large energies