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Quark masses in SM: single generation

Yukawa interactions provide masses to quarks:

_ _ _ 0
*ﬁ(\f) = yd(QLq)dR + de)T QL) — yd(U[_7 d[_) <v> dr + h.c.
V2
= {%/(JLdR+JRdL) = ded
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Quark masses in SM: single generation

Yukawa interactions provide masses to quarks:

_ _ _ 0
*ﬁ(\f) = yd(QLq)dR + de)T QL) — yd(U[_7 d[_) <v> dr + h.c.
V2
= %(JLdR + JRdL) = ded

- ﬁ(\f) = }/u(OL&)UR + ER&)TQL) — yu(d, JL) <\§> ug + h.c. = myiu.
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Quark masses and mixing

Three generations Qy;, dri, ug;, i =1,2,3:
d=(d,s,b) ui=(uc,t).
Yukawa interactions are parametrized with coupling matrices [';; and Ay:
Ly = Quly®dg; + Quilrjdug; + h.c.
— JL;(Md),-dej + api(My)jjugr; + h.c.

where the 3 x 3 mass matrices are

”V
U\@’

and are, in general, non-diagonal and complex.

(Mg)j =T (M) =

v
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CKM matrix

My is diagonalized by d = Vg dP™*, dg = Vurd?™®, and so is M,,:

V;L Md VdR = Dd = diag(md, ms, mb),
Vj,_ M, V,r = D, = diag(m,, mc, m;),
But then the charged current matrix can become non-trivial:

_ _ph h
aiy" W di = ap "W Vpdl”®, where V= VI Vi # 65
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CKM matrix

My is diagonalized by d = Vg dP™*, dg = Vurd?™®, and so is M,,:
V;L Md VdR = Dd = diag(md, ms, mb),
Vj,_ M, V,r = D, = diag(m,, mc, m;),

But then the charged current matrix can become non-trivial:

_ _ph h
diiY*WEdiy = ap” Wit \/,-J-d,’_’jys7 where Vj; = VJLVdL # 8j .

if coupling matrices I';; and Aj; are distinct,
then quark mass eigenstates # charged current eigenstates.

The CKM matrix V' (Cabibbo-Kobayashi-Maskawa mixing matrix) describes how
charged currents mix quarks from different generations.
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Lepton mixing: Dirac

Massive neutrinos implies that they are either Dirac or Majorana.

For Dirac neutrinos, we add vg;, i = 1,2,3, write only Dirac mass term, get
lepton mass matrices M, and M,,, and diagonalize them as before:

U}, My Uig = Dy = diag(me, my,, m.),
Ul, M, U,r = D, = diag(my, my, m3),

The charged weak currents are written in the generation space as

Ve 1

" Wy v = (e i, )W, | v | = (e i oYW, Upnms | v2

I Vr V3
original

flavor basis
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Lepton mixing: Dirac

Ve 141
iy Wy v = (e oL, )W, | v | = (e B oYW, Upnms | v2
— v, V3

original

flavor basis

Flavor basis is defined as the charged lepton mass basis:
Ci = U™, v = U™
Therefore, the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is
Upmns = U} U,.

If My is already diagonal, then Upyns = U, .
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Lepton mixing: Dirac

Ve vy
vy | = Upnus | 12
Vr V3

After removing phases, the standard parametrization is

_is
C12€13 S12€13 size”’
i i
Upuns = | —s12€23 — C12513523€" C12C23 — S12513523€ C13523
i is
512523 — C12513C23€" —C12523 — S12513C23€"°  C13C23
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Lepton mixing: Dirac

Ve vy
vy | = Upnus | 12
Vr V3

After removing phases, the standard parametrization is

_is
C12€13 S12€13 size”’
_ i i
Upuns = | —s12€23 — C12513523€" C12C23 — S12513523€ C13523
i is
512523 — C12513C23€" —C12523 — S12513C23€"°  C13C23

Since M, is diagonalized by bi-unitary transformation
Ul]:L Ml/ UI/R = DI/ = diag(mla ma, m3)7

some phases from U, can be moved to U,g.

PMNS matrix Upyns contains only one irremovable phase.
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Lepton mixing: Majorana

For Majorana neutrinos, the mass matrix is

VZ;(MV)UCVLj _ (VZ’]aSS)T UVTMDUL/ Cl/lr_nass _ (VTaSS)TDl/ Cylr_nass

with the same matrix U, on both sides.

One can always find such U, to make D, diagonal with real posivite values. But
once this is done, there is no freedom left to remove phases!

_ 1 0 0
Uppina™ = Upmns - | 0 e (')g
0 0 ¢

These two additional Majorana phases are the echo of the complex neutrino mass
matrix M,,.
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Lepton mixing

CKM PMNS

u u VED.
c = . VHD.D
t : - Nl

V3

Upnins is close to the tri-bimaximal mixing pattern [Harrison, Perkins, Scott,
2002]:

2 1 0

U P
Ve oM
V6 V3 V2

Nonzero si3 highlights deviation, but proximity of Upyys to the TBM is
indicative of some symmetry.
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Basics of finite group theory
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Groups

Set G is a group if it satisfies the following four axioms:

@ closure of G under composition (usually called multiplication):

for any g1, g» € G, define their product gy - @& € G

@ the multiplication is associative: g1 - (g2 - g3) = (g1 - &2) - g3 for all
81,82,83 € G;

Igor Ivanov (CFTP, IST) Neutrino mass models 3 UW, January 2018 11/53
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Groups

Set G is a group if it satisfies the following four axioms:

@ closure of G under composition (usually called multiplication):

for any g1, g» € G, define their product gy - @& € G

@ the multiplication is associative: g1 - (g2 - g3) = (g1 - &2) - g3 for all
81,82,83 € G;

@ there exists a special element called identity element e with the properties:
g-e=e-g=g for any g € G;

@ every element is invertible: for any g € G, there exists another element in G
(denoted g~ 1) such that
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Groups

In addition, if g-h= h- g for all elements g, h € G, the group is called
abelian. If it fails at least for one pair, the group is called non-abelian.

Non-abelian groups are much, much, much more complicated than
abelian groups.
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Groups

In addition, if g-h= h- g for all elements g, h € G, the group is called
abelian. If it fails at least for one pair, the group is called non-abelian.

Non-abelian groups are much, much, much more complicated than
abelian groups.

Groups arise in physics in the context of transformations and symmetries.
It is the most appropriate language to describe hidden consequences of
physics formulas or laws.
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Groups

Groups can be finite or infinite.

® A finite group G has finite number of elements: G = {e, g2,83,...,8n}. Its
size n is called the order of the group and is denoted |G].

@ In a finite group, successive multiplications will sooner or later terminate in
e. Pick up any g € G and consider successive powers:
_ 3 _ k —
& 8§ =88, 8§ =888, 8§ =88
——

k times

Then, there must exist an integer p such that gP = e. This integer p is
called the order of the element g.

@ Infinite groups can be discrete or continuous (= topological).
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Basics examples

They are not groups under multiplication!

@ Integers Z and reals R are groups under addition. The identity element is 0.
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Basics examples

@ Integers Z and reals R are groups under addition. The identity element is 0.
They are not groups under multiplication!

@ Reals on the interval [0, 1] form a group under addition with periodic
boundary condition (0.999--- = 0). These are fractional part of reals: R/Z.

Complex numbers with |z| = 1 form under multiplication the circle group, or
the rephasing group U(1).

The two last groups are isomorphic: R/Z ~ U(1).

Igor Ivanov (CFTP, IST) Neutrino mass models 3 UW, January 2018 14/53
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Basics examples

@ Integers Z and reals R are groups under addition. The identity element is 0.
They are not groups under multiplication!

@ Reals on the interval [0, 1] form a group under addition with periodic
boundary condition (0.999--- = 0). These are fractional part of reals: R/Z.

Complex numbers with |z| = 1 form under multiplication the circle group, or
the rephasing group U(1).

The two last groups are isomorphic: R/Z ~ U(1).
@ Cyclic groups Z,, for any n > 1 are defined as

Zn={e, a, a*, a°, ..., a" '} with condition a" = e,

isomorphic to integers modulo n under addition: Z/nZ.
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Presentation of a group

How would you describe a finite group?
Simplest choice: write the multiplication table |G| x |G|. Very impractical.
Much better choice: via generators and relations.

@ Generators a, b, c,... form a subset of elements of G such that any g € G
can be written and their product.

@ Generators are independent elements but they satisfy some constraints
(relations).

@ Group presentation: G = (generators | their relations ).

@ A cyclic group is generated by a: Z, = (a|a" = e).
Direct product of cyclic groups: Z, X Zn, = {a, b|a" = b™ = e, ab = ba).
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Representations of abelian groups

A representation of the group G is, colloquially speaking, a way of rewriting it as
a group of matrices which act on some k-dimensional vector space.

The set of matrices must obey exactly the same rules as the elements of G, but
otherwise there is no constraints on their form or dimension k. For example,

Zy=(e.a): a:(g c1)> o <(1> —01>

010 1 0 0
Z3=(e,b,b?): b=|[0 0 1 or 0 w 0
100 0 0

w2

where w = exp(27i/3), w3 = 1.
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Representations of abelian groups

General theorem: for any abelian unitary group, the representing matrices can be
always made diagonal by a basis choice.

Example: Zy x Zy = (e, a, b, ab) with a faithfull 2D representation:

/(10 /10 ,_ (-1 0 ,_ (-1 0
c=lo 1) ?7{o =1)> " {o 1) ® o -1/

Igor Ivanov (CFTP, IST)
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Representations of abelian groups

General theorem: for any abelian unitary group, the representing matrices can be
always made diagonal by a basis choice.

Example: Zy x Zy = (e, a, b, ab) with a faithfull 2D representation:

/(10 /10 ,_ (-1 0 ,_ (-1 0
c=lo 1) ?7{o =1)> " {o 1) ® o -1/

In this basis, each 1D subspace remains invariant; and the diagonal numbers form

a 1D representation.
1
subspace 0 a=1b=-1,

0
subspace <1> a=-1,b=1.

In general: irreducible representations of unitary abelian groups are 1D.

o
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Working example: Ay
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Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

® S,, group of all permutations of n elements. Its order is |S,| = n!. The
smallest group is S, ~ Z,. The smallest non-abelian is

S3 = (a,bla®> = b> = e, ab = b%a).

@ A,, group of even-signature permutations of n elements; |A,| = n!/2.

Igor Ivanov (CFTP, IST) Neutrino mass models 3 UW, January 2018 18/53
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Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

® S,, group of all permutations of n elements. Its order is |S,| = n!. The
smallest group is S, ~ Z,. The smallest non-abelian is

S3 = (a,bla®> = b> = e, ab = b%a).

@ A,, group of even-signature permutations of n elements; |A,| = n!/2.
@ Symmetry groups of regular polygons and polyhedra:

e Symmetry group of equilateral triangle ~ Ss;
e Symmetry group of tetrahedron ~ Ay;
e Symmetry group of cube ~ 5.
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Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

® S,, group of all permutations of n elements. Its order is |S,| = n!. The
smallest group is S, ~ Z,. The smallest non-abelian is

S3 = (a,bla®> = b> = e, ab = b%a).

@ A,, group of even-signature permutations of n elements; |A,| = n!/2.
@ Symmetry groups of regular polygons and polyhedra:

e Symmetry group of equilateral triangle ~ Ss;
e Symmetry group of tetrahedron ~ Ay;
e Symmetry group of cube ~ 5.

Irreducible representations of non-abelian groups have d > 1.
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Group A,

Ay is the smallest group with irreducible 3D representation:
Ay =(S,TIS>=T3>=¢,(ST)}=¢), |Ag =12.
It contains:
@ three elements of order 2: S, T2ST, TST?:

@ together with e, they form the Klein subgroup Z, x Z;

@ four cycles of order 3 generated by T, ST, TS, T2ST? (8 elements of order
3 in total).
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As: transformation S

A4 2

to ts

- rotation by 180°
S

t
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[e]e]ee] lelele]

Ay: transformation T

Az

* rotation by 120°

anti-clockwise

(seen from a ;
vertex) \
1 0 0 O t1 tq
BER0 sdimn o Tl
D0 | [ A
(== ()E=() ty to
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Group A,

3D irreducible representation: diagonal-S basis

@ order 2:

and their squares.

UW, January 2018  22/53
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Group A,

3D irreducible representation: diagonal-T basis
One can switch to another basis in the same 3D space, in which T becomes
diagonal.
1 0 0
T=10 w 0
0 0 w?
Then, S takes an “ugly” shape:

, w=emB L W=1.

Igor Ivanov (CFTP, IST)
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Group A,

Subspaces in the diagonal-T basis are convenient to define three non-equivalent
1D irreps: 1, 1/, 1”

The full table of all irreps of Ag:

irrep S T

1 S5=1 T=1

1/ S5=1 T=w

1 S=1 T=u
3 matrix S matrix T

Notice: the trivial singlet 1 is invariant under the entire Ay.
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Symmetry-based models

Building symmetry-based models
with the example of A4 3HDM

Igor Ivanov (CFTP, IST) eutrino mass models UW, January 2018  24/53




Symmetry-based models
0@00000

Tensor product decomposition

Models begin with lagrangian £, which encodes all interactions.

Terms in the lagrangian are products of various fields:
L=+ Xs(PIP2)? + -+ YIQubadry + -

We assume that each set of fields (LH fermions, RH fermions, Higgses, etc)
transforms as a certain representation of group G.

We want to find which combinations are fully G-invariant.

We must use the tensor product of representations. )
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Tensor product decomposition

Take 3D vectors a; = (a1, a2, a3) and bj = (by, b, b3) and construct their tensor
product a;b;. How does it transform under SO(3) rotations?

(3b) 1 (35)
5 tewo v |5 (aiby+ab) =0

=[axb]/2

a,-bj = 5U

which means that inside the 9D tensor a;b; there are three invariant subspaces:
singlet, o< §jj; triplet, o< €jj vk, and 5-plet, the traceless symmetric part of a;b;.

Group-theoretically: 3®3=1®3®5.

This is how tensor product decomposition (= Clebsch-Gordan coefs) works in the

group SO(3).
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Tensor product decomposition

For each group, these rules are different (= Clebsch-Gordan coefs are different).

For A4, if a = (a1, a2, as) and b = (b, by, b3) are two irreducible triplets, then
33=10101"3®3,33,.

The explicit expressions for their components (in the S-symmetric basis!) are:

1 = aiby +axby + azbs,

1" = a1by +w?arby + washs,
1" = aib +washy + w?ashs,
31 = (a2bs,a3b1,a1b0),
3, = (ashp,a1bs,axby).

The products of singlets are intuitive: 1’ ® 1”7 =1, etc.
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Picking up symmetric terms

When building symmetry-constrained lagrangians, we
@ write products of fields, each transforming as a certain irrep of the group G,
@ perform tensor product decomposition,

@ out of all final irreps, keep only trivial singlets as they are G-symmetric.
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Picking up symmetric terms

When building symmetry-constrained lagrangians, we
@ write products of fields, each transforming as a certain irrep of the group G,
@ perform tensor product decomposition,
@ out of all final irreps, keep only trivial singlets as they are G-symmetric.

For example, in three-Higgs-doublet model based on group A, we have three

Higgs doublets ¢, ®,, ®3. In general, the quadratic part of the potential has
nine terms ¢; ®;.

But knowing that, for the group A4, 3®3 =191 $ 1" & 31 & 3,, we keep only
the singlet. Therefore, the Higgs potential is

V= —m? (cb{cbl +old, + ¢§¢3) TV,

Igor Ivanov (CFTP, IST) Neutrino mass models 3 UW, January 2018  28/53
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Picking up symmetric terms

For the quartic part, we decompose (CDITGDJ-)(CDZd),),
(B23)@(BR3)]ym=[(101a1"®3183)0 (1l 1" ® 31 ® 3)]sym
=1®14+101"+0B1®31)+3293)+B1®32)+...,

—_—— — — N—

=16... =1®... =1d...

which gives five trivial singlets 1:

2
Vi M (0]01 + o]0z + 0l0s)

+

Ao [(@]01)(0]02) + (9]02)(®]03) + (9] 03)(9] 01)]

+

A [(@]@2)(0]01) + (0]03)(0]0) + (9] 01)(0]03)]

+ (A [(@]02)2 + (0]03)2 + (®101)%] + hc.)

Igor Ivanov (CFTP, IST) Neutrino mass models 3 UW, January 2018  29/53



Symmetry-based models
000000@

Spontaneous symmetry breaking

In this way, we get the full A;-symmetric potential in 3HDM.

But the minimum of this potential (vi, v2, v3) may break this group, fully or
completely. Which options are available for the minimum in the Az-symmetric

3HDM?

Igor Ivanov (CFTP, IST) Neutrino mass models 3 UW, January 2018  30/53
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Spontaneous symmetry breaking

In this way, we get the full A;-symmetric potential in 3HDM.

But the minimum of this potential (vi, v2, v3) may break this group, fully or

completely. Which options are available for the minimum in the Az-symmetric
3HDM?

It turns out that vevs (vq, v», v3) cannot be arbitrary! Depending on paremeters
A, only four vev alignments are possible [Degee, Ivanov, Keus, 2012]:

® (1,0,0). The residual symmetry group is Zp X Zj.
@ (1,1,1). The residual symmetry group is Zs.

® (1,w,w?). The residual symmetry group is Zs.

@ (1,e/®,0). The residual symmetry group is Z,.

Conclusion: it is impossible to break the A; symmetry completely.
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Extending A; 3HDM to charged leptons

Extending A; symmetry of 3HDM to the Majorana LH neutrino mass matrix
[Gonzales Felipe, Serodio, Silva, 2013].

Charged lepton Yukawa interactions:
LTYU‘? b, ﬁRj + h.c.
~—~
3

We know that &, = (¥, ®,, ®3) transforms as triplet 3 under Ay.

Therefore, the product of L; and /g; L LRj
must also transform as a triplet 3 to 3 3
produce the trivial singlet 1 at the end. (1, 1,1 3

3 (1,1,17)

Igor Ivanov (CFTP, IST)
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Extending A; 3HDM to charged leptons

For example, if L; ~ (1,1/,1”) and (g; ~ 3, we get:

LiY0lry = yily ®ulpj+yolo Dol +ysls ®olg
—— ——" ——
1 1// 1/

= yiLi(P1lrr + Palro + P3lg3)
+ yoLo(P1lr1 + walry 4 wW?3lrs3)
+ y3L3(P1lr1 + WP ol + wdslrs3)

UW, January 2018
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Extending A; 3HDM to charged leptons

For example, if L; ~ (1,1/,1”) and (g; ~ 3, we get:

LiY0lry = yily ®ulpj+yolo Dol +ysls ®olg
—— ——" ——
1 1// 1/

= yiLi(P1lrr + Palro + P3lg3)
+ yoLo(P1lr1 + walry 4 wW?3lrs3)
+ y3L3(P1lr1 + WP ol + wdslrs3)
Pick up a vev alignment, for example, v(1,1,1). Then, charged lepton mass
matrix is
1 i i
Mi=v| y» wy, Wy |,
3 w2Y3 wys

which, after diagonalization gives my = {y1v, ysv, ysv} — OK.
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Extending A, 3HDM to Majorana neutrinos

Then, include Majorana neutrino terms:
(LT @) C(B)L).

Group-theoretically, we see

(Leol)yo (P @ )
3 3

Since L; ~ (1,1/,1"), the product L ® L also contains 1, 1/, and 1”, which are

coupled to 3 ® 3:

g
A
8
A

+ Bl + Lol + Laly)(B181 + 2828, + wsby)

(LiLy 4 Lols + L3Lo) (1 D1 + Drdy + P3ds)

(Lila + LaLy + L3L3) (9101 4+ wdody + w?d3d3)
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Extending A, 3HDM to Majorana neutrinos

matrix:

2
v
My_gl

Next, substituting the chosen vev alignment (1,1,1), we get neutrino mass

2A
We obtain three degenerate neutrinos!

extending A; symmetry to charged leptons and

Majorana neutrinos with irrep assignment

O O
= O O
o = O

B, A1 e 8
and with the vev alignment (¢°) = v(1,1,1) is
ruled out by experiment.

Igor Ivanov (CFTP, IST)
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Extending A, 3HDM to Majorana neutrinos

One needs to check all possible irrep assignments and all possible vev alignments.
This was done in [Gonzales Felipe, Serodio, Silva, 2013].

The result is: all possible combinations are ruled out experimentally. The
problems can be:

@ massless charged leptons,
@ degenerate neutrino masses,

@ insufficient neutrino mixing.
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Symmetry-based models
0000e

Extending A, 3HDM to Majorana neutrinos

One needs to check all possible irrep assignments and all possible vev alignments.
This was done in [Gonzales Felipe, Serodio, Silva, 2013].

The result is: all possible combinations are ruled out experimentally. The
problems can be:

@ massless charged leptons,
@ degenerate neutrino masses,
@ insufficient neutrino mixing.

Thus, 3HDM scalar sector offers too little freedom to produce viable Majorana
neutrino masses through the A; symmetry group.

One needs to enlarge the scalar sector to get a viable neutrino sector.
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TBM PMNS from A; symmetry
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Classic seesaw again

Leptonic Yukawas:

_ . 1—
L,'Y,-fq)ﬁRj + L; Y,;-/(DI/RJ' + E(VRI)C(MR)UVRj + h.c.

_ Lr (0 mp) ()
= ZLMMR“FE {VLa (vr) } (mg MR) ( Ve + h.c.

which leads to
MV = —mD(MR)_lmE.

The classic seesaw does not constrain matrices mp and Mg — no predictions on
M, — no predictions on Uppns.
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TBM PMNS from Ay symmetry
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Flavons

Flavor symmetry-based modes assume that L;, (¢g);, and (vg); transform
in certain way under a discrete flavor symmetry group G.

Problem: combining L, g, and vg, via only Higgs doublets leads to
contradiction to experiment!

Recipe: leave the poor ® alone! Add flavons ¢,: new auxiliary scalar
fields, which will take care of the shape of the fermion sector.
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Flavons

Flavons
@ EW singlets — play no role in electroweak symmetry breaking;

@ transform non-trivially under G:

instead of  Yj;L;®lg; we use Y,f%(E¢ZRj).

Symmetry under G strongly constraints Y.

@ they get vev after minimization of flavon scalar potential v, — (p,) —
spontaneous breaking of flavor symmetry induces usual Yukawa interactions

(pa)
Y= ViR
a

with the resulting Yj; constrained by flavor symmetry.
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A, symmetric model

L e pr 7R vr @ ‘ or s &
sU2, 2 1 1 1 1 2|1 1 1
Ag 3 1 1/ 1" 3 1 3 3 1

We assume:
@ LH doublets L and RH neutrinos v form A4 triplets;

@ right charged leptons eg, 1ig, Tk form three different A4 singlets 1,1’,1”;
@ add three sorts of flavons:

e As-triplet o7 helps join L with {g (— charged lepton masses),
e Ay-triplet ps produces one Majorana term for vg,
e Ay-singlet £ produces another Majorana term for vg.

= &
UW, January 2018  39/53
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A, symmetric model

Warning: this construction is not yet self-consistent! So far nothing explains why
w71 and s play different roles!

To forbid “wrong terms”, we introduce yet another quantum number: “charge”
under the group Zs.

~|

erR MR TR VR P | oT s &
SuU@2), 2 1 1 1 1 2 1 1 1
Ay 3 1 1 1”7 3 1 3 3 1
Z3 W w w o w w1 1 w o ow

The true symmetry group of the model is A; X Z3 but | will skip Z3 for clarity.

[m] =5 = =
Igor Ivanov (CFTP, IST) Neutrino mass models 3 UW, January 2018  40/53
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A, symmetric model

TMB mixing from A; symmetry [Altarelli, Feruglio, 2006]

L erR MR TR VR @ ‘ et s &
5U(2)1_ 2 1 1 1 1 2 1
3

1 1

Ay 7 1”7 3 1] 3 3 1
L = charged leptons separately for e, i, and 7
+Dirac mass term + two Majorana mass terms
Ye (7
= =—(L d+ = (L ) L 0]
A (LoT) er +A(90T)MR +A(<PT)TR
3x3—1 1 3x3—17 1 3x3—1/ 17
+yb (Lvr) ® + v, (VRVR)E +b (VRVRYS) + h.c.
~—— —— ——
3x3—1 (3x3)1 x1 3x3x3—1
o = = = = QR
Igor Ivanov (CFTP, IST) i
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A, symmetric model

It is convenient to work in the T-diagonal basis — charged lepton mass matrix
will be diagonal.

Contractions written explicitly (for explicit expressions, see e.g. [Altarelli,
Feruglio, 1002.0211]):

(Cror)r = el(er)r +a(er)s +7(eT)2
(CroT)1r e(er)2 +ac(er) +7o(eT)3
(CroT)r e(er)s +oc(er)2 +7r(eT)1

and (VrVRYS)1 gives

2 0 0 0 0o -1 0 -1 0
VR; 0 0 -1 ]Jesi+| O 2 0 Jesa+| =1 0 0 |pss|vg
0o -1 0 -1 0 O 0 0 2
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Flavons alignment

The flavon potential is also A; symmetric and has “Mexican hat” form. It
produces nonzero vevs with the following alignment:

{p7) < (1,0,0),  (ps) o< (1,1,1), (£) #0.

This is the vev alignment which we postulate when building our model.

Igor Ivanov (CFTP, IST)
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Flavons alignment

The flavon potential is also A; symmetric and has “Mexican hat” form. It
produces nonzero vevs with the following alignment:

(p1) < (1,0,0), (ps) x(1,1,1), (&) #0.
This is the vev alignment which we postulate when building our model.
0
0

w2

10 |
S—=—=- 2 -1 2 , T = 0 w — e27‘l’l/3.
0 O

® (p1) conserves T (subgroup Z3),

‘PT 4;05
@ (ps) conserves S (and TST?, subgroup / \
T X Zo).
? ?) 23 Liy X Loy
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Consequences of flavons alignment

Charged leptons (p71) ~ (1,0,0):

L ) L 0} L 0}

/\( LoT)er® + /\( LoT)ur® + /\( Lor)Tr

— 1) (yeEeR + YMEMR + yTETR) ® + h.c.
me 0 0 er

— (er,m,m){ 0 m, O ur | +h.c.
0 0 mr TR
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Consequences of flavons alignment

Dirac mass matrix:

yo(Lvg)® = ypor;

O O =
= O O
o = O
X
3
©

which after EWSB gives v;(mp);jvg; with

L (100
mD:%001
010

Igor Ivanov (CFTP, IST)
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Consequences of flavons alignment

Majorana mass matrix for vg:

0 0 2 -1 -1
0O 1 |+b|f -1 2 -1 .
1 0 =i =i 2
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Consequences of flavons alignment

Overall result:

My = —mD(MR)_lmD 9
where
g 1 00 at+2b —b
m=222100 1], Me=| -b 2b
V2 01 0 —-b a-—-b
Then we will need to diagonalize it:

D, =U"M,U,
and, since the charged lepton matrix is already diagonal,

Upuns = U.

Igor Ivanov (CFTP, IST)
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Inverting Mg

The simple form of

a+2b —b —b
Mg = —b 2b  a—b
-b a—b 2b

allows to explicitly calculate eigenvalues and eigenvectors:

. 2
AN=3b+ta, v=—|[-11],
6\ -1
1
1
)\:3, \7:7 1 )
3\ 1
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Inverting Mg

This means that

2 _ 1
3 V6
1 1
V3 V3
0 1
Nz
Or, in short

0 0 3b—a

~% \ [a+t2b b
1 —b 2b
_:{E, —b a—>b
V2
3b+a 0
= 0 a
U"MgrU = Dg

& UDRUT = Mg.

SHS-S-

b ©

Igor Ivanov (CFTP, IST)
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Calculating M,

Therefore,
1
1 3b+a 0 0
Mgt =UD*UT=u o 1 o JUT
0 0 3b17a
The light neutrino mass matrix is therefore
M, = mpMg'm}=mp-UD'U™ - m]

= U-U'mpU-Dg*-U"mjUu-UT.

We need to calculate U™ mpU.
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Calculating M,

Notice that
VoV 1 00
mp=22210 0 1],
V2 010
is exactly like the a-term of Mg. Therefore,
VoV 1 0 0
UimpU=22210 1 o0
V2 0 0 -1

Overall result:

2.2
M, = U(UTmpU) DR (UTmLU) UT = yDzV UDR*UT.
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Consequences
1
0 0
2402 3b+a
M,=2=u 00 1 0 U
1
0 0 3b—a

@ U diagonalizes M, — U = Uppps is of the TBM form;
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000080

0 0
3b+a
M,=8Zu| 00 L0 | uT.
1
0 0 3b—a

@ U diagonalizes M, — U = Uppps is of the TBM form;
@ neutrino masses are:

2.2 2.2 2.2
- yDV _yDV _yDV
my = ,  m2 , M3
3b+ a a

T 3b-a’
Very heavy flavon parameters a, b — very light neutrinos.

@ mass sum rule:

which is a prediction of the A, model! Be careful: a and b are complex.

@ both NO and IO are possible; the sum rule implies a lower bound!
Igor Ivanov (CFTP, IST)
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Other symmetry groups

This is a typical symmetry-based recipe:
@ pick up G, select irreps for L, {r, vg, add flavons at will;
@ choose flavon vev alignment among possible choices;
@ calculate My, mp, Mr — calculate M,;
o (analytically) diagonalize My, M, — derive Upmns;
@ derive sum rule for my 5 3.

Many series of finite groups have been studied [Holthausen, Lim, Lindner, 2012]
and some are close to the experimental PMNS matrix.
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