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The Little Hierarchy Problem
If we would like to 

solve the naturalness 
problem all the way to 
the Planck scale, there 

are essentially two 
options: SUSY and 

compositeness. But we 
also know that the NP 

is almost 
unconstrained above 

~10 TeV scale
There is no guarantee that the world is 

absolutely natural. If it is — why no 
signatures at the EW scale? What is the 
nature of physics at 0.1…10 TeV scale?



Why Neutral Naturalness? 

Why are we some of us so sceptic about the NP at the EW scale?
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colored
top

partnersNaturalness

Neutral Naturalness — top partners are 
uncolored. If realized — candidate to 
solve the little hierarchy problem. NN 

also cannot really help with the big 
hierarchy problem — UV completion is 

needed 



The Twin Higgs Overview 
Chacko, Goh, Harnik; 2006

Higgs is a pGB of a global SU(4) [ often enhanced to SO(8)], 
spontaneously broken down to SU(3). This approximate symmetry is 

protected by a more fundamental one:

Cancellation of top 
divergencies:

Z2 yt yt

−ŷt
f

ŷtf

h h h h
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EW gauge boson contribution cancels out similarly. 
Leading order: only mirror symmetry is needed to  maintain the 

cancellation. Miracle: 1-loop level respects the approximate global 
symmetry



Higgs Potential of the Twin Higgs

Break the approximate SU(4) at scale f ≫ v:
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SU(4) symmetric

Mirror symmetric, not not 
SU(4) symmetric

Mirror symmetry cannot be exact 
exactly as SUSY cannot be exact. 

Breaking:soft
hard



Tuning in the Twin Higgs

Figure of merit of most of the Twin Higgs models: v/f
too small — excluded by the higgs precision data

too big — FT
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tuning two quartics one against 
another leads to an inevitable FT ~ 

(v/f)2

Interestingly, κ is not a free parameter:
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Softly broken mirror symmetry ☞ κ is determined by the 

measured higgs mass (SM quartic)



TH Fine Tuning, One Step Further

TH solves the little hierarchy problem, therefore its cutoff cannot be 
too high. It needs a UV completion at ~ 5 TeV scale (this is where 

SUSY will come in). What kind of FT does this threshold introduce?  

2 3 4 5 6

1

2

3

4

5

fêv

L
t
@TeV

D
fêv
>
2.
3

Lt < lf

mh
soft êmh

mh
hard êmh

Lt < lf

0.75

0.7

0.65

0.6

0.5

1

1.5

2

Figure 2. The blue contours indicates the irreducible contributions to the Higgs mass coming from
top loops normalized to mh = 125 GeV, while the red dashed contours indicate the irreducible
contributions to the Higgs mass in the pure hard breaking case (�

0

= 0) where we fix ⇤⇢ = 250 GeV
and ✏ = +1 to minimize the soft Z

2

-breaking generated by radiative corrections (2.7). The grey
shaded region at f < 2.3 v is excluded by Higgs coupling measurements and the grey region at the
bottom of the plot is inconsistent due to ⇤ < �f .

2.3 Fine-Tuning in the Low Energy E↵ective Theory and Beyond

We are now ready to discuss the fine-tuning in the general Twin Higgs model quantitatively

and show that if hard Z
2

-breaking is involved, one in fact expects to improve on the fine-

tuning compared to the soft breaking case. For illustration purposes let us start from the

pure soft case, where the IR fine-tuning is well-known to scale as ⇠ f2/v2. More precisely,

quantifying the fine tuning à la Barbieri-Giudice [31], one gets for the logarithmic derivative

of v2 with respect to �: �soft

v/f = f2�2v2

2v2
. Of course, this is just a part of the total fine-tuning

that one estimates in the IR e↵ective theory. On top of that one should also consider a

fine-tuning of the scale f with respect to the top cuto↵ scale ⇤t. Strictly speaking this

fine-tuning should be computed in the full UV theory, but it turns out that one can get a

reasonable estimate by analyzing the threshold corrections to the scale f in the e↵ective

theory and further varying it with respect to the top Yukawa. These radiative corrections

are

�f2 =
1

32⇡2

✓
3y2t
�

⇤2

t � 5⇤2

�

◆
. (2.8)

We will see in the next section how they reproduce the dominant RGE e↵ects of the UV
I see that there is

an overall factor of

2 mismatch with my

notes. Did you

check it and we dis-

agree? I think it is

just the normaliza-

tion of the CW po-

tential.

theory once the cut-o↵ scales are identified with physical mass thresholds. A-priori both

the sensitivity to the thresholds ⇤t and ⇤� are equally dangerous and, unlike in the SM,

it is not clear that the dominant sensitivity comes from the tops rather than the higgses

– 9 –

The scale of the SU(4) breaking is 
not stable w/o a UV completion:

top-stop threshold
scalar threshold

Let us be very naïve and assume that IR and UV FTs factorize 

↵8 “

30

24⇡2

c
a

�m2
a

p'q

g˚T 2˚
(82)

m2
h

9

3y2
t

4⇡2
M2

stops

log

ˆ
⇤

2

M2
stops

˙
(83)

�

´1
«

ˇ̌
ˇ̌ m2

h

2�m2
h

ˇ̌
ˇ̌

« 1.4% (84)

�m2
h

«

y2
t

↵
s

⇡3
M

g̃

log

2

ˆ
⇤

2

M
g̃

˙
(85)

V “ m2
p|A|

2
` |B|

2
q ` �p|A|

2
` |B|

2
q

2
(86)

`p|A|

4
` |B|

4
q (87)

`�f 2
|A|

2
` ⇢|A|

4
(88)

v2

f 2
«

1

2

2 ´ �

2
(89)

m2
h

« 8v2 (90)

FT

twin`SUSY

FT

SUSY

„

�
SM

�
(91)

6

λSM ≈ 0.06 ⇒ the effect is moderate. Also in 
realistic UV completions λ is hard to 

maximize  



IR Fine Tuning, Soft vs Hard
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Intermediate 
conclusion: κ is always 

small.
Radiative corrections?



Fine Tuning and Hard Breaking

The improvement of FT in softly broken TH is not great: cannot exceed 
λSM/λ independent on the FT structure.

vacuum, and only one of the Higgses, either HA or HB, gets a VEV. This possibility

usually does not lead to a viable phenomenology and we will not further consider it

here (see however [? ]). On the other hand, if  is bigger than zero, the Z
2

symmetry

is preserved by the vacuum, and HA and HB get equal VEVs vA = vB = f/
p
2.

In the following we will always consider 0 <  ⌧ � such that the SU(4) breaking

term gives a sub-leading contribution to the mass of the radial mode. but generates

a small SM-like higgs mass
p
2f . The hierarchy between the two quartics in the

potential is technically natural and so is the hierarchy between the radial mode (the

“Twin Higgs”) and the SM Higgs. The latter is a pseudo-Goldstone-boson (PGB) in

the limit  ⌧ �. The main problem with the model at the present stage is that the

unbroken Z
2

implies that the SM-like Higgs mass eigenstate is an equal superposition

of the visible and the mirror Higgs. This would mean that SM Higgs couplings to

(visible) gauge bosons and fermions would be reduced by a factor 1/
p
2, a possibility

which is excluded both by LEP EWPM and the LHC Higgs coupling measurements.

Therefore we must include also explicit Z
2

-breaking terms.

3. Z
2

-breaking terms. In general one can break the mirror symmetry at the renormal-

izable level in two ways: with a relevant operator proportional to µ̃ and/or with a

marginal operator proportional to ⇢. We will conveniently define µ̃2 ⌘ �f2 and work

with the dimensionless parameters � and ⇢, which are responsible for the Higgs VEV

misalignment v ⌘ vA 6= vB and a mixing between the SM and the twin Higgs. As

we have made clear before, maximal mixing and misalignment are already excluded

and the largest possible misalignment allowed by data translates into the bound

f/v & 2.3.

2.2 Electroweak Symmetry Breaking and Radiative Corrections

In order to analyze EWSB and the Higgs mass in the Twin Higgs it is instructive to

integrate out the heavy radial mode and switch to an e↵ective Higgs theory, where we can

write the Higgs fields in a non-linear realization as

HA = f sin
�p
2f

, HB = f cos
�p
2f

. (2.2)

Hereafter we identify � with the SM-like Higgs. It is straightforward to plug these expres-

sions into Eq. (??) and obtain the e↵ective SM Higgs potential in the low energy e↵ective

theory. Minimization of this potential with respect to � yields the following expressions

for the VEV and the mass of the SM-like Higgs:6

2v2

f2

=

✓
2� �

2+ ⇢

◆
, (2.3)

m2

h = 4v2 (2+ ⇢)

✓
1� v2

f2

◆
= 2f2 (2� �)

✓
1� v2

f2

◆
. (2.4)

6The same expressions can alternatively be obtained at the level of the linear sigma model (??) by

solving the EWSB conditions and expanding them at leading order in ,� ⌧ �. We refer to appendix ??

for a discussion of the subleading corrections in this expansion.

– 5 –

Hard breaking: a priori no need 
to fine one parameter against 

another to get v/f small
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But expect ρ to be quadratically 
sensitive to σ:
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Without a proper UV 
completion we even do not 

know the sign!



IR Fine Tuning and Hard Breaking
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Figure 3. Contours of F (v, f ;⇤⇢). The two di↵erent colors correspond to to the two di↵erent signs
of ✏. maybe we can shaded in gray the region where ⇤⇢ < �f? - DR

IR e↵ective theory is given by the logarithmic variation of v2 with respect to the parameter

⇢ and reads

�hard

v/f =
f2 � 2v2

2v2
⇥ F (v, f ;⇤⇢) , (2.11)

where we traded ⇢ for the EW scale using the EWSB condition (2.3) and we have dropped

the log⇤⇢ contributions to � because they are largely subdominant to the quadratic con-

tributions in most portions of the parameter space (but not all!). Here we have introduced

for further convenience

F (v, f ;⇤⇢) ⌘
3✏⇤2

⇢ + 32⇡2v2

3✏⇤2

⇢ + 16⇡2f2

. (2.12)

Interestingly the first piece in (2.11) is precisely the fine-tuning in the pure soft breaking

scenario, but in the hard breaking case it is multiplied by a function F (v, f ;⇤⇢). We

illustrate the behavior of this function on Fig. 3. This function is always smaller than 1

and in the limit 3⇤2

⇢ ⌧ 32⇡2v2 reduces to 2v2/f2, while in the limit 3⇤2

⇢ � 16⇡2f2 this

function simply becomes 1. If we assume that the fine-tuning of the scale f2 with respect to

the top cuto↵ scale is not di↵erent from the soft case and the factorization works, this tells

us, at least naively that the reduction of the fine-tuning with respect to common SUSY

scenarios should now be �SM/� ⇥ F (v, f ;⇤⇢), which can be a significant improvement

compared to the Twin Higgs with softly broken Z
2

.

Alternatively one can understand the parametric of the fine tuning measure in the

hard-breaking scenario fixing the cut-o↵ scale ⇤⇢ using the EWSB condition (2.3) so that

the fine tuning in (2.11) can be rewritten as

�hard

v/f =
f2 � 2v2

2v2
⇥ 2

2+ ⇢
=

f2 � 2v2

2v2
⇥ 8v2

m2

h

✓
1� v2

f2

◆
. (2.13)

– 11 –

Full FT in the hard model:

As Λ→∞, F goes to 1 and 
there is no real gain in FT
If Λ ≪ 4πf, the function F 

reduces to (f/v)2 and the IR 
FT is effectively erased

Real gain in IR!



The Higgs Mass
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dimensionless parameters then read

� =
3y4t
16⇡2

log
⇤2

t

m2

t
B

+
3�⇢

32⇡2

 
log

⇤2

⇢

m2

rad

+ log
⇤2

⇢

m2

h

!
, (2.5)

�⇢ =
3y4t
16⇡2

log
f2

v2
, (2.6)

�� =
3⇢

16⇡2

 
✏
⇤2

⇢

f2

+ 2� log
⇤2

⇢

m2

h

!
. (2.7)

Several clarifications are needed at this point. First, we have introduced in these expressions

two di↵erent mass thresholds: ⇤t and ⇤⇢. Usually one assumes that there is a single scale,

often loosely dubbed “the cut-o↵ of the IR e↵ective theory”. Here we will be slightly more

precise. Strictly speaking ⇤t and ⇤⇢ are the mass scales at which one finds the new states

of the UV complete, natural theory that cut the corresponding quantum contributions of

the low-energy theory. In strongly coupled UV completions of the Twin Higgs it is hard to

imagine the situation in which these scales are qualitatively separated. However in weakly

coupled UV completions, e.g. SUSY, one might expect appreciable di↵erences between

these mass scales, because of naturally small couplings that control these expressions.

Therefore we will keep track of these scales separately and we will later see that in the

concrete models that we analyze in the next section these scales are indeed di↵erent. Of

course, due to higher orders corrections these scales cannot be arbitrarily di↵erent from

one another.

Second, in the above expressions we have kept the Higgs dependence in the logarithms

frozen. Moreover we have expanded these expressions to the first order in  and v/f .

Third, in Eq. (2.7) we have introduced a new parameter ✏. This parameter stand for

the sign of the UV mass threshold corrections and a-priori ✏ = ±1. Since one cannot

calculate the sign of these radiative corrections within the IR e↵ective theory, we will be

agnostic about the sign of ✏ and consider both positive and negative threshold corrections.

As will see in the next section, within a full UV complete theory this sign is determined

unambiguously.

Having at hand all the radiative contributions to ⇢,  and �, we can estimate how

big are the contributions of the radiative corrections to the Higgs mass. Because it would

be di�cult to illustrate this point for generic Z
2

-breaking, we concentrate on two extreme

cases: pure soft breaking, defined as ⇢
0

= 0, and pure hard breaking, defined as �
0

= 0.

From Eq. (2.4) we can infer that the radiative contributions to the Higgs mass squared,

up to O(v2/f2) corrections, are given by �m2

h = 4v2(2�+�⇢). We show the results in

Fig. 2. The first important conclusion that we draw from this figure is that while in the soft-

breaking radiative corrections contribute at least ⇠ 60% of the Higgs mass, the radiative

corrections of the hard Z
2

-breaking typically overshoot for the Higgs mass, though not by

orders of magnitude. In the soft breaking case the contributions grow with ⇤t, showing

only mild dependence on the value of f . On the other hand, in the hard breaking case this

contributions grow significantly with the value of f . This fact will be very important for

the next subsection, where we will see that in the hard breaking case the fine tuning �v/f

can be ameliorated compared to the soft case at the price of adjusting the Higgs mass.
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Radiative corrections: 

Radiative corrections to the 
higgs mass with Λ = 1 TeV 

Clearly we pay some (relatively 
minor) price for adjusting the 

higgs mass. We are slightly 
overshooting for the higg mass. 



The Sign of the Threshold Matters
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Improvement in FT with 
respect to the soft model 

Required Λρ to get the 
right higgs mass 

Knowing the sign of the 
quadratic correction to the soft 

breaking term is crucial. 
Negative threshold demands 

extremely low stops threshold, 
or simply overshoots for the 

higgs mass  



UV Completion: Why SUSY?

The scale of the global symmetry breaking is unstable. 
Candidates to stabilize it: SUSY or compositeness (turtles?)

Problems with the strongly coupled UV completions: 1) not 
easy to generate moderate mass splittings 2) EWPM

We would prefer to have moderate separations between 
the top partners and the scalar partners. Easy in SUSY, not 
that easy in composite models 

SUSY naturally explains different masses in UV 
completions: small and technically natural couplings 



SUSY Meets Its Twin: 10 Years Ago 
Falkowski, Pokorski, Schamltz; Chang, Hall, Weiner; 2006

How do we get 
the right Higgs 

potential?

Z2

The SU(4) conserving Higgs quartic: NMSSM ``trick”
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6

full multplets of the accidental SU(4)

To get the standard TH structure, we integrate out S non-
SUSically. 



SUSY Soft TH — Higgs potential

Where do we get the rest of the terms from?

Parity symmetric, SU(4) - breaking quartic κ, practically 
it is the higgs quartic.

D-terms:

3.1 Soft Twin SUSY

In this subsection we analyze SUSY UV completions of the Twin Higgs with softly broken

mirror symmetry. Even though this kind of UV completions have already been discussed

to some extent in the literature, reviewing them carefully will clarify the basic building

blocks of any SUSY UV completion of the Twin Higgs. Analogously to Sec. 2, we organize

our discussion according to the global symmetries that each term of the scalar potential

preserves.

Generating the SU(4)-invariant part of the Twin Higgs potential in Eq. (2.1) already

introduces some degree of model dependence in SUSY UV completions. Indeed, if we con-

sider the matter content of just two copies of the MSSM, the only SU(4)-preserving opera-

tors at the renormalizable level are the mass terms. Therefore the SU(4)-invariant quartics

require some additional dynamics. The simplest possibility is to use a non-decoupling F-

term from a heavy singlet S that has NMSSM-like couplings with the A and B Higgses, as

in Refs. [18, 20]. The superpotential and soft masses of this setup are

WSU(4)

= (µ+ �SS)HuHd +
MS

2
S2 ,

VSU(4)

= m2

Hu
|Hu|2 +m2

Hd
|Hd|2 � b (HuHd + h.c.) +m2

S |S|2 .
(3.2)

To make our equations more compact, we have switched here to manifestly SU(4) invariant

notations. We will further use Hu,d = (hAu,d, h
B
u,d), wherever the SU(4) conventions are

appropriate, and with a slight abuse of notation, we will use Hu,d both for the Higgs

superfields and their lowest components.

We also assume that the singlet soft mass is much larger than the SUSY one and

integrate out S in this limit. The potential we get is:

V e↵

SU(4)

⇡ m2

u|Hu|2 +m2

d|Hd|2 � b (HuHd + h.c) + �2

S |HuHd|2 , (3.3)

where we have defined m2

u,d = µ2 +m2

Hu,d
. We also kept just the renormalizable operators

and neglected the extra quartics of order O(M2

S/m
2

S), O(µMS/m
2

S) and O(µ2/m2

S). By

construction these sub-leading quartic terms are also SU(4)-invariant.

Throughout this paper we will often trade the b-term for the mass of the heavy CP-

odd Higgs mAT
= 2b/ sin(2�). Note, that unlike in the MSSM, where 2b/ sin(2�) is the

mass-squared of the CP-odd Higgs, here, in the SUSY Twin Higgs, it controls the mass-

squared of the mirror CP-odd Higgs. The mass of the “visible” CP-odd Higgs turns out to

be always lighter: m2

A ⇡ m2

AT
� �2

Sf
2 (see Appendix B).

We further match the SU(4)-invariant parameters of the SUSY potential in Eq. (3.3)

to the parameters of the Twin Higgs potential in Eq. (2.1):

� ⇡ �2

S

4
s2
2� , m2 ⇡ m2

us
2

� +m2

dc
2

� � bs
2� . (3.4)

In these expressions we have disregarded the terms that depend on the di↵erence be-

tween the � angles in the di↵erent sectors. We will later analyze in detail the role of

the �-misalignment. So far we are taking the SUSY decoupling limit, which is defined by
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Immediate worry: to maximize the FT gain 
we need λ as big as possible, but:

Clearly the model will not perform great.

Eq. (3.1), while we are keeping the twin Higgs in the spectrum treating the Twin Higgs

model as a full linear sigma model. The e↵ective PGB theory discussed in Sec. 2 can be

obtained integrating out the twin Higgs and expanding at the first non-trivial order in

� � ,� (see Appendix B for details on this point).

Eq. (3.4) immediately explains the origin of the problem already mentioned in the

previous section: SUSY UV completions have a hard time to maximize � and therefore

also the fine-tuning gain, which is �
SM

/�. In SUSY UV completions �S , rather than �,

should be perturbative. Moreover, as we will shortly see, in order to get the right Higgs

mass we will have to stick to moderate values of tan�, thus further suppressing the e↵ective

�. As a result, we will generally get � < 1, such that the gain in fine tuning will never

be large. In passing, we notice that the fine tuning in the soft models can be slightly

ameliorated by changing the functional dependence of � on tan� and other fundamental

parameters, as we comment later on.

We now proceed to discus the leading Z
2

-even but SU(4)-breaking operators in the

Twin SUSY potential. At leading order the SU(4)-breaking originates at tree-level from

the electroweak D-terms and at one-loop from the top Yukawa sector:

V D
/U(4)

=
g2
ew

8

h�
|hAu |2 � |hAd |2

�
2

+
�
|hBu |2 � |hBd |2

�
2

i
, (3.5)

V top

/U(4)

⇡ 3y4t
16⇡2

"
(|hAu |4 + |hBu |4) log

M2

s

m2

tB

+ |hAu |4 log
f2

v2

#
, (3.6)

where we defined g2
ew

= g2 + g02, and yt is the SUSY superpotential coupling, related to

the top mass as mt = ytv sin�. In order to get Eq. (3.6) we compute the CW potential

and and set the dynamical Higgses to their VEVs in the non-polynomial terms. The RH

and LH stops mass are assumed to be equal, as well as the soft masses in the A and B

sectors.11

Matching again the e↵ective SU(4)-breaking potential to Eq. (2.1) we identify

 ⇡ g2
ew

8
c2
2� +

3m4

t

16⇡2v4
log

✓
M2

s

m2

t

v2

f2

◆
. (3.7)

This expression indicates that the SU(4)-breaking Z
2

-even quartic  gets an unavoidable

positive contribution from the EW D-terms at tree level in any SUSY UV completion.

The ballpark of this contribution is O(10�2 . . . 10�3) depending on tan�. The contribution

from the top-stop sector reproduces the result obtained in Eq. (2.5). Given that top loops

alone already set the Higgs mass in the right ballpark (see the blue contours in Fig. 2),

we expect that for a fixed Ms a Twin SUSY model would have an upper bound on tan�.

We will later see that because of this bound only models with small or moderate tan� are

viable.

In those Twin SUSY theories, where the mirror symmetry is broken only softly, the

Z
2

-breaking terms can be introduced as soft masses in the potential:

V soft

/Z
2

⇡ �m2

u|hAu |2 +�m2

d|hAd |2 +�b
�
hAu h

A
d + h.c

�
. (3.8)

11We also assume the trilinear A-terms to be negligible and expand these expressions at the leading order

in m2

tA,B
/M2

s .
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+ top radiative 
corrections 

Eq. (3.1), while we are keeping the twin Higgs in the spectrum treating the Twin Higgs

model as a full linear sigma model. The e↵ective PGB theory discussed in Sec. 2 can be

obtained integrating out the twin Higgs and expanding at the first non-trivial order in

� � ,� (see Appendix B for details on this point).

Eq. (3.4) immediately explains the origin of the problem already mentioned in the

previous section: SUSY UV completions have a hard time to maximize � and therefore

also the fine-tuning gain, which is �
SM

/�. In SUSY UV completions �S , rather than �,

should be perturbative. Moreover, as we will shortly see, in order to get the right Higgs

mass we will have to stick to moderate values of tan�, thus further suppressing the e↵ective

�. As a result, we will generally get � < 1, such that the gain in fine tuning will never

be large. In passing, we notice that the fine tuning in the soft models can be slightly

ameliorated by changing the functional dependence of � on tan� and other fundamental

parameters, as we comment later on.

We now proceed to discus the leading Z
2

-even but SU(4)-breaking operators in the

Twin SUSY potential. At leading order the SU(4)-breaking originates at tree-level from

the electroweak D-terms and at one-loop from the top Yukawa sector:
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=
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, (3.5)
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#
, (3.6)

where we defined g2
ew

= g2 + g02, and yt is the SUSY superpotential coupling, related to

the top mass as mt = ytv sin�. In order to get Eq. (3.6) we compute the CW potential

and and set the dynamical Higgses to their VEVs in the non-polynomial terms. The RH

and LH stops mass are assumed to be equal, as well as the soft masses in the A and B

sectors.11

Matching again the e↵ective SU(4)-breaking potential to Eq. (2.1) we identify

 ⇡ g2
ew

8
c2
2� +

3m4

t

16⇡2v4
log

✓
M2

s

m2

t

v2

f2

◆
. (3.7)

This expression indicates that the SU(4)-breaking Z
2

-even quartic  gets an unavoidable

positive contribution from the EW D-terms at tree level in any SUSY UV completion.

The ballpark of this contribution is O(10�2 . . . 10�3) depending on tan�. The contribution

from the top-stop sector reproduces the result obtained in Eq. (2.5). Given that top loops

alone already set the Higgs mass in the right ballpark (see the blue contours in Fig. 2),

we expect that for a fixed Ms a Twin SUSY model would have an upper bound on tan�.

We will later see that because of this bound only models with small or moderate tan� are

viable.

In those Twin SUSY theories, where the mirror symmetry is broken only softly, the

Z
2

-breaking terms can be introduced as soft masses in the potential:

V soft

/Z
2

⇡ �m2

u|hAu |2 +�m2

d|hAd |2 +�b
�
hAu h

A
d + h.c

�
. (3.8)

11We also assume the trilinear A-terms to be negligible and expand these expressions at the leading order

in m2

tA,B
/M2

s .
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The expression for the SM quartic 
practically forces tan β ~ 1. 



Soft Breaking + SUSY 
also Craig & Howe 2013
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Finally we get the soft 
mirror symmetry breaking 
terms from different soft 
masses in the visible and 

the twin sector.

As expected the gain in 
the FT is moderate at 
best. We get slightly 

better than 1% at best.

No tan β can be found to satisfy 
the higgs constraints here



Hard Breaking in SUSY: First 
Attempt

Clearly to introduce something that maps onto the soft mirror 
symmetry breaking, we need dim 4, not mirror symmetric operator, 

and the most natural candidate is 
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Hard Breaking: the Bidoublets 

Potential way out: negative κ at the mediation scale, compensating 
for a positive D-terms contribution
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negative contribution exacerbates the 
higgs overshooting problem  

Trick introduce bi-doublets:
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+ SUSY masses give 
negative κ contribution 



What Do We Really Gain After All?
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Soft-Twin SUSY
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Here we calculate the FT 
numerically à la Barbieri 

Giudice and vary with 
respect to all free 

parameters of the model

SUSY TH might not be 
as fine-tunes as 

originally suggested. 
Price: some model 
building is needed



Pheno Remarks 

See a parallel talk by 

Diego Redigolo The stops in this scenario might or might 
not be reachable at the (HL) LHC. 

Interesting signals: higgs sector  

Who is the lightest CP even state (radial or 2HDM)?

Signals in ZZ channel, HL LHC reach, 

Charged higgses signals

b → sɣ constraints are relevant for high f and relatively light 

extra higgses 



Conclusions 

Twin Higgs is a promising mechanism to bridge over the little 
hierarchy problem 

Hard mirror symmetry deserves the second look, it can 
significantly improve the TH models 

SUSY is a natural candidate to UV complete the TH with hard 
mirror symmetry breaking (of course no no-goes concerning 
alternative UV completions)

A bi-doublet model can clearly do the job

These models have non trivial collider signatures, to be explored at 
the HL LHC (to be continued in parallel session) 


