Particle Dark Matter Constraints: The Effect of Galactic Uncertainties

Based on: arXiv: 1612.02010 JCAP02 (2017) 007 María Benito, Nassim Bozorgnia, Francesca Calore and Fabio Iocco

Nicolás **BERNAL**

Evidences for Dark Matter

Several observations indicate existence of non-luminous Dark Matter (missing force) at very different <u>scales</u>!

- * Galactic rotation curves
- * Clusters of galaxies
- * CMB anisotropies

DISTRIBUTION OF DARK MATTER IN NGC 3198

Direct Detection

Direct detection experiments aim to measure the recoil energy of a nucleus in a detector after the collision with a DM from the halo of the MW.

Differential event rate

$$\frac{dR}{dE} = \frac{\rho_0}{m_{\chi}} \frac{1}{m_N} \int d^3 v \, \frac{d\sigma}{dE} \, v \, f(v)$$

Particle physics: m_{χ} and σ Astrophysics: ρ_0 and f(v)

Indirect Detection

Indirect detection aims at detecting the flux of final stable particles produced by DM annihilation or decay.

Differential event rate

$$\frac{dN}{dA\,dt\,d\Omega\,dE} = \frac{\langle \sigma v \rangle}{2\,m_{\chi}^2}\,\frac{dN}{dE}\,\frac{1}{4\pi}\int_{\rm los}\rho_{\chi}^2\,dl$$

Particle physics: m_{χ} , $\langle \sigma v \rangle$ and the ann. channel Astrophysics: $\rho_{\chi}(l, \Omega)$

Our Aim

- The determination of Particle Physics quantities is highly affected by *astrophysical uncertainties*
- The latter, especially those for our own MW, are ill-known, and often not fully accounted for when analyzing the pheno of particle physics models
- Systematic analysis of how the uncertainties on the DM structure in our Galaxy affect the determination of New Physics
- Estimate the effects of the Galactic Uncertainties in the *particle physics parameter space*, by varying different sources of uncertainty one at a time
- Treat uncertainties (direct & indirect) in a self-consistent way

• Dynamical Method:

Rotation curves track *total* gravitiational potential compared to the expected velocity due to visible matter Mismatch \rightarrow fit DM density profile

 Compilation of observed RC data (Id Milky Way morphology: 70 baryonic models Stellar bulge + Stellar disk + Gaseous disk (P

(locco, Pato & Bertone '15)

(Pato, locco & Bertone '15)

• gNFW DM density profile:
$$\rho_{\chi} = \rho_0 \left(\frac{R_0}{R}\right)^{\gamma} \left(\frac{R_s + R_0}{R_s + R}\right)^{3-\gamma}$$

• Fit
$$\rightarrow (\rho_0, \gamma)$$

$$R_s = 20 \text{ kpc}$$

$$\chi^2 = \sum_{i=1}^N d_i^2 \equiv \sum_{i=1}^N \left[\frac{(y_i - y_{t,i})^2}{\sigma_{y,i}^2 + \sigma_{b,i}^2} + \frac{(x_i - x_{t,i})^2}{\sigma_{x,i}^2} \right]$$

• **Reference** Morphology of the baryonic component (BjX) $R_0 = 8 \text{ kpc}$ and $v_0 = 230 \text{ km/s}$ $\rightarrow \gamma = 1.11$ and $\rho_0 = 0.466 \text{ GeV/cm}^3$

- **Reference** Morphology of the baryonic component (BjX) $R_0 = 8 \text{ kpc}$ and $v_0 = 230 \text{ km/s}$ $\rightarrow \gamma = 1.11$ and $\rho_0 = 0.466 \text{ GeV/cm}^3$
- Statistical Uncertainties (Reference morphology) $R_0 = 8 \text{ kpc}$ and $v_0 = 230 \text{ km/s}$ $\rightarrow y = 1.11 \pm 0.03$ and $\rho_0 = 0.466 \pm 0.010 \text{ GeV/cm}^3$

- **Reference** Morphology of the baryonic component (BjX) $R_0 = 8 \text{ kpc}$ and $v_0 = 230 \text{ km/s}$ $\rightarrow \gamma = 1.11$ and $\rho_0 = 0.466 \text{ GeV/cm}^3$
- Statistical Uncertainties (Reference morphology) $R_0 = 8 \text{ kpc}$ and $v_0 = 230 \text{ km/s}$ $\rightarrow y = 1.11 \pm 0.03$ and $\rho_0 = 0.466 \pm 0.010 \text{ GeV/cm}^3$
- Uncertainties on **Galactic Parameters** R_o and v_o (Reference morphology) $R_o = [7.5, 8.5]$ kpc and $v_o = [200\pm20, 279\pm33]$ km/s

- **Reference** Morphology of the baryonic component (BjX) $R_0 = 8 \text{ kpc}$ and $v_0 = 230 \text{ km/s}$ $\rightarrow \gamma = 1.11$ and $\rho_0 = 0.466 \text{ GeV/cm}^3$
- Statistical Uncertainties (Reference morphology) $R_0 = 8 \text{ kpc}$ and $v_0 = 230 \text{ km/s}$ $\rightarrow y = 1.11 \pm 0.03$ and $\rho_0 = 0.466 \pm 0.010 \text{ GeV/cm}^3$
- Uncertainties on **Galactic Parameters** R_o and v_o (Reference morphology) $R_o = [7.5, 8.5]$ kpc and $v_o = [200\pm20, 279\pm33]$ km/s
- Uncertainties on the **Morphology** of the baryonic component ($R_0 = 8 \text{ kpc}$ and $v_0 = 230 \text{ km/s}$) Different morphologies in order to minimize/maximize y and ρ_0

Deference							
morphology	Morphology	$R_0 \; (\mathrm{kpc})$	$v_0 \ (\rm km/s)$	$M_{*}~(imes 10^{10}M_{\odot})$	γ	$ ho_0~({ m GeV/cm^3})$	χ^2/dof
morphology	у ВјХ	8	230	2.4 ± 0.5	1.11	0.466	1.22

Statistical

uncertainties

Reference $\rho_0 (\text{GeV}/\text{cm}^3)$ χ^2/dof Morphology $M_{*} (\times 10^{10} M_{\odot})$ R_0 (kpc) $v_0 \ (\mathrm{km/s})$ γ morphology $+0.04 \\ -0.03$ 0.466 ± 0.010 BjX 8 230 2.4 ± 0.5 1.11 1.22 $0.633^{+0.019}_{-0.020}$ Galactic 1.762 ± 0.017 BjX 7.5312 1.52 ± 0.19 1.35parameters BjX 8.5 0.055 ± 0.004 180 2.4 ± 0.5 2.02 ± 0.07 0.90

Statistical

uncertainties

Reference $M_{*} \; (\times 10^{10} \, M_{\odot})$ $\rho_0 ~({\rm GeV/cm^3})$ χ^2/dof Morphology R_0 (kpc) $v_0 \ (\mathrm{km/s})$ γ morphology $+0.04 \\ -0.03$ 0.466 ± 0.010 BjX 8 230 2.4 ± 0.5 1.11 1.22 $0.633^{+0.019}_{-0.020}$ Galactic BjX 7.5312 1.52 ± 0.19 1.762 ± 0.017 1.35parameters BjX 8.5180 2.4 ± 0.5 2.02 ± 0.07 0.055 ± 0.004 0.90 $1.38^{+0.03}_{-0.02}$ $0.427^{+0.007}_{-0.008}$ FkX 8 230 2.0 ± 0.4 1.05 $0.43^{+0.07}_{-0.06}$ Morphology DiX 8 230 3.0 ± 0.6 0.405 ± 0.011 0.99variation $0.471^{+0.010}_{-0.011}$ CjX 8 230 2.5 ± 0.6 1.03 ± 0.04 1.138 2.6 ± 0.4 0.387 ± 0.010 FiX 230 0.82 ± 0.05 1.16

Impact on Particle Physics Models

Singlet Scalar DM

McDonald '07

S is a scalar singlet, protected by a Z₂ $V \supset \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$

3 free parameters:

- * m_s DM mass
- * λ_{HS} Higgs portal
- * λ_s DM quartic coupling

Singlet Scalar DM: Reference morphology

Singlet Scalar DM: Reference morphology

Singlet Scalar DM: Direct Detection

BjX with $R_o = 8$ kpc and $v_o = 230$ km/s $\gamma = 1.11 \pm 0.03$ $\rho_o = 0.466 \pm 0.01$ GeV/cm³

Singlet Scalar DM: Direct Detection

Singlet Scalar DM: Direct Detection

Singlet Scalar DM: Indirect Detection

Inert Doublet Model

Barbieri et al '06

 $\boldsymbol{\Phi}$ is an inert doublet, protected by a Z₂ $V \supset \mu_2^2 |\Phi|^2 + \lambda_2 |\Phi|^4 + \lambda_3 |H|^2 |\Phi|^2 + \lambda_4 |H^{\dagger} \Phi|^2 + \frac{\lambda_5}{2} \left[(H^{\dagger} \Phi)^2 + \text{H.c.} \right]$

4 new states: H^o, A^o, H[±]

 \rightarrow The lightest neutral state can play the role of DM 5 free parameters: 1

$$\rightarrow m_{H0}, m_{A0}, m_{H\pm}, \lambda_2 \text{ and } \lambda_L \equiv \frac{1}{2}(\lambda_3 + \lambda_4 - \lambda_5)$$

Inert Doublet Model: Reference morphology

Direct detection

Inert Doublet Model: Reference morphology

Inert Doublet Model: Direct Detection

Inert Doublet Model: Indirect Detection

Conclusions

- Galactic uncertainties affect the determination of the DM distribution and propagate when constraining New Physics
- Galactic uncertainties have to be under control in order to extract particle physics obsevables (m_{χ} , $\langle \sigma v \rangle$, σ , Br)
- Systematic scan of major sources of uncertainties:
 - * Statistical
 - * Galactic Parameters
 - * Baryonic Morphology
- Galactic uncertainties play a mayor role, but too ofter overlooked!
- Gaia mission expected to improve the determiantion of R_0 and ρ_0