
Andrzej Hryczuk

Planck 2017,  Warsaw,  25th May 2017

University of Oslo

A                IN THE STANDARD WAY OF 
CALCULATING RELIC DENSITY

based on work with:   
T. Binder, T. Bringmann and M. Gustafsson 

to appear soon

PIT FALL

* on leave from National Centre for 
Nuclear Research, Warsaw, Poland



THERMAL RELIC DENSITY  
STANDARD APPROACH
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time evolution of         in kinetic theory: 

freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling time

assumptions for using Boltzmann eq: classical limit, molecular chaos,...
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E (@t �H~p ·r~p) f� = C[f�]
dn�

dt
+ 3Hn� = C

the collision term integra
tedLiouville operator in 

FRW background

…for derivation from thermal QFT see M. Beneke, F. Dighera,  AH;   JHEP 1410 (2014) 45 



THERMAL RELIC DENSITY  
THE COLLISION TERM
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for               CP invariant process:

where the thermally averaged cross section:

2 $ 2

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)]

h���̄!ijvrelieq = �
h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄

assuming kinetic equilibrium at chemical decoupling:
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THERMAL RELIC DENSITY  
BOLTZMANN EQ.

Re-written for the comoving number density:

Recipe: 
compute annihilation cross-section, 
take a thermal bath average, 
throw it into BE… and voilà
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1. Co-annihilations, thresholds and poles

2. Bound State Formation

3. 3      2 and 4      2 annihilation

4. Semi-annihilation

5. Finite temperature effects

6. Non-standard cosmology

7. …

THERMAL RELIC DENSITY  
”EXCEPTIONS”

5

Many of these ”exceptions” appear for non-minimal scenarios and do have significant 
impact — but do not affect the foundations of modern calculations

recent e.g., Petraki at al. ’15, ’16;   An et al. ’15, ’16;   Cirelli et al. ’16; …

e.g., D’Agnolo, Ruderman ’15;   Cline at al. ’17;  Choi at al. ’17;  …

D’Eramo, Thaler ’10

Wizansky ’06;   Beneke, Dighera,  AH  ’14, ’16 

many works… very recent e.g., D’Eramo, Fernandez, Profumo ’17

Griest, Seckel ’91

see H. Min Lee talk



               IN A NUTSHELL
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freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling timeT

kinetic decoupling
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If KD happens before CD

)

what would be the 
relic density?

how to even 
compute that?

need for refined
treatment of solving
the Boltzmann eq.

PIT FALL

f� ⇠ a(µ)f eq
�assuming kinetic equilibrium at chemical decoupling:

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄
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WHAT ARE THE RELEVANT RATES?
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Around freeze-out, typically:

what if

Vector bosons:

vrel�VV =
�2
s

s
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�
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v
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h

(s)|2(1� 4x+ 12x2) , (13)

where x ⌘ M2
V
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p
1� 4x and �

W

= 1, �
Z

= 1
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f
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Xfv

3
f |Dh

(s)|2 , (14)

where vf =
p

1� 4m2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:
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where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:

Mel(t) =
X

f={q0s,e,µ,⌧}

m2
f
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4m2
f

� t

(t�m2
h
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(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)
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• can the kinetic equilibrium be still maintained?
• what can be the size of departure from      ?
• how does this impact                       and the DM density evolution?

instead?

f� ⇠ a(µ)f eq
�
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annihilationHubblescattering
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where the equilibrium number density in the nonrelativistic regime is neq
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With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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First consider only temperature evolution - i.e. leave out feedback on number density, and define:
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Particle DM and small-scale structure 6
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Figure 1. The left panel shows the phaseplot and solution for the WIMP temperature

evolution, for mχ ∼ 100 GeV and |M|
2

∼ g4
Y (mχ/ω)2, expressed in the dimensionless

variables introduced in Eqs. (8, 9). At T ! Tkd, any departure from thermal
equilibrium (Tχ = T ) is restored almost immediately (except for a short period around
the QCD phase transition); for T " Tkd, the WIMPs decouple from the thermal bath
and cool down with the Hubble expansion as Tχ ∝ a−2.

In the right panel, the effective number of relativistic degrees of freedom is plotted
as a function of the temperature, implementing the results of [25] for the evolution of
this quantity during the QCD phase transition; for reference, the decoupling of muons
and electrons is also indicated.

from this behaviour (except for a short period during the QCD transition, see below,

when the rapidly changing effective number of degrees of freedom does not allow this).

In principle, the scattering with all types of SM particles contributes to c(T ), see
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The full evolution of DM temperature and number density is governed by a coupled system of 
BEs for 0th and 2nd moments:

annihilation and production thermal averages done at 
different T — feedback of modified y evolution 

These equations still assume the equilibrium shape of         — but with variant temperaturef�(p)

elastic scatterings term impact of annihilation

see also talk by M. Duch 
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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1

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

Annihilation 
processes:

El. scattering 
processes:

resonant non-resonant

G
A
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄2

hS
-dependence of ‡

SI

and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄≠2

hS
, owing to its de-

pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].
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Gelmini&Gondolo
coupled BEs dof = Drees+

QCD = B
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Significant modification of the observed relic density contour in the Scalar Singlet DM model

essentially the 
only region left 
for this model

larger coupling needed          better chance for closing the last window

the contours 
converge for 
lower masses, 

when resonance 
is not relevant
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mass coupling

scatterings only on light q’s + leptons: scatterings on all q’s + leptons:

effect on relic density: 
up to O(~2)

above resonance

below resonance

RESULTS
% EFFECT

Why such non-trivial shape of the effect of early kinetic decoupling?         

Let’s inspect the y and Y evolution…
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mDM=62 GeV
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Resonant annihilation most effective for low momenta
             DM fluid goes through ”heating” phase before leaves kinetic equilibrium

kinetic 
equilibrium

coupled BEs

full phase-
space BE

for mDM = 62 GeV,   i.e. just below the resonance:
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Resonant annihilation most effective for high momenta
             DM fluid goes through fast ”cooling” phase

for mDM = 60 GeV,   i.e. further away from the resonance:

after that when TDM drops to much annihilation not effective anymore
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End (∆r=0.01), int = 2.29e−7

Equilibrium ∆r=0.1
int = 2.10e−7          

x=p/T

x2  f(
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)

End (∆r=0.1),  int = 2.11e−7

c
γ
 = 0  

c1 = 1, c2=0
End (∆r=0.001), int = 2.25e−7

Start (r0=20),  int = 2.24e−7

Figure 6: LEFT: Evolution, due to annihilation/creation, of the DM phase-
space distribution, f(r, x), from an initial distribution with two bumps (blue
line) at r = 20 to three later times r = 20.001, 20.01, 20.1 (red lines). The
equilibrium distribution at r = 20.1 from Eq. (8) is shown by the black line.
As displayed by the integrated number density (“int =

∫

x2f(r, x)dx”) the
comoving number density is not conserved when DM annihilation/creation
is present.

full-phase space setup however uses the non-relativistic f eq
n.r. (required

by our scattering term). Nevertheless, for the cγ = 0 setup, we can still
consistently use the relativistic f eq. Implementing f eq (temporarily)
reveals that exact agreement, to 3 digits, Ωh2 = 0.0809 is achieved.

In Fig. 7 we present the full phase space distribution (right panel) and
the integrated relic density Yχ derived from Eq. (24) (left panel). It is worth
to point out that this is already a deviation from the standard calculation
— as the phase space distribution differs from equilibrium during freeze-out.
Adding a scattering term would of course drive the momentum distribu-
tion towards the equilibrium distribution, as demonstrated in the previous
section, and for S-wave the f(x) distribution does not impact the relic abun-
dance result. I did not investigate if already this phase-space distribution
deviates from ∝ f eq

n.r.(rf.o., x), where rf.o. is some suitable freeze-out temper-
ature. Decreasing the initial time r0 < 20 did not change the phase space
result, showing that starting at r = 20 is sufficient also for the kinetic freeze-

12

In order to check the assumption of 
equilibrium shape, we developed a code 
numerically solving full phase-space BE

example of how it deals 
with local disturbances

The numerical approach based on 
discretization in momentum and solving 
system of coupled differential equations

Allows to study the evolution of        and
the interplay between scatterings and annihilation!

f�(p)
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1. One needs to remember that kinetic equilibrium is a 
necessary assumption for standard relic density calculations

2. Coupled system of Boltzmann equations for 0th and 2nd 
moments allow for a very accurate treatment of the kinetic 
decoupling and its effect on relic density

3. In special cases the full phase space Boltzmann equation can 
be necessary — especially if one wants to trace DM 
temperature as well


