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" A
 Introduction

* Much has been said about the effect of new physics, A/ on the inflationary predictions.

* The effect is usually c/laimed to be subdominant and dependent on (E)

M
where H is the Hubble parameter during inflation,\/ > Hand n > 1

Easther, Greene, Kinney, Shiu (2001,2002)

Kempf, Niemeyer (2000, 2001)
Ashoorioon, Mann (2004, 2005)

Kaloper, Kleban, Lawrence, et. al. (2002)

* |n some cases, it was shown the effect in the power spectrum can be quite
large.

Martin & Brandenberger (2003)
In particular, motivated by some condensed-matter studies, they assumed
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" A
 Introduction

« At the time, backreaction was assumed to constrain the excited states considerably.

‘5’2 x A% <« 1 Tanaka (2001)

« Solving the mode equation numerically from WKB positive freq. mode
zr | | | | | | | | z=0l.775 ] 3/60
_ | Z

The correction to the power spectrum in this model

could be quite large!
Marozzi & Joras (2008)
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. Later it was shown that the backreaction effect is not that constraining

Greene, Shiu, Schalm & van der Schaar (2004)

7/ € HMP
Bl S ! M is the scale of new physics when the modes get excited.
M2
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" S
 Cosmological Perturbations and Excited Initial States

* The equation for gauge-invariant scalar perturbations

* In a quasi-de-Sitter background a(7r) ~ ——

the most generic solution to the E.O.M. in the leading order in slow-roll
parameters

— 7T
un(r) = Y5 (@ )y (—kr) + BEHLT), (k)

where the Bogoliubov coefficients satisfy the Wronskian condition
o[ — 181> = 1.

04;3 —1 and ,f =0 =g Bunch-Davies vacuum
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« Cosmological Perturbations and Excited Initial States

* Any excited state contains massless quanta whose positive pressure can
tamper the slow-roll Inflation

Derailing can be avoided if
0 Pnon-BD K € pg

5p;10n—BD <H 1€ Po

The second equation, which is the stronger one, can be written as

X Bk . ) )
5 WHBI\Z < 67}112.'1’1;]

As a specific example, let us consider the crude model in which the modes
get excited when k/a(r) = M

Be = Bo

Greene, Shiu, Schalm & van der Schaar (2004)

H Mp




« Cosmological Perturbations and Excited Initial States

. Scalar power spectrum Ashoorioon, Dimopoulos, Sheikh-Jabbari & Shiu (2013)
kS U |2
Py — 2|_k: Ps =PBD s
27T 2 lk/3H—0
1 H\* g P
Pep = 8m2e (Mpl) ’ Vs = lag — By |k='?-f‘

 Parameterization of the Parameter Space

S _ i S —ipg o
o = e'?s cosh 4 , pz=e ¥s sinh x4

Let us focuson V(¢) = %m2¢2

Using the Planck normalization for the amplitude of density perturbations:

1
~ 3.78 x 1075
M, Vs

that with the help of backreation condition, g5 < % yields

MZ
— <220 V5
H? sinh g
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« Cosmological Perturbations and Excited Initial States

U Quasi-BD region, y¢ < 1 and general ¢g:

« M can be arbitrary large

« H is very close to its Bunch-Davies value

Q0 Typical or large values of xyg, xs = 1:

° \/"y_s ~ eXSSin((pS) e M < 21H
_ Xs
* sSinhys = =2

2

_ - H<H
» generic values of ¢g BD

« Desirable value of M = 21 H is obtained if g =

B

« Very large values of xs (8) are phenomenologically allowed.

* The same could be said about tensor perturbations:

vV = HM,, HM
’U]:{t('T) — 27TT |: H§/>2< ) + 6 H?j)Q( )i| BO ~ \/e_nlwz 6 szl



« Cosmological Perturbations and Excited Initial States

2 (HY\ 2

_ pT = — _

Py = PBDVT PgD _ _2<_) vr=lar — Brlk=sc

T Mpl
2 . .
pT aT __ pT Violation of the
r= B = 16ye = —8yny y = YT _ | k — P | consistency relation
S

Ys oo - BT

» Using the same type of parameterisation «a! = cosh y; e'?T B = sinyre 1

* xrt can be either in the quasi-BD range or typical and large range.

e~ %Xs, xr <1
as long as the bounds
from backreaction
are respected
. =1, | D
]/ o~ ez(XT_XS)Slnz(pT’ XT. ’
typical @

e ~2(r+Xs) xr = 1,tangr S e 2XT
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* Hemispherical Anomaly from Asymmetric Excited States

» Hemispherical Asymmetry by position-dependent excitations Ashoorioon & Koivisto (2015)

AT(2) = ATiso(1 4+ 2A(2.7)) A~6—1T%

BS = sinh xs(1 4 e.n)e'¥s mmmm) Py = Py, (14 24(& - 1) + B(d - 1)?) A~e>0.07

Quadrupolar modulation in position space proportional to B ~ 2
Lk, <<l k, =l by 1=l Ky | Ly <l ke, Il Ky 1= Ky |
FASTIN 1k el iy

W o fUL (L4 2e + 36%) ~ 4.81 min ¢ O (] _ 9¢ 4 3:2) ~ 3.64
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Statistical Anisotropy from SO(3) non-invariant Excited
States Ashoorioon, Koivisto, Casadio (2016)

Ps = Piso [1 + M(l%)} M(k)= A

A, C, ... (odd multipoles) have to be pure

imaginary numbers
dipole quadrupole Octupole

 Kim & Komatsu (2013), doing data analysis on the Planck 2013 data

—0.03 < B < 0.033 (95% C.L.)
We use the following parameterization:

.30(11‘) = sinh (,\-'s + €9 ('f) c—iles+o2¢i)  ap(k) = cosh (.X‘s + €2 Ci) ei(es+oacy) k- = cos Vg = ¢
* Inthe xs > 1where ¥s= %
A=0 B ~ 2eq C =0
» Now from the observation constraint on B, the following constraint is obtained on £o

—0.015 < g9 < 0.0165 (95% C.L.)
do remains indefinite in this regime from the constrains on the quadrupole moment.
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e Statistical Anisotropy from SO(3) non-invariant Excited
States

1 corresponding to shortest scales probed by Planck and Egcorresponding to largest
scale at which the cosmic variance is negligible,! ~ 10 . For e¢~0.0land &2 ~ 0.0165

ks X
| n
n
1{InIeJLx ~ 4.3 ]ZQ T El
Ky ko
,’/;\I/ —
ks
| ky
min -
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Dispersion Relation from the Effective Field Theory of Inflation (EFTol)

* In “unitary gauge” where the inflaton fluct. are eaten by the perturbation of
the metric, the time diffeomorphism is broken.

* In this gauge, the most general action that respects the remaining spatial
diffeomorphism is

ﬂléi 00 9 *W22 2 “W:% v
Ln - ? (g = 1) - 9 (5Kup) o 9 5Kuu 0K 7
) 4] 0: N
—5 (VubK")(V#0Kor) — 5 (VuSK",)? = 2 (VubKY) (V40K ™)
04

- 7 VuéKyuvuéKg .

* The time-diffeomorphism which is non-linearly realized can be restored using
the Stueckelberg procedure

& (a") — —m(az") 0
t—t+ 0>k then we demand that under ¢ — ¢ + £°(z#)

7T—>7T—€O
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Dispersion Relation from the Effective Field Theory of Inflation (EFTol)

— aT
u a 9

5Ki; D (0:0;7 + 8;g0;), e+ (yok?+aok® T2+ Bok° 4—§)u =0

In fact implementing the stueckelberg mechanism to the spatially invariant action, yields

6.2 2142 4.2 41.2,..2 2122
cend) _ Ly (kn _BHA? | k42 24Hr? | 2HK _6H4ﬁ2_3H2ﬁ2)

n 2 ab at at a? a?
6.2 274, 2 ) 4129
—';‘52 (kag H ::471' B kair N 6Hal;: T 9H27'i’2)
1 k572  10H?2k*m?2  15H*k2m?
—563< a;r - g o+ 72 a —9H47'r2)
B 16 k62 B TH? k7?2 N HEk37? N 21 H* k27?2 B OH2k#? B 9H4 .9
274\ Tgb at 2a4 2a? a? A

¢ As expected terms proportional to k°x2 appears.

€ However terms proportional to 77 appears too which leads to Ostrogradski ghosts.
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Dispersion Relation from the Effective Field Theory of Inflation (EFTol)

# Also there will be correction of the dispersion relation from the £°at high momenta
from the presence of j4:2and j2:2

01 =09 =04 =0
& With d3 > 0, we can achieve our desired scenario where

Yo >0, ag <0 and By >0

€ 7o and respectively the speed of sound could be always set to one by a
reparameterization dr — c.dr

€ Ve also assume that the dispersion relation never becomes tachyonic on sub-Hubble
scales

>

LB
o3

>~ —

€ \We also assume there is one horizon-crossing event corresponding to w?(k) = 2H?

¢ For 2> % , there is only one turning point automatically.

9z — 2 — 2(1 — 32)3/2
<
- 5422
9z — 2+ 2(1 — 32)3/2
5422 '

e71]

® For - <:z<

1
3 or «p >
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» Estimation of Bogoliubov coefficients

® Sixth Order Polynomial with an intermediate negative group velocity

Interms of ©x = k7

2
u%—i—(ﬁow‘l—aoﬁ—i—l—?)uk:O

Let us estimate the number density of particles

—o0o < z S z1(ao, Bo) region I 4 2 _ 1 2
z1(ao, fo) <z <0 region II apry — Pory =1 — :C_%
_ 51/4
In region [: upi(z) = —2——-HeunT(e/,0, B, —F ) exp(—y)
E1/2 oz(l)/Q
In region lI: —TT
° wkn = 7 [€H)(—o) + p H)(—)|



» Estimation of Bogoliubov coefficients

® Sixth Order Polynomial with an intermediate negative group velocity
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* Estimation of Bogoliubov coefficients

® Sixth Order Polynomial with an intermediate negative group velocity

Introducing the variable = iy

2
uy + (60x4—a0x2+1—ﬁ> up = 0.

The positive frequency WKB mode in infinite past as the initial condition

1 /o — (1) \/570:173
2\/;\/—1,1_{% (— 3

one can integrate the mode equation for specific values of o, andfy .

2
Largest enhancement in the power spectrum is obtained for oy ~ 0.2 and g, ~ %

Ps = vsPp.p. where for these values of parameters 7s =~ 14.738

In order to determine the corresponding excited state we proceed as follows:
Mathematica can find an implicit solution for the e.o.m.

ug () = Clul(cl)(aj) + 02’“122)(%) C1C2 — C2C1 = 1.

Ulg)(l) =1 and 4\’ (1) =1
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* Estimation of Bogoliubov coefficients

® Sixth Order Polynomial with an intermediate negative group velocity

! d —— wh R
Co — —Q)——

C1Cy — CoCl = 1. ==¢; =

@ is determined such that the power spectrum from uk() is the same as the numerical
result.

There will be four solutions where, two by two, they are negative of the other ones.

We look for a solution X (,)) — ¥ _27”7 {akHé}é(—kn) n 5kH§3>2("“”)}that produces such

value for power spectrum, it is continuous at an earlier point and it’s derivative is also
continuous at that point. From all 4 solutions for ¢, only has such a characteristic that

ur(n) and uj, (n)reconcile after the point of integration.
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* Estimation of Bogoliubov coefficients

® Sixth Order Polynomial with an intermediate negative group velocity
Refud]

0.20F
045}

I Re[u kexcited]
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- |m[ u kexcited]
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X

20+

B(ZTeross) = —1.88359 — 8.7681 i
_ 2
Zeross) = 1.95519 — 8.80935 i — N = |Bk|® = 80.4275
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e Conclusion

* Not always true that the effect of evolution of the modes when they have high
momenta is sub-dominant.

* |f there is modified dispersion relation with an interim phase with negative group
velocity, the corrections to the power spectrum could be quite large.

| also showed how one can realize these dispersion relations in the EF Tol.

* | provided a method to Bogoliubov coefficients such that they lead to the exact
estimate of the power spectrum.

« With the help of dispersion relation w? = k% — agk® + 5ok° excited states with [5x| = 9
were built.

« If perturbations start from such super-excited states, 1/ < few x 10H
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e Conclusion

» Generally, we will have enhancement of the non-gaussianity in the local shape for
such super-excited states.

 Bispectrum in such modified dispersion relations is what we are investigating.

. Effect of (VK)? on tensor perturbations EOM is under investigation too.

e The term proportional to VﬂaKWV’/(SKJJIeads to scale-dependent speed of sound.
The effect on the spectrum and bispectrum with such a speed of sound is the other

thing | am looking at.
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