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Quark masses in SM: single generation

Yukawa interactions provide masses to quarks:

−L(d)
Y = yd(Q̄LΦdR + d̄RΦ†QL)→ yd(ūL, d̄L)

(
0
v√
2

)
dR + h.c .

=
ydv√

2
(d̄LdR + d̄RdL) ≡ md d̄d .

− L(u)
Y = yu(Q̄LΦ̃uR + ūRΦ̃†QL)→ yu(ūL, d̄L)

(
v√
2

0

)
uR + h.c . ≡ mu ūu .
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Quark masses and mixing

Three generations QLi , dRi , uRi , i = 1, 2, 3:

di = (d , s, b) ui = (u, c , t) .

Yukawa interactions are parametrized with coupling matrices Γij and ∆ij :

−LY = Q̄LiΓijΦdRj + Q̄Li∆ij Φ̃uRj + h.c .

→ d̄Li (Md)ijdRj + ūLi (Mu)ijuRj + h.c .

where the 3× 3 mass matrices are

(Md)ij = Γij
v√
2
, (Mu)ij = ∆ij

v√
2

and are, in general, non-diagonal and complex.
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CKM matrix

Md is diagonalized by dL = VdLd
phys
L , dR = VdRd

phys
R , and so is Mu:

V †dL Md VdR = Dd = diag(md , ms , mb) ,

V †uL Mu VuR = Du = diag(mu, mc , mt) ,

But then the charged current matrix can become non-trivial:

ūLi γ
µW+

µ dLi = ūphysLi γµW+
µ Vijd

phys
Lj , where Vij = V †uLVdL 6= δij .

Conclusion

if coupling matrices Γij and ∆ij are distinct,
then quark mass eigenstates 6= charged current eigenstates.

The CKM matrix V (Cabibbo-Kobayashi-Maskawa mixing matrix) describes how

charged currents mix quarks from different generations.
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Lepton mixing: Dirac

Massive neutrinos implies that they are either Dirac or Majorana.

For Dirac neutrinos, we add νRi , i = 1, 2, 3, write only Dirac mass term, get
lepton mass matrices M` and Mν , and diagonalize them as before:

U†`L M` U`R = D` = diag(me , mµ, mτ ) ,

U†νLMν UνR = Dν = diag(m1, m2, m3) ,

The charged weak currents are written in the generation space as

`Liγ
µW−µ νLi︸ ︷︷ ︸

original

= (eL, µL, τL)γµW−µ

 νe
νµ
ντ


︸ ︷︷ ︸

flavor basis

≡ (eL, µL, τL)γµW−µ UPNMS

 ν1

ν2

ν3


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Lepton mixing: Dirac

`Liγ
µW−µ νLi︸ ︷︷ ︸

original

= (eL, µL, τL)γµW−µ

 νe
νµ
ντ


︸ ︷︷ ︸

flavor basis

≡ (eL, µL, τL)γµW−µ UPNMS

 ν1

ν2

ν3



Flavor basis is defined as the charged lepton mass basis:

`Li = U``
mass
L , νLi = Uνν

mass
L

Therefore, the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is

UPMNS = U†`Uν .

If M` is already diagonal, then UPMNS = Uν .

Igor Ivanov (CFTP, IST) Neutrino mass models 3 UW, January 2018 7/53



PMNS matrix Basics of group theory Symmetry-based models TBM PMNS from A4 symmetry

Lepton mixing: Dirac

 νe
νµ
ντ

 = UPNMS

 ν1

ν2

ν3

 .

After removing phases, the standard parametrization is

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23


Since Mν is diagonalized by bi-unitary transformation

U†νLMν UνR = Dν = diag(m1, m2, m3) ,

some phases from UνL can be moved to UνR .

PMNS matrix UPMNS contains only one irremovable phase.
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Lepton mixing: Majorana

For Majorana neutrinos, the mass matrix is

νTLi (Mν)ij CνLj = (νmass
L )T UT

νMνUν Cνmass
L = (νmass

L )TDν Cνmass
L

with the same matrix Uν on both sides.

One can always find such Uν to make Dν diagonal with real posivite values. But
once this is done, there is no freedom left to remove phases!

UMajorana
PMNS = UPMNS ·

 1 0 0
0 e iα 0
0 0 e iβ

 .

These two additional Majorana phases are the echo of the complex neutrino mass
matrix Mν .
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Lepton mixing

UPMNS is close to the tri-bimaximal mixing pattern [Harrison, Perkins, Scott,
2002]:

UTBM =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2


Nonzero s13 highlights deviation, but proximity of UPMNS to the TBM is
indicative of some symmetry.
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Basics of finite group theory
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Groups

Set G is a group if it satisfies the following four axioms:

closure of G under composition (usually called multiplication):

for any g1, g2 ∈ G , define their product g1 · g2 ∈ G ;

the multiplication is associative: g1 · (g2 · g3) = (g1 · g2) · g3 for all
g1, g2, g3 ∈ G ;

there exists a special element called identity element e with the properties:

g · e = e · g = g for any g ∈ G ;

every element is invertible: for any g ∈ G , there exists another element in G
(denoted g−1) such that

g−1 · g = g · g−1 = e .
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Groups

In addition, if g · h = h · g for all elements g , h ∈ G , the group is called
abelian. If it fails at least for one pair, the group is called non-abelian.

Non-abelian groups are much, much, much more complicated than
abelian groups.

Groups arise in physics in the context of transformations and symmetries.
It is the most appropriate language to describe hidden consequences of
physics formulas or laws.
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Groups

Groups can be finite or infinite.

A finite group G has finite number of elements: G = {e, g2, g3, . . . , gn}. Its
size n is called the order of the group and is denoted |G |.

In a finite group, successive multiplications will sooner or later terminate in
e. Pick up any g ∈ G and consider successive powers:

g1 ≡ g g2 ≡ g · g , g3 ≡ g · g · g , gk ≡ g · · · · · g︸ ︷︷ ︸
k times

.

Then, there must exist an integer p such that gp = e. This integer p is
called the order of the element g .

Infinite groups can be discrete or continuous (= topological).
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Basics examples

Integers Z and reals R are groups under addition. The identity element is 0.
They are not groups under multiplication!

Reals on the interval [0, 1] form a group under addition with periodic
boundary condition (0.999 · · · = 0). These are fractional part of reals: R/Z.

Complex numbers with |z | = 1 form under multiplication the circle group, or
the rephasing group U(1).

The two last groups are isomorphic: R/Z ' U(1).

Cyclic groups Zn for any n > 1 are defined as

Zn = {e, a, a2, a3, . . . , an−1} with condition an = e ,

isomorphic to integers modulo n under addition: Z/nZ.
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Presentation of a group

How would you describe a finite group?

Simplest choice: write the multiplication table |G | × |G |. Very impractical.

Much better choice: via generators and relations.

Generators a, b, c , . . . form a subset of elements of G such that any g ∈ G
can be written and their product.

Generators are independent elements but they satisfy some constraints
(relations).

Group presentation: G = 〈 generators | their relations 〉.

A cyclic group is generated by a: Zn = 〈a | an = e〉.
Direct product of cyclic groups: Zn × Zm = 〈a, b | an = bm = e, ab = ba〉.
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Representations of abelian groups

A representation of the group G is, colloquially speaking, a way of rewriting it as
a group of matrices which act on some k-dimensional vector space.

The set of matrices must obey exactly the same rules as the elements of G , but
otherwise there is no constraints on their form or dimension k. For example,

Z2 = (e, a) : a =

(
0 1
1 0

)
or

(
1 0
0 −1

)

Z3 = (e, b, b2) : b =

 0 1 0
0 0 1
1 0 0

 or

 1 0 0
0 ω 0
0 0 ω2

 .

where ω ≡ exp(2πi/3), ω3 = 1.
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Representations of abelian groups

General theorem: for any abelian unitary group, the representing matrices can be
always made diagonal by a basis choice.

Example: Z2 × Z2 = (e, a, b, ab) with a faithfull 2D representation:

e =

(
1 0
0 1

)
, a =

(
1 0
0 −1

)
, b =

(
−1 0
0 1

)
, ab =

(
−1 0
0 −1

)
.

In this basis, each 1D subspace remains invariant; and the diagonal numbers form
a 1D representation.

subspace

(
1

0

)
a = 1, b = −1 ,

subspace

(
0

1

)
a = −1, b = 1 .

In general: irreducible representations of unitary abelian groups are 1D.
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Working example: A4
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Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

Sn, group of all permutations of n elements. Its order is |Sn| = n!. The
smallest group is S2 ' Z2. The smallest non-abelian is

S3 = 〈a, b|a2 = b3 = e, ab = b2a〉 .

An, group of even-signature permutations of n elements; |An| = n!/2.

Symmetry groups of regular polygons and polyhedra:

Symmetry group of equilateral triangle ' S3;
Symmetry group of tetrahedron ' A4;
Symmetry group of cube ' S4.

Irreducible representations of non-abelian groups have d > 1.
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Group A4

A4 is the smallest group with irreducible 3D representation:

A4 = 〈S ,T |S2 = T 3 = e, (ST )3 = e〉 , |A4| = 12 .

It contains:

three elements of order 2: S , T 2ST , TST 2;

together with e, they form the Klein subgroup Z2 × Z2;

four cycles of order 3 generated by T , ST , TS , T 2ST 2 (8 elements of order
3 in total).
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A4: transformation S
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A4: transformation T
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Group A4

3D irreducible representation: diagonal-S basis

order 2:

S =

 1 0 0
0 −1 0
0 0 −1

 , T 2ST =

 −1 0 0
0 1 0
0 0 −1

 TST 2 =

 −1 0 0
0 −1 0
0 0 1


order 3:

T =

 0 1 0
0 0 1
1 0 0

 , ST =

 0 1 0
0 0 −1
−1 0 0

 ,

TS =

 0 −1 0
0 0 −1
1 0 0

 , T 2ST 2 =

 0 −1 0
0 0 1
−1 0 0

 ,

and their squares.
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Group A4

3D irreducible representation: diagonal-T basis

One can switch to another basis in the same 3D space, in which T becomes
diagonal.

T =

 1 0 0
0 ω 0
0 0 ω2

 , ω ≡ e2πi/3 , ω3 = 1 .

Then, S takes an “ugly” shape:

S =
1

3

 −1 2 2
2 −1 2
2 2 −1

 .

Nevertheless, all group multiplications hold: S2 = e, etc
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Group A4

Subspaces in the diagonal-T basis are convenient to define three non-equivalent
1D irreps: 1, 1′, 1′′

The full table of all irreps of A4:

irrep S T

1 S = 1 T = 1
1′ S = 1 T = ω
1′′ S = 1 T = ω2

3 matrix S matrix T

Notice: the trivial singlet 1 is invariant under the entire A4.
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Building symmetry-based models

with the example of A4 3HDM
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Tensor product decomposition

Models begin with lagrangian L, which encodes all interactions.

Terms in the lagrangian are products of various fields:

L = · · ·+ λ5(Φ†1Φ2)2 + · · ·+ Y a
ijQLiΦadRj + · · ·

We assume that each set of fields (LH fermions, RH fermions, Higgses, etc)
transforms as a certain representation of group G .

We want to find which combinations are fully G -invariant.

We must use the tensor product of representations.
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Tensor product decomposition

Take 3D vectors ai = (a1, a2, a3) and bj = (b1, b2, b3) and construct their tensor
product aibj . How does it transform under SO(3) rotations?

aibj = δij
(~a~b)

3
+ εijk · vk︸︷︷︸

=[~a×~b]/2

+

[
1

2
(aibj + ajbi )− δij

(~a~b)

3

]
,

which means that inside the 9D tensor aibj there are three invariant subspaces:
singlet, ∝ δij ; triplet, ∝ εijkvk , and 5-plet, the traceless symmetric part of aibj .

Group-theoretically: 3⊗ 3 = 1⊗ 3⊗ 5.

This is how tensor product decomposition (= Clebsch-Gordan coefs) works in the
group SO(3).
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Tensor product decomposition

For each group, these rules are different (= Clebsch-Gordan coefs are different).

For A4, if a = (a1, a2, a3) and b = (b1, b2, b3) are two irreducible triplets, then

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 31 ⊕ 32 .

The explicit expressions for their components (in the S-symmetric basis!) are:

1 = a1b1 + a2b2 + a3b3 ,

1′ = a1b1 + ω2a2b2 + ωa3b3 ,

1′′ = a1b1 + ωa2b2 + ω2a3b3 ,

31 = (a2b3, a3b1, a1b2) ,

32 = (a3b2, a1b3, a2b1) .

The products of singlets are intuitive: 1′ ⊗ 1′′ = 1, etc.
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Picking up symmetric terms

When building symmetry-constrained lagrangians, we

write products of fields, each transforming as a certain irrep of the group G ,

perform tensor product decomposition,

out of all final irreps, keep only trivial singlets as they are G -symmetric.

For example, in three-Higgs-doublet model based on group A4, we have three
Higgs doublets Φ1, Φ2, Φ3. In general, the quadratic part of the potential has
nine terms Φ†i Φj .

But knowing that, for the group A4, 3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 31 ⊕ 32, we keep only
the singlet. Therefore, the Higgs potential is

V = −m2
(

Φ†1Φ1 + Φ†2Φ2 + Φ†3Φ3

)
+ V4
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Picking up symmetric terms

For the quartic part, we decompose (Φ†i Φj)(Φ†kΦl),

[(3⊗ 3)⊗ (3⊗ 3)]sym = [(1⊕ 1′ ⊕ 1′′ ⊕ 31 ⊕ 32)⊗ (1⊕ 1′ ⊕ 1′′ ⊕ 31 ⊕ 32)]sym

= 1⊗ 1 + 1′ ⊗ 1′′ + (31 ⊗ 31)︸ ︷︷ ︸
=1⊕...

+ (32 ⊗ 32)︸ ︷︷ ︸
=1⊕...

+ (31 ⊗ 32)︸ ︷︷ ︸
=1⊕...

+ . . . ,

which gives five trivial singlets 1:

V4 = λ1

(
Φ†

1Φ1 + Φ†
2Φ2 + Φ†

3Φ3

)2

+ λ2

[
(Φ†

1Φ1)(Φ†
2Φ2) + (Φ†

2Φ2)(Φ†
3Φ3) + (Φ†

3Φ3)(Φ†
1Φ1)

]
+ λ3

[
(Φ†

1Φ2)(Φ†
2Φ1) + (Φ†

2Φ3)(Φ†
3Φ2) + (Φ†

3Φ1)(Φ†
1Φ3)

]
+

(
λ4

[
(Φ†

1Φ2)2 + (Φ†
2Φ3)2 + (Φ†

3Φ1)2
]

+ h.c.
)
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Spontaneous symmetry breaking

In this way, we get the full A4-symmetric potential in 3HDM.

But the minimum of this potential (v1, v2, v3) may break this group, fully or
completely. Which options are available for the minimum in the A4-symmetric
3HDM?

It turns out that vevs (v1, v2, v3) cannot be arbitrary! Depending on paremeters
λ, only four vev alignments are possible [Degee, Ivanov, Keus, 2012]:

(1, 0, 0). The residual symmetry group is Z2 × Z2.

(1, 1, 1). The residual symmetry group is Z3.

(1, ω, ω2). The residual symmetry group is Z3.

(1, e iα, 0). The residual symmetry group is Z2.

Conclusion: it is impossible to break the A4 symmetry completely.
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Extending A4 3HDM to charged leptons

Extending A4 symmetry of 3HDM to the Majorana LH neutrino mass matrix
[Gonzales Felipe, Serodio, Silva, 2013].

Charged lepton Yukawa interactions:

LiY
a
ij Φa︸︷︷︸

3

`Rj + h.c .

We know that Φa = (Φ1,Φ2,Φ3) transforms as triplet 3 under A4.

Therefore, the product of Li and `Rj
must also transform as a triplet 3 to
produce the trivial singlet 1 at the end.

Li `Rj

3 3
(1, 1’, 1”) 3

3 (1, 1’, 1”)
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Extending A4 3HDM to charged leptons

For example, if Li ∼ (1, 1′, 1′′) and `Rj ∼ 3, we get:

LiY
a
ij Φa`Rj = y1L1 Φa`Rj︸ ︷︷ ︸

1

+y2L2 Φa`Rj︸ ︷︷ ︸
1′′

+y3L3 Φa`Rj︸ ︷︷ ︸
1′

= y1L1(Φ1`R1 + Φ2`R2 + Φ3`R3)

+ y2L2(Φ1`R1 + ωΦ2`R2 + ω2Φ3`R3)

+ y3L3(Φ1`R1 + ω2Φ2`R2 + ωΦ3`R3)

Pick up a vev alignment, for example, v(1, 1, 1). Then, charged lepton mass
matrix is

M` = v

 y1 y1 y1

y2 ωy2 ω2y2

y3 ω2y3 ωy3

 ,

which, after diagonalization gives m` = {y1v , y2v , y3v} → OK.
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Extending A4 3HDM to Majorana neutrinos

Then, include Majorana neutrino terms:

cabij (LTi Φ̃∗a) C (Φ̃†bLj) .

Group-theoretically, we see

(L⊗ L)⊗ ( Φ̃︸︷︷︸
3

⊗ Φ̃︸︷︷︸
3

)

Since Li ∼ (1, 1′, 1′′), the product L⊗ L also contains 1, 1′, and 1′′, which are
coupled to 3⊗ 3:

g1

Λ
(L1L1 + L2L3 + L3L2)(Φ̃1Φ̃1 + Φ̃2Φ̃2 + Φ̃3Φ̃3)

+
g2

Λ
(L1L2 + L2L1 + L3L3)(Φ̃1Φ̃1 + ωΦ̃2Φ̃2 + ω2Φ̃3Φ̃3)

+
g3

Λ
(L1L3 + L2L2 + L3L1)(Φ̃1Φ̃1 + ω2Φ̃2Φ̃2 + ωΦ̃3Φ̃3)
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Extending A4 3HDM to Majorana neutrinos

Next, substituting the chosen vev alignment (1, 1, 1), we get neutrino mass
matrix:

Mν =
g1v

2

2Λ

 1 0 0
0 0 1
0 1 0

 .

We obtain three degenerate neutrinos!

Conclusion

extending A4 symmetry to charged leptons and
Majorana neutrinos with irrep assignment

Φ ∼ 3 , L ∼ (1, 1′, 1′′) , `R ∼ 3

and with the vev alignment 〈φ0〉 = v(1, 1, 1) is
ruled out by experiment.
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Extending A4 3HDM to Majorana neutrinos

One needs to check all possible irrep assignments and all possible vev alignments.
This was done in [Gonzales Felipe, Serodio, Silva, 2013].

The result is: all possible combinations are ruled out experimentally. The
problems can be:

massless charged leptons,

degenerate neutrino masses,

insufficient neutrino mixing.

Thus, 3HDM scalar sector offers too little freedom to produce viable Majorana
neutrino masses through the A4 symmetry group.

One needs to enlarge the scalar sector to get a viable neutrino sector.
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TBM PMNS from A4 symmetry
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Classic seesaw again

Leptonic Yukawas:

LiY
`
ij Φ`Rj + LiY

ν
ij Φ̃νRj +

1

2
(νRi )c(MR)ijνRj + h.c .

= `LM``R +
1

2

[
νL, (νR)c

]( 0 mD

mT
D MR

)(
(νL)c

νR

)
+ h.c .

which leads to
Mν = −mD(MR)−1mT

D .

The classic seesaw does not constrain matrices mD and MR → no predictions on
Mν → no predictions on UPMNS .
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Flavons

Flavor symmetry-based modes assume that Li , (`R)i , and (νR)i transform
in certain way under a discrete flavor symmetry group G .

Problem: combining L, `R , and νR , via only Higgs doublets leads to
contradiction to experiment!

Recipe: leave the poor Φ alone! Add flavons ϕa: new auxiliary scalar
fields, which will take care of the shape of the fermion sector.
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Flavons

Flavons

EW singlets → play no role in electroweak symmetry breaking;

transform non-trivially under G :

instead of YijLiΦ`Rj we use Y a
ij

ϕa

Λ
(LiΦ`Rj) .

Symmetry under G strongly constraints Y a
ij .

they get vev after minimization of flavon scalar potential ϕa → 〈ϕa〉 →
spontaneous breaking of flavor symmetry induces usual Yukawa interactions

Yij =
∑
a

Y a
ij

〈ϕa〉
Λ

.

with the resulting Yij constrained by flavor symmetry.
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A4 symmetric model

L eR µR τR νR Φ ϕT ϕS ξ

SU(2)L 2̄ 1 1 1 1 2 1 1 1

A4 3 1 1′ 1′′ 3 1 3 3 1

We assume:

LH doublets L and RH neutrinos νR form A4 triplets;

right charged leptons eR , µR , τR form three different A4 singlets 1, 1′, 1′′;

add three sorts of flavons:

A4-triplet ϕT helps join L with `R (→ charged lepton masses),
A4-triplet ϕS produces one Majorana term for νR ,
A4-singlet ξ produces another Majorana term for νR .
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A4 symmetric model

Warning: this construction is not yet self-consistent! So far nothing explains why
ϕT and ϕS play different roles!

To forbid “wrong terms”, we introduce yet another quantum number: “charge”
under the group Z3.

L eR µR τR νR Φ ϕT ϕS ξ

SU(2)L 2̄ 1 1 1 1 2 1 1 1

A4 3 1 1′ 1′′ 3 1 3 3 1

Z3 ω2 ω ω ω ω 1 1 ω ω

The true symmetry group of the model is A4 × Z3 but I will skip Z3 for clarity.
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A4 symmetric model

TMB mixing from A4 symmetry [Altarelli, Feruglio, 2006]

L eR µR τR νR Φ ϕT ϕS ξ

SU(2)L 2̄ 1 1 1 1 2 1 1 1

A4 3 1 1′ 1′′ 3 1 3 3 1

L = charged leptons separately for e, µ, and τ

+Dirac mass term + two Majorana mass terms

=
ye
Λ

(LϕT )︸ ︷︷ ︸
3×3→1

eR︸︷︷︸
1

Φ +
yµ
Λ

(LϕT )︸ ︷︷ ︸
3×3→1′′

µR︸︷︷︸
1′

Φ +
yτ
Λ

(LϕT )︸ ︷︷ ︸
3×3→1′

τR︸︷︷︸
1′′

Φ

+yD (LνR)︸ ︷︷ ︸
3×3→1

Φ̃ + ya (νRνR)ξ︸ ︷︷ ︸
(3×3)1×1

+yb (νRνRϕS)︸ ︷︷ ︸
3×3×3→1

+ h.c .
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A4 symmetric model

It is convenient to work in the T -diagonal basis → charged lepton mass matrix
will be diagonal.

Contractions written explicitly (for explicit expressions, see e.g. [Altarelli,
Feruglio, 1002.0211]):

(`LϕT )1 = eL(ϕT )1 + µL(ϕT )3 + τL(ϕT )2

(`LϕT )1′′ = eL(ϕT )2 + µL(ϕT )1 + τL(ϕT )3

(`LϕT )1′ = eL(ϕT )3 + µL(ϕT )2 + τL(ϕT )1

and (νRνRϕS)1 gives

νRi

 2 0 0
0 0 −1
0 −1 0

ϕS1 +

 0 0 −1
0 2 0
−1 0 0

ϕS2 +

 0 −1 0
−1 0 0
0 0 2

ϕS3

 νRj
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Flavons alignment

The flavon potential is also A4 symmetric and has “Mexican hat” form. It
produces nonzero vevs with the following alignment:

〈ϕT 〉 ∝ (1, 0, 0) , 〈ϕS〉 ∝ (1, 1, 1) , 〈ξ〉 6= 0 .

This is the vev alignment which we postulate when building our model.

S =
1

3

 −1 2 2
2 −1 2
2 2 −1

 , T =

 1 0 0
0 ω 0
0 0 ω2

 , ω ≡ e2πi/3 .

〈ϕT 〉 conserves T (subgroup Z3),

〈ϕS〉 conserves S (and TST 2, subgroup
Z2 × Z2).

A4

Z2 × Z2Z3

〈ϕS〉〈ϕT 〉
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Consequences of flavons alignment

Charged leptons 〈ϕT 〉 ∼ (1, 0, 0):

ye
Λ

(LϕT )eRΦ +
yµ
Λ

(LϕT )µRΦ +
yτ
Λ

(LϕT )τRΦ

→ 〈ϕT 〉
Λ

(
yeLeeR + yµLµµR + yτLττR

)
Φ + h.c .

→ (eL, µL, τL)

 me 0 0
0 mµ 0
0 0 mτ

 eR
µR

τR

+ h.c .

Charged lepton mass matrix is automatically diagonal.
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Consequences of flavons alignment

Dirac mass matrix:

yD(LνR)Φ̃ = yDνLi

 1 0 0
0 0 1
0 1 0

 νRj Φ̃ ,

which after EWSB gives νLi (mD)ijνRj with

mD =
yDv√

2

 1 0 0
0 0 1
0 1 0

 .
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Consequences of flavons alignment

Majorana mass matrix for νR :

MR = ya

 1 0 0
0 0 1
0 1 0

 〈ξ〉

+ yb

 2 0 0
0 0 −1
0 −1 0

 〈ϕS1〉+

 0 0 −1
0 2 0
−1 0 0

 〈ϕS2〉+

 0 −1 0
−1 0 0
0 0 2

 〈ϕS3〉



= a

 1 0 0
0 0 1
0 1 0

+ b

 2 −1 −1
−1 2 −1
−1 −1 2

 .
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Consequences of flavons alignment

Overall result:
Mν = −mD(MR)−1mT

D ,

where

mD =
yDv√

2

 1 0 0
0 0 1
0 1 0

 , MR =

 a + 2b −b −b
−b 2b a− b
−b a− b 2b

 .

Then we will need to diagonalize it:

Dν = UTMνU ,

and, since the charged lepton matrix is already diagonal,

UPMNS = U .
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Inverting MR

The simple form of

MR =

 a + 2b −b −b
−b 2b a− b
−b a− b 2b

 .

allows to explicitly calculate eigenvalues and eigenvectors:

λ = 3b + a , ~v =
1√
6

 2
−1
−1

 ,

λ = a , ~v =
1√
3

 1
1
1

 ,

λ = 3b − a , ~v =
1√
2

 0
1
−1

 .
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Inverting MR

This means that


√

2
3 − 1√

6
− 1√

6
1√
3

1√
3

1√
3

0 1√
2
− 1√

2


 a + 2b −b −b
−b 2b a− b
−b a− b 2b



√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2



=

 3b + a 0 0
0 a 0
0 0 3b − a


Or, in short,

UTMRU = DR ⇔ UDRU
T = MR .
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Calculating Mν

Therefore,

M−1
R = UD−1

R UT = U

 1
3b+a 0 0

0 1
a 0

0 0 1
3b−a

UT .

The light neutrino mass matrix is therefore

Mν = mDM
−1
R mT

D = mD · UD−1
R UT ·mT

D

= U · UTmDU · D−1
R · UTmT

DU · UT .

We need to calculate UTmDU.
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Calculating Mν

Notice that

mD =
yDv√

2

 1 0 0
0 0 1
0 1 0

 ,

is exactly like the a-term of MR . Therefore,

UTmDU =
yDv√

2

 1 0 0
0 1 0
0 0 −1

 .

Overall result:

Mν = U(UTmDU)D−1
R (UTmT

DU)UT =
y2
Dv

2

2
U D−1

R UT .
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Consequences

Mν =
y2
Dv

2

2
U

 1
3b+a 0 0

0 1
a 0

0 0 1
3b−a

 UT .

U diagonalizes Mν → U = UPMNS is of the TBM form;

neutrino masses are:

m1 =
y2
Dv

2

3b + a
, m2 =

y2
Dv

2

a
, m3 =

y2
Dv

2

3b − a
.

Very heavy flavon parameters a, b → very light neutrinos.

mass sum rule:
1

m3
=

1

m1
− 2

m2
.

which is a prediction of the A4 model! Be careful: a and b are complex.

both NO and IO are possible; the sum rule implies a lower bound!
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Other symmetry groups

This is a typical symmetry-based recipe:

pick up G , select irreps for L, `R , νR , add flavons at will;

choose flavon vev alignment among possible choices;

calculate M`, mD , MR → calculate Mν ;

(analytically) diagonalize M`, Mν → derive UPMNS ;

derive sum rule for m1,2,3.

Many series of finite groups have been studied [Holthausen, Lim, Lindner, 2012]

and some are close to the experimental PMNS matrix.
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