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•  Introduction

•  Much has been said about the effect of new physics,     on the inflationary predictions.  

• The effect is usually claimed to be subdominant and dependent on          
   where H is the Hubble parameter during inflation,             and  
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•  In some cases, it was shown the effect in the power spectrum can be quite 
   large. Martin & Brandenberger (2003)

In particular, motivated by some condensed-matter studies, they assumed 
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•  Introduction
•  At the time, backreaction was assumed to constrain the excited states considerably. 

Tanaka (2001)

• Solving the mode equation numerically from WKB positive freq. mode 

z ⌘ 3�0

↵2
0

C↵� = PS/PB.D. � 1

The correction to the power spectrum in this model 
could be quite large! 

•  Later it was shown that the  backreaction effect is not that constraining

Greene, Shiu, Schalm & van der Schaar (2004)

M is the scale of new physics when the modes get excited.

Marozzi & Joras (2008)
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•  Outline

• Cosmological Perturbation Theory & Highly Excited Initial State  
   

•  Modified Dispersion Relation from the Effective Field Theory of Inflation (EFToI)  
   

•  Estimation of Bogoliubov coefficients

•  Conclusion & Plans for Future Work



• The equation for gauge-invariant scalar perturbations

• In a quasi-de-Sitter background

the most generic solution to the E.O.M. in the leading order in slow-roll 
parameters

where the Bogoliubov coefficients satisfy the Wronskian condition
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model that can account for the quadrupole term in (2),
and computed the e↵ects such modification of the power
spectrum would have on the CMBR (3). Various other
models, most containing gauge fields during [5], or af-
ter inflation [6], have been suggested as the origin of the
quadrupolar term in the primordial power spectrum. Ko-
matsu and Kim [7] tried to constrain B using the Planck
2013 data [8] and found no evidence for this violation
of rotational symmetry. After the removal of the beam
asymmetry e↵ect in the Planck 143 GHz map, they found

� 0.03 < B < 0.033 (95% C.L.) . (4)

The Planck collaboration put model-dependent con-
straints on B from their 2013 data [8] in the con-
text of di↵erent anisotropic inflationary models (see [5]
for a handful of these models) exploiting the e↵ects of
the quadrupole term on the three-point function. The
strongest of such constraints is

� 0.05 < B < 0.05 (95% C.L.). . (5)

Kamionkowski and Pullen [9] claim that Planck can cde-
tect the quadrupole power as small as 2%. In this work,
we shall also obtain a crude bound on the parameter B
analytically from the lack of violation of statistical cosmic
isotropy at high l’s, which we find in agreement with (4)
from [7]. The way this bound is obtained implies that we
could obtain a better estimate of the parameter B from
improved data at higher l’s.

The main aim of this work is to show that an
anisotropic power spectrum could arise in a rotationally
invariant inflationary background from the excited initial
states that break the isotropy. We will first constrain
these excited initial states by requiring that the coe�-
cient A of the dipole term be imaginary or zero, and the
coe�cient B of the quadrupole term be consistent with
available data. We shall then investigate the signature of
these excited states on the bispectrum. The amplitude of
the local non-gaussianity gets generally enhanced in the
presence of excited states. However, with an anisotropic
power spectrum, the amplitude of f

NL

will also depend
on the angles the modes make with the preferred direc-
tion. For positive B, in a triangular configuration, when
the short wavelength modes are parallel (or antiparallel)
to the preferred direction, we will get the largest incre-
ment to the amplitude of f local

NL

. On the other hand, if
the long wavelength mode is (anti)parallel to the pre-
ferred direction, we will get the maximal reduction from
the mean value for the f local

NL

(the situation is reversed if
the parameter B is negative).

The structure of the paper is as follows. In Section II,
we review how multipole terms in the scalar spectrum of
primordial fluctuations could be generated by excited ini-
tial states that break rotational symmetry and how the
absence of the dipole term with a real coe�cient con-
strains these excited states. We then compute the e↵ect
of the quadrupole term on the temperature anisotropy of
the CMBR in Section III. In particular, we find an an-
alytic bound on the parameter B, which quantifies the

amount of violation of the rotational invariance, compa-
rable with the bounds obtained using the Fisher Matrix
methods. In Section IV, we obtain the bispectrum in
this scenario. As expected, the local configuration is en-
hanced for such excited initial states with an amplitude
which is within the 1� bound of the Planck data. In ad-
dition, one finds a modulation that depends on the angles
the modes make with the preferred direction.

II. ROTATIONAL SYMMETRY BREAKING
EXCITED INITIAL STATES

The predictions of inflationary models for the CMBR
spectrum depend on the initial state of the quantum per-
turbations as well as the specific details of the model.
The standard lore is that these perturbations embarks
upon the Bunch-Davis (BD) vacuum [10], and are there-
fore minimum energy states at the time they pop out of
vacuum inside the horizon of an inflationary background.
However, various e↵ects of physics at energy scales higher
than the that of inflation [11], or multi-field e↵ects [12],
could have excited these fluctuations to a state above
the Bunch-Davies vacuum [13]. In a previous work, we
showed that by assuming initial conditions other than the
BD vacuum both for scalar and tensor perturbation, one
can decrease the tensor-to-scalar ratio in a high-energy
scale chaotic models like m2�2 [14] and make it compat-
ible with the latest Planck data [1, 8]. We also showed
how one can induce a large amount of running in the
scalar spectral index or blue tensor spectral index using
scale-dependent initial condition [15].
Gauge-invariant scalar perturbations satisfy
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where uk(⌧) is the spatial Fourier mode of the Mukhanov-
Sasaki variable [13]
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and a prime denotes derivative with respect to the con-
formal time ⌧ . For a quasi-de-Sitter background

a(⌧) ' � 1

H⌧
, (8)

where H is the Hubble constant, the most general solu-
tion is given by
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where H(1)

3/2 andH
(2)

3/2 are respectively Hankel functions of
the first and second kind, which behave like the positive
and negative frequency modes in the infinite past. The
Bogoliubov coe�cients satisfy the Wronskian constraint,
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•  Cosmological Perturbations and Excited Initial States
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Derailing can be avoided if 

The second equation, which is the stronger one, can be written as

• As a specific example, let us consider the crude model in which the modes  
     get excited when k/a(⌧) = M

•    Cosmological Perturbations and Excited Initial States

3

and the standard BD vacuum is obtained when ↵⇤
~k
= 1

and �⇤
~k
= 0. We allow these coe�cient to depend on the

direction of the excited momenta, with a form that will
depend on the excitation mechanism. For example, if the
inflaton is coupled to a vector field, it is conceivable that
these coe�cients depend on the direction of momenta.

For a generic initial state, the energy and pressure den-
sity carried by the fluctuations are of the same order,
�p

non-BD

⇠ �⇢
non-BD

, and should remain subdominant
with respect to the inflaton total energy. Their variations
with time should also not hinder the slow-roll condition.
Noting that �⇢0

non-BD

⇠ �p0
non-BD

⇠ H �⇢
non-BD

in the
leading slow-roll approximation, the latter requirement
is satisfied if
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and the strongest of the above two constraints may be
written in terms of �k as
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We will assume that all scales of interest are uniformly
excited to an initial state with the second Bogolibubov
coe�cient,

�~k = �
0

(k̂) , (14)

once their physical momenta become smaller than the
scale M of new physics, that is k/a(⌧) . M . Inevitably,
modes which remain above this threshold do not get ex-
cited. The choice (14) does not lead to any extra k-
dependence in the power spectrum and does not change
the spectral index. Moreover, since we have
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As discussed in [14] and will be reviewed briefly be-
low, this does not mean |�

0

(k̂)| is necessarily very small.
Larger values of |�

0

(k̂)| can in fact be compensated by a
smaller Hubble parameter H in order to match the nor-
malization of density perturbations with the data.

The scalar power spectrum,
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now turns out to be a modulation of the BD spectrum,
that is

PS = P
BD
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We note in particular that the power spectrum (like the
bi-spectrum) only depends on the relative phase of ↵⇤

~k
and �⇤

~k
. Hence, it is convenient to parameterise
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S sinh�S , (20)

so that �S ' sinh�1 �
0

(k̂) and e�2�
S  �S  e2�S . As

was shown in [14], in the regime where the deviation from
the BD vacuum is large, �S � 1, in order to have maxi-
mal separation between the scale M of new physics and
the inflationary Hubble parameter H, one is confined to
'S ' ⇡/2 and the Bogolubov coe�cients are purely imag-
inary 3.

Let us now assume that the pre-inflationary phase or
the e↵ect of new physics above the energy scale of infla-
tion singles out one direction n̂. The most general form
of (14) up to second order in k̂ · n̂ ⌘ cos ~k ⌘ c

ˆk is then
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where "i ⌧ 1 and �i ⌧ 1, with i = 1, 2. Terms pro-
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, respectively, represent the
leading order parity odd and even terms in the prefac-
tor and the phase of the second Bogoliubov coe�cient.
From the Wronskian constraint (10), one can then obtain
the norm of the first Bogoliubov coe�cient. We will fol-
low the parameterization of [14], with the origin at the
average point of the phases of ↵⇤
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where ellipses in the brackets proportional to c3
ˆk
represent

cubic order terms in "i and �i, and ellipses in the last line
represent terms proportional to quartic and higher orders

3 For the inflaton potential m2 �2, �S � 1 yields M ' 21H.
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direction of the excited momenta, with a form that will
depend on the excitation mechanism. For example, if the
inflaton is coupled to a vector field, it is conceivable that
these coe�cients depend on the direction of momenta.
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once their physical momenta become smaller than the
scale M of new physics, that is k/a(⌧) . M . Inevitably,
modes which remain above this threshold do not get ex-
cited. The choice (14) does not lead to any extra k-
dependence in the power spectrum and does not change
the spectral index. Moreover, since we have
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As discussed in [14] and will be reviewed briefly be-
low, this does not mean |�
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Larger values of |�
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(k̂)| can in fact be compensated by a
smaller Hubble parameter H in order to match the nor-
malization of density perturbations with the data.
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now turns out to be a modulation of the BD spectrum,
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We note in particular that the power spectrum (like the
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mal separation between the scale M of new physics and
the inflationary Hubble parameter H, one is confined to
'S ' ⇡/2 and the Bogolubov coe�cients are purely imag-
inary 3.

Let us now assume that the pre-inflationary phase or
the e↵ect of new physics above the energy scale of infla-
tion singles out one direction n̂. The most general form
of (14) up to second order in k̂ · n̂ ⌘ cos ~k ⌘ c
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One can next obtain the factor �S from the relation (19),

�S = �
0000

+ c
ˆk ("1�1000 + �

1

�
0010

)

+c2
ˆk

�
"
2

�
0100

+ �
2

�
0001

+ "
1

�
1

�
1010

+ "2
1

�
2000

+�2
1

�
0020

�

+c3
ˆk
("

1

"
2

�
1100

+ "
1

�
2

�
1010

+ �
1

"
2

�
0101

+�
1

�
2

�
0011

+ . . .)

+ . . . , (23)

where ellipses in the brackets proportional to c3
ˆk
represent

cubic order terms in "i and �i, and ellipses in the last line
represent terms proportional to quartic and higher orders

3 For the inflaton potential m2 �2, �S � 1 yields M ' 21H.

• Any excited state contains massless quanta whose positive pressure can  
    tamper the slow-roll Inflation
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• Scalar power spectrum
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direction of the excited momenta, with a form that will
depend on the excitation mechanism. For example, if the
inflaton is coupled to a vector field, it is conceivable that
these coe�cients depend on the direction of momenta.

For a generic initial state, the energy and pressure den-
sity carried by the fluctuations are of the same order,
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where ellipses in the brackets proportional to c3
ˆk
represent

cubic order terms in "i and �i, and ellipses in the last line
represent terms proportional to quartic and higher orders

3 For the inflaton potential m2 �2, �S � 1 yields M ' 21H.

3

and the standard BD vacuum is obtained when ↵⇤
~k
= 1

and �⇤
~k
= 0. We allow these coe�cient to depend on the

direction of the excited momenta, with a form that will
depend on the excitation mechanism. For example, if the
inflaton is coupled to a vector field, it is conceivable that
these coe�cients depend on the direction of momenta.

For a generic initial state, the energy and pressure den-
sity carried by the fluctuations are of the same order,
�p

non-BD

⇠ �⇢
non-BD

, and should remain subdominant
with respect to the inflaton total energy. Their variations
with time should also not hinder the slow-roll condition.
Noting that �⇢0

non-BD

⇠ �p0
non-BD

⇠ H �⇢
non-BD

in the
leading slow-roll approximation, the latter requirement
is satisfied if
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non-BD

⌧ ✏ ⇢
0

�p0
non-BD

⌧ H ⌘ ✏ ⇢
0

, (11)

where the slow-roll coe�cients are

✏ ⌘ 1� H0
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⌧ 1 , ⌘ ⌘ ✏� ✏0

2H ✏
⌧ 1 , (12)

and the strongest of the above two constraints may be
written in terms of �k as

Z 1
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. (13)

We will assume that all scales of interest are uniformly
excited to an initial state with the second Bogolibubov
coe�cient,

�~k = �
0

(k̂) , (14)

once their physical momenta become smaller than the
scale M of new physics, that is k/a(⌧) . M . Inevitably,
modes which remain above this threshold do not get ex-
cited. The choice (14) does not lead to any extra k-
dependence in the power spectrum and does not change
the spectral index. Moreover, since we have
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⇠ �p0
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0

(k̂)|2M4 , (15)

one obtains the upper bound
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As discussed in [14] and will be reviewed briefly be-
low, this does not mean |�

0

(k̂)| is necessarily very small.
Larger values of |�

0

(k̂)| can in fact be compensated by a
smaller Hubble parameter H in order to match the nor-
malization of density perturbations with the data.

The scalar power spectrum,
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now turns out to be a modulation of the BD spectrum,
that is
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We note in particular that the power spectrum (like the
bi-spectrum) only depends on the relative phase of ↵⇤

~k
and �⇤

~k
. Hence, it is convenient to parameterise

↵S
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= ei'S cosh�S , �S

~k
= e�i'

S sinh�S , (20)

so that �S ' sinh�1 �
0

(k̂) and e�2�
S  �S  e2�S . As

was shown in [14], in the regime where the deviation from
the BD vacuum is large, �S � 1, in order to have maxi-
mal separation between the scale M of new physics and
the inflationary Hubble parameter H, one is confined to
'S ' ⇡/2 and the Bogolubov coe�cients are purely imag-
inary 3.

Let us now assume that the pre-inflationary phase or
the e↵ect of new physics above the energy scale of infla-
tion singles out one direction n̂. The most general form
of (14) up to second order in k̂ · n̂ ⌘ cos ~k ⌘ c

ˆk is then
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where "i ⌧ 1 and �i ⌧ 1, with i = 1, 2. Terms pro-
portional to "
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1

and "
2

, �
2

, respectively, represent the
leading order parity odd and even terms in the prefac-
tor and the phase of the second Bogoliubov coe�cient.
From the Wronskian constraint (10), one can then obtain
the norm of the first Bogoliubov coe�cient. We will fol-
low the parameterization of [14], with the origin at the
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where ellipses in the brackets proportional to c3
ˆk
represent

cubic order terms in "i and �i, and ellipses in the last line
represent terms proportional to quartic and higher orders

3 For the inflaton potential m2 �2, �S � 1 yields M ' 21H.
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where ellipses in the brackets proportional to c3
ˆk
represent

cubic order terms in "i and �i, and ellipses in the last line
represent terms proportional to quartic and higher orders

3 For the inflaton potential m2 �2, �S � 1 yields M ' 21H.

Using the Planck normalization for the amplitude of density perturbations:
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•    Cosmological Perturbations and Excited Initial States

• The same could be said about tensor perturbations:
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• Using the same type of parameterisation 



• Hemispherical Asymmetry by position-dependent excitations Ashoorioon & Koivisto (2015)

• Hemispherical Anomaly from Asymmetric Excited States 
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A ' 6� 7%
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1 + 2A(x̂ · n̂) +B(x̂ · n̂)2

�
A ' " & 0.07

B ' "2Quadrupolar modulation in position space proportional to 

fmax

NL

' f (0)

NL(1 + 2"+ 3"2) ⇡ 4.81 fmin
NL ' f (0)

NL(1� 2"+ 3"2) ⇡ 3.64

�fNL ' 1.17



Statistical Anisotropy from SO(3) non-invariant Excited 
States

�T (k̂) = �T
iso

(k̂)
h
1 +M(k̂)

i
.
Ashoorioon, Koivisto, Casadio (2016)

PS = P
iso

h
1 +M(k̂)

i
M(k̂) = A k̂ · n̂+B (k̂ · n̂)2 + C (k̂ · n̂)3 + . . . ,

dipole quadrupole Octupole
A, C, … (odd multipoles) have to be pure 
imaginary numbers

•  Kim & Komatsu (2013), doing data analysis on the Planck 2013 data 
�0.03 < B < 0.033 (95% C.L.)

• We use the following parameterization:

• In the             where            �S � 1 'S ' ⇡

2

B ' 2"2

• Now from the observation constraint on B, the following constraint is obtained on  "2
�0.015 < "2 < 0.0165 (95% C.L.)

remains indefinite in this regime from the constrains on the quadrupole moment. �2

A = 0 C = 0



• Statistical Anisotropy from SO(3) non-invariant Excited 
States

     corresponding to shortest scales probed by Planck and      corresponding to largest 
scale at which the cosmic variance is negligible,           . For             and 
~k1 ~k3

l ' 10

7

in the limit �S � 1 and 'S ' ⇡/2 for the validity of
the e↵ective field theory. Since c~ki

⌘ cos ~ki
= k̂i · n̂,

the amplitude of the bispectrum depends on the angles
that three di↵erent momenta make with the preferred
direction. One should also note that, in the same limit,
both the power spectrum and bispectrum do not depend
on �

2

.
The f0

NL

, which gives the dominant contribution to the
bispectrum, is however independent of the the angles.
We take the largest scale at which the cosmic variance
is negligible to correspond to l = 10 and the smallest
one to be the largest l probed by the Planck experiment,
l ' 2500. If one assumed that a large model of inflation
like m2�2 is made consistent with the lack of B-mode
observation, choosing the proper initial condition for the
tensor perturbations [14], so that ✏ ' 0.01 is allowed, one
would obtain

f0

NL

' 4.17. . (66)

This is still within the 2� bound for local non-gaussianity
in the Planck 2015 data [21].

On the other hand, we could assume that tensor per-
turbations originate from the same excited initial states
as the scalar perturbations and use the unmodified con-
sistency relation, r = 16 ✏, and the current bound on the
tensor-to-scalar ratio, r < 0.11 (95% C.L.), to constrain
✏. We would then find the angle-independent part of the
non-gaussianity is

f0

NL

' 2.86 . (67)

At higher orders, the excited parity-violating initial
condition induces a directional dependence in the bis-
pectrum at the first order correction. Of course, the an-
gles  ~ki

’s are not independent. Let us first focus on the
general case in which the preferred direction is not neces-
sarily coplanar with the triangular configuration. Since
k
1

= k
2

and k
3

⌧ k
1

, the vectors ~k
1

and ~k
2

are almost
anti-collinear and thus

 ~k2
⇡  ~k1

+ ⇡ . (68)

The angles  ~ki
can vary in the interval

✓ .  ~ki
. ⇡ � ✓ , (69)

where ✓ is the acute angle the preferred direction makes
with the plane of the triangle. Using simple geometry, it
can be shown that in the limit k

3

⌧ k
1

,

cos2  ~k1
+ cos2  ~k3

' cos2 ✓ . (70)

Using this relation and (69), one obtains
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4 cos2  ~k1
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. (71)

For a given ✓, the maximum enhancement with respect
to the first order result, f0

NL

, is given when  ~k1
= ✓. The
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FIG. 1. The setup when the preferred direction, n̂, makes an
angle of ✓ with the plane of the triangular configuration.

minimum of f
NL

would occur for a local configuration
that has  ~k1

= ⇡/2. This variation between the mini-
mum and maximum obviously enhances for the local con-
figuration that is coplanar with the preferred direction
n̂. The maximum and minimum for the largest positive
"
2

allowed from the data, Eq. (32), and an inflationary
model with ✏ ' 0.01 are respectively

fmax

NL

' 4.3 (72)

and

fmin

NL

' 4.03 . (73)

The maximum would occur when the largest wavenum-
bers are parallel (or antiparallel) to n̂. The minimum
would occur when the small wavenumber is parallel (or
antiparallel) to the preferred direction. The di↵erence
between the values of non-gaussianity for these two con-
figurations is�f

NL

' 0.27 which can be used to constrain
the model. For the maximum value of ✏, one would obtain
from the unmodified consistency relation, the maximum
and minimum values are fmax

NL

' 2.96 and fmin

NL

' 2.78.
The non-gaussianity parameter, f

NL

takes intermediate
values between fmin

NL

and fmax

NL

depending on the angle the
largest wavenumber makes with the preferred direction.
Above, we used the approximation k

3

⌧ k
1

. One can
compute the corrections due to the finiteness of g ⌘ k

3

/~k
1

and notice that the relative corrections are of order g2.
For g ' 4⇥ 10�3, the relative change in non-gaussianity
will be O(10�6). The absolute change in the values of
non-gaussianity with respect to the previous case will be
a minute " ✏ g = O(10�6).

Phenomenology of models that predict a non-trivial
structure in the bispectrum, which depends on the angle
between the short and long modes has been studied [? ].
In our case, the modulation of the bispectrum in terms of
the polar angles, that the modes makes with the preferred
direction, can be used to distinguish this scenario. For
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minimum of f
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would occur for a local configuration
that has  ~k1

= ⇡/2. This variation between the mini-
mum and maximum obviously enhances for the local con-
figuration that is coplanar with the preferred direction
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model with ✏ ' 0.01 are respectively

fmax

NL

' 4.3 (72)

and

fmin

NL

' 4.03 . (73)

The maximum would occur when the largest wavenum-
bers are parallel (or antiparallel) to n̂. The minimum
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non-gaussianity with respect to the previous case will be
a minute " ✏ g = O(10�6).

Phenomenology of models that predict a non-trivial
structure in the bispectrum, which depends on the angle
between the short and long modes has been studied [? ].
In our case, the modulation of the bispectrum in terms of
the polar angles, that the modes makes with the preferred
direction, can be used to distinguish this scenario. For

�fNL ' 0.27

✏ ' 0.01

n̂
n̂

n̂

"2 ' 0.0165

~k3

~k1~k2

~k3

~k1 ~k2

~k1

~k2
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Dispersion Relation from the Effective Field Theory of Inflation (EFToI) 

• In “unitary gauge” where the inflaton fluct. are eaten by the perturbation of  
  the metric, the time diffeomorphism is broken. 

• In this gauge, the most general action that respects the remaining spatial 
diffeomorphism is   

• The time-diffeomorphism which is non-linearly realized can be restored using 
the Stueckelberg procedure

t ! t+ ⇠

0(xµ)
⇠

0(xµ) ! �⇡(xµ)
then we demand that under

t ! t+ ⇠

0(xµ)

⇡ ! ⇡ � ⇠0



Dispersion Relation from the Effective Field Theory of Inflation (EFToI) 

�Kij � (@i@j⇡ + @ig0j), u00 + (�0k
2+↵0k

4⌧2+�0k
6⌧4� 2

⌧2
)u = 0

u = a⇡

In fact implementing the stueckelberg mechanism to the spatially invariant action, yields 

   As expected terms proportional to         appears. k6⇡2

  However terms proportional to     appears too which leads to Ostrogradski  ghosts. ⇡̈



 Also there will be correction of the dispersion relation from the      at high momenta   
from the presence of          and            

k6

k4⇡̇2 k2⇡̇2

�1 = �2 = �4 = 0

  With           , we can achieve our desired scenario where �3 > 0

�0 > 0, ↵0 < 0 �0 > 0and 

          and respectively the speed of sound could be always set to one by a 
reparameterization  
�0

d⌧ ! csd⌧

Dispersion Relation from the Effective Field Theory of Inflation (EFToI) 

 We also assume that the dispersion relation never becomes tachyonic on sub-Hubble 
scales

z ⌘ �0

↵2
0

� 1

4

 We also assume there is one horizon-crossing event corresponding to  !2(k) = 2H2

 For          , there is only one turning point automatically.  z >
1

3

1

4
 z  1

3
 For 



• Estimation of Bogoliubov coefficients

 Sixth Order Polynomial with an intermediate negative group velocity 

In terms of 
x ⌘ k⌧

Let us estimate the number density of particles 

↵0x
4
1 � �0x

2
1 = 1� 2

x

2
1

In region I: 

In region II: 



• Estimation of Bogoliubov coefficients

 Sixth Order Polynomial with an intermediate negative group velocity 

For ↵0 = 0.2



• Estimation of Bogoliubov coefficients
 Sixth Order Polynomial with an intermediate negative group velocity 

u

00
k +

✓
�0x

4 � ↵0x
2 + 1� 2

x

2

◆
uk = 0 .

Introducing the variable 
x ⌘ k⌘

The positive frequency WKB mode in infinite past as the initial condition

one can integrate the mode equation for specific values of      and     . ↵0 �0

Largest enhancement in the power spectrum is obtained for              and  ↵0 ' 0.2 �0 ' ↵2
0

4

PS = �SPB.D. where for these values of parameters �S ' 14.738

In order to determine the corresponding excited state we proceed as follows: 
Mathematica can find an implicit solution for the e.o.m.

uk(x) = c1u
(1)
k (x) + c2u

(2)
k (x) c1c̄2 � c2c̄1 = i.

u(i)
k (1) = 1 u(i)0

k (1) = 1and



• Estimation of Bogoliubov coefficients

 Sixth Order Polynomial with an intermediate negative group velocity 

c1c̄2 � c2c̄1 = i. c1 =
1p
2a

and c2 = �i
ap
2

where a 2 R

There will be four solutions where, two by two, they are negative of the other ones. 

We look for a solution uX
k (⌘) =

p
�⇡⌘

2

h
↵kH

(1)
3/2(�k⌘) + �kH

(2)(�k⌘)
3/2

i

a   is determined such that the power spectrum from          is the same as the numerical 
result. 

uk(⌘)

that produces such 

value for power spectrum, it is continuous at an earlier point and it’s derivative is also 
continuous at that point. From all 4 solutions for   , only has such a characteristic that  

         and           reconcile after the point of integration. 
a

uk(⌘) uX
k (⌘)



• Estimation of Bogoliubov coefficients

1 2 3 4
x

0.05

0.10

0.15

0.20

Re[uk]

Re[ukexcited]
Re[ukexact]

1 2 3 4
x

-40

-20

20

Im[uk]

Im[ukexcited]
Im[ukexact]

�(x
cross

) = �1.88359� 8.7681 i

↵(x
cross

) = 1.95519� 8.80935 i

Nk ⌘ |�k|2 = 80.4275

 Sixth Order Polynomial with an intermediate negative group velocity 



• Conclusion
• Not always true that the effect of evolution of the modes when they have high 

momenta is sub-dominant.

• If there is modified dispersion relation with an interim phase with negative group    
velocity, the corrections to the power spectrum could be quite large.  

• If perturbations start from such super-excited states,  M . few ⇥ 10H

• I also showed how one can realize these dispersion relations in the EFToI.

• I provided a method to Bogoliubov coefficients such that they lead to the exact     
estimate of the power spectrum. 

• With the help of dispersion relation                                   excited  states with              
were built.

!2 = k2 � ↵0k
4 + �0k

6 |�k| & 9



• Conclusion

• Generally, we will have enhancement of the non-gaussianity in the local shape for     
such super-excited states.

• Bispectrum in such modified dispersion relations is what we are investigating.

• Effect of               on tensor perturbations EOM is under investigation too. (rK)2

• The term proportional to                               leads to scale-dependent speed of sound. 
The effect on the spectrum and bispectrum with such a speed of sound is the other    
thing I am looking at.

rµ�K⌫µr⌫�K�
�



Thank you! 


