Higgs Dynamics During And After Inflation

Marco Zatta

University of Helsinki

Planck 2017 22-27.05.17

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Running of the Higgs self coupling

Main contribution at one loop

$$\frac{\mathrm{d}\lambda}{\mathrm{d}\mathrm{ln}\,\mu}\propto\alpha m_{H}^{4}-\beta m_{t}^{4}$$

 λ turns negative at $\sim 10^{10} {
m GeV!}$

The SM Higgs potential

Cosmological puzzles:

- What put the Higgs in the EW vacuum?
- Why it remained there during inflation?

Possible solutions

Introduce the couplings

Lebedev & Westphal, 1210.6987

Espinosa, Giudice, Riotto, 1210.6987

Can give a mass for the Higgs that makes it roll towards the origin

 $h \sim h(0)e^{-3Ht/2}$

Full potential for the Higgs

Both couplings are generated via loops:

• $\lambda_{h\phi}$ is implied by reheating

Gross, Lebedev, MZ, 1506.05106

• ξ is generated via graviton interaction

For $h \gg v$ the full Higgs potential takes the form

$$V = \lambda h^4 + \frac{1}{2}\xi Rh^2 + \frac{1}{2}\lambda_{h\phi}\phi^2 h^2 + \sigma\phi h^2$$

Preheating

After inflation the inflaton oscillates around its minimum

$$V(\phi) = \frac{1}{2}m^2\phi^2$$

$$\phi\simeq \Phi\cos mt \quad {\rm with} \quad \Phi\sim \Phi_0\,a^{-3/2}$$

Can lead to resonant production of Higgs particles

 $\langle h^2
angle \propto$ Number of Higgs quanta

Preheating with non-zero $\lambda_{h\phi}$ and ξ

Mathieu Equation: $X_k'' + (A_k + 2q\cos 4z) X_k = 0$ z = mt/2

with

$$A_k = \left(\frac{k}{ma}\right)^2 + 2\left(\lambda_{h\phi} + \xi m^2\right) \frac{\Phi^2}{m^2}$$
$$q = \left(\lambda_{h\phi} + 3\xi m^2\right) \frac{\Phi^2}{m^2}$$

Strength of the resonance:

- Angle of the line
- Speed of the crossing

Ema, Karciauskas, Lebedev, MZ, 1703.04681

Preheating with non-zero $\lambda_{h\phi}$ and ξ

When the mode k is in the white region its amplitude grows as

 $X_k \propto e^{\mu \Delta m t}$

$$A_0 = 2q \qquad \qquad A_0 = 3q$$

Ema, Karciauskas, Lebedev, MZ, 1703.04681

Marco Zatta Helsinki U.

Higgs Dynamics During And After Inflation

Evolution of $\langle h^2 \rangle$

$$\langle h^2
angle\simeq\int rac{d^3k}{(2\pi a)^3}|X_k|^2\longrightarrow$$
 induces a negative mass term $3\lambda\langle h^2
angle$

Enqvist, Karciauskas, Lebedev, Rusak, MZ, 1608.08848

Lattice results

Stable region obtained via classical lattice simulations

Ema, Karciauskas, Lebedev, MZ, 1703.04681

Adding the trilinear coupling σ

Eigenmodes evolve according to the Whittaker-Hill equation

$$X_k'' + (A_k + 2p\cos 2z + 2q\cos 4z) X_k = 0$$

where $p=2\,\sigma\,\Phi/m^2$

- Two different frequencies
- Higgs tachyonic during part of the oscillation

Without
$$\sigma h^2 \phi$$
 With $\sigma h^2 \phi$

Conclusions

The couplings ξ and $\lambda_{h\phi}$ can affect dramatically the Higgs dynamics

In particular they:

- can explain how the universe ended up in the EW vacuum
- are generated by quantum effects
- can destabilize the vacuum during preheating

THANK YOU

Example: right-handed neutrino

 $-\Delta \mathcal{L} = \lambda_{\nu} \phi \nu_R \nu_R + y_{\nu} h \bar{\nu}_L \nu_R + M \nu_R \nu_R + \text{h.c.}$

At one-loop

Need to add the counterterms

$$-\Delta \mathcal{L} \supset \lambda_{h\phi} h^2 \phi^2 + \sigma_{h\phi} h^2 \phi$$

Lattice results

Parameter space for stability up to the end of preheating:

Ema, Karciauskas, Lebedev, MZ, 1703.04681

Marco Zatta Helsinki U.

Higgs Dynamics During And After Inflation