Introduction to neutrino mass models Lecture 3: TBM from A₄ symmetry

Igor Ivanov

CFTP, Instituto Superior Técnico, Lisbon

University of Warsaw

January 8-11, 2018

(日) (문) (문) (문)

1

- 2 Basics of group theory
- 3 Symmetry-based model-building: A₄ 3HDM example
- 4 TBM PMNS from A_4 symmetry

→ □ ► < □ ►</p>

Sac

э

Basics of group theory

Symmetry-based models

TBM PMNS from *A*₄ **symmetry**

PMNS matrix

Igor Ivanov (CFTP, IST)

Neutrino mass models 3

UW, January 2018 2/5

Э

Sac

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basics of group theory

Symmetry-based models

TBM PMNS from *A*₄ **symmetry**

Quark masses in SM: single generation

Yukawa interactions provide masses to quarks:

$$\begin{aligned} -\mathcal{L}_{Y}^{(d)} &= y_{d}(\bar{Q}_{L}\Phi d_{R} + \bar{d}_{R}\Phi^{\dagger}Q_{L}) \rightarrow y_{d}(\bar{u}_{L}, \bar{d}_{L}) \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix} d_{R} + h.c. \\ &= \frac{y_{d}v}{\sqrt{2}}(\bar{d}_{L}d_{R} + \bar{d}_{R}d_{L}) \equiv m_{d}\bar{d}d. \\ -\mathcal{L}_{Y}^{(u)} &= y_{u}(\bar{Q}_{L}\tilde{\Phi}u_{R} + \bar{u}_{R}\tilde{\Phi}^{\dagger}Q_{L}) \rightarrow y_{u}(\bar{u}_{L}, \bar{d}_{L}) \begin{pmatrix} \frac{v}{\sqrt{2}} \\ 0 \end{pmatrix} u_{R} + h.c. \equiv m_{u}\bar{u}u \end{aligned}$$

Sac

э

Basics of group theory

Symmetry-based models

TBM PMNS from *A*₄ **symmetry**

Quark masses in SM: single generation

Yukawa interactions provide masses to quarks:

$$\begin{aligned} -\mathcal{L}_{Y}^{(d)} &= y_{d} (\bar{Q}_{L} \Phi d_{R} + \bar{d}_{R} \Phi^{\dagger} Q_{L}) \rightarrow y_{d} (\bar{u}_{L}, \bar{d}_{L}) \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix} d_{R} + h.c. \\ &= \frac{y_{d} v}{\sqrt{2}} (\bar{d}_{L} d_{R} + \bar{d}_{R} d_{L}) \equiv m_{d} \bar{d} d. \\ -\mathcal{L}_{Y}^{(u)} &= y_{u} (\bar{Q}_{L} \tilde{\Phi} u_{R} + \bar{u}_{R} \tilde{\Phi}^{\dagger} Q_{L}) \rightarrow y_{u} (\bar{u}_{L}, \bar{d}_{L}) \begin{pmatrix} \frac{v}{\sqrt{2}} \\ 0 \end{pmatrix} u_{R} + h.c. \equiv m_{u} \bar{u} u. \end{aligned}$$

Symmetry-based models

TBM PMNS from *A*₄ **symmetry**

Quark masses and mixing

Three generations Q_{Li} , d_{Ri} , u_{Ri} , i = 1, 2, 3:

$$d_i = (d, s, b)$$
 $u_i = (u, c, t).$

Yukawa interactions are parametrized with coupling matrices Γ_{ij} and Δ_{ij} :

$$\begin{aligned} -\mathcal{L}_Y &= \bar{Q}_{Li} \Gamma_{ij} \Phi d_{Rj} + \bar{Q}_{Li} \Delta_{ij} \tilde{\Phi} u_{Rj} + h.c. \\ &\to \bar{d}_{Li} (M_d)_{ij} d_{Rj} + \bar{u}_{Li} (M_u)_{ij} u_{Rj} + h.c. \end{aligned}$$

where the 3×3 mass matrices are

$$(M_d)_{ij} = \Gamma_{ij} rac{v}{\sqrt{2}}, \quad (M_u)_{ij} = \Delta_{ij} rac{v}{\sqrt{2}}$$

and are, in general, non-diagonal and complex.

- * E > * E >

SQC

PMNS matrix	Basics of group theory	Symmetry-based models	TBM PMNS from A ₄ symmetry
CKM matrix			

 M_d is diagonalized by $d_L = V_{dL} d_L^{phys}$, $d_R = V_{dR} d_R^{phys}$, and so is M_u :

$$\begin{split} V_{dL}^{\dagger} & M_d \ V_{dR} = D_d = \text{diag}(m_d, \ m_s, \ m_b), \\ V_{uL}^{\dagger} & M_u \ V_{uR} = D_u = \text{diag}(m_u, \ m_c, \ m_t), \end{split}$$

But then the charged current matrix can become non-trivial:

$$\begin{split} \bar{u}_{Li} \gamma^{\mu} W^{+}_{\mu} d_{Li} &= \bar{u}_{Li}^{phys} \gamma^{\mu} W^{+}_{\mu} V_{ij} d_{Lj}^{phys}, \quad \text{where} \quad V_{ij} = V^{\dagger}_{uL} V_{dL} \neq \delta_{ij} \,. \end{split}$$

$$\begin{aligned} & \text{Conclusion} \\ & \text{if coupling matrices } \Gamma_{ij} \text{ and } \Delta_{ij} \text{ are distinct,} \\ & \text{then quark mass eigenstates} \neq \text{charged current eigenstates.} \end{split}$$

The CKM matrix V (Cabibbo-Kobayashi-Maskawa mixing matrix) describes how charged currents mix quarks from different generations.

→ ∃ → ∃

PMNS matrix	Basics of group theory	Symmetry-based models	TBM PMNS from A ₄ symmetry
CKM ma	trix		

 M_d is diagonalized by $d_L = V_{dL} d_L^{phys}$, $d_R = V_{dR} d_R^{phys}$, and so is M_u :

$$\begin{split} V_{dL}^{\dagger} & M_d \ V_{dR} = D_d = \mathrm{diag}(m_d, \ m_s, \ m_b), \\ V_{uL}^{\dagger} & M_u \ V_{uR} = D_u = \mathrm{diag}(m_u, \ m_c, \ m_t), \end{split}$$

But then the charged current matrix can become non-trivial:

$$\begin{split} \bar{u}_{Li} \gamma^{\mu} W^{+}_{\mu} \, d_{Li} &= \bar{u}_{Li}^{phys} \gamma^{\mu} W^{+}_{\mu} \, V_{ij} d_{Lj}^{phys}, \quad \text{where} \quad V_{ij} = V^{\dagger}_{uL} V_{dL} \neq \delta_{ij} \, . \\ \hline \text{Conclusion} \\ & \text{if coupling matrices } \Gamma_{ij} \text{ and } \Delta_{ij} \text{ are distinct,} \\ & \text{then quark mass eigenstates} \neq \text{charged current eigenstates.} \end{split}$$

The CKM matrix V (Cabibbo-Kobayashi-Maskawa mixing matrix) describes how charged currents mix quarks from different generations.

▶ ▲ 差 ▶ 差 の � (♡

Symmetry-based models

TBM PMNS from A₄ symmetry

Lepton mixing: Dirac

Massive neutrinos implies that they are either Dirac or Majorana.

For Dirac neutrinos, we add ν_{Ri} , i = 1, 2, 3, write only Dirac mass term, get lepton mass matrices M_{ℓ} and M_{ν} , and diagonalize them as before:

$$\begin{split} U_{\ell L}^{\dagger} \, M_{\ell} \, U_{\ell R} &= D_{\ell} = \text{diag}(m_{e}, \, m_{\mu}, \, m_{\tau}) \,, \\ U_{\nu L}^{\dagger} \, \mathcal{M}_{\nu} \, U_{\nu R} &= D_{\nu} = \text{diag}(m_{1}, \, m_{2}, \, m_{3}) \,, \end{split}$$

The charged weak currents are written in the generation space as

$$\underbrace{\overline{\ell_{Li}}\gamma^{\mu}W_{\mu}^{-}\nu_{Li}}_{\text{original}} = \underbrace{\left(\overline{e_{L}},\overline{\mu_{L}},\overline{\tau_{L}}\right)\gamma^{\mu}W_{\mu}^{-}\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{array}\right)}_{\text{flavor basis}} \equiv (\overline{e_{L}},\overline{\mu_{L}},\overline{\tau_{L}})\gamma^{\mu}W_{\mu}^{-}\left(\begin{array}{c}\nu_{1}\\\nu_{2}\\\nu_{3}\end{array}\right)$$

SQC

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Lepton mixing: Dirac

$$\underbrace{\overline{\ell_{Li}}\gamma^{\mu}W_{\mu}^{-}\nu_{Li}}_{\text{original}} = \underbrace{\left(\overline{e_{L}},\overline{\mu_{L}},\overline{\tau_{L}}\right)\gamma^{\mu}W_{\mu}^{-}\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{array}\right)}_{\text{flavor basis}} \equiv (\overline{e_{L}},\overline{\mu_{L}},\overline{\tau_{L}})\gamma^{\mu}W_{\mu}^{-}\left(\begin{array}{c}\nu_{1}\\\nu_{2}\\\nu_{3}\end{array}\right)$$

Flavor basis is defined as the charged lepton mass basis:

$$\ell_{Li} = U_{\ell} \ell_L^{\text{mass}}, \quad \nu_{Li} = U_{\nu} \nu_L^{\text{mass}}$$

Therefore, the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is

$$U_{PMNS} = U_\ell^\dagger U_
u$$
 .

If M_{ℓ} is already diagonal, then $U_{PMNS} = U_{\nu}$.

- ∢ ⊒ ▶

Image: A matrix

SQC

Basics of group theory

Symmetry-based models

TBM PMNS from *A*₄ **symmetry**

Lepton mixing: Dirac

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{PNMS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \, . \label{eq:Vertex}$$

After removing phases, the standard parametrization is

$$U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

Since \mathcal{M}_{ν} is diagonalized by **bi-unitary** transformation

$$U_{\nu L}^{\dagger} \mathcal{M}_{\nu} U_{\nu R} = D_{\nu} = \text{diag}(m_1, m_2, m_3),$$

some phases from $U_{\nu L}$ can be moved to $U_{\nu R}$.

PMNS matrix U_{PMNS} contains only one irremovable phase.

< □ ▶

SQC

Basics of group theory

Symmetry-based models

TBM PMNS from *A*₄ **symmetry**

Lepton mixing: Dirac

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{PNMS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \, . \label{eq:Vertex}$$

After removing phases, the standard parametrization is

$$U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

Since \mathcal{M}_{ν} is diagonalized by bi-unitary transformation

$$U_{\nu L}^{\dagger} \mathcal{M}_{\nu} U_{\nu R} = D_{\nu} = \text{diag}(m_1, m_2, m_3),$$

some phases from $U_{\nu L}$ can be moved to $U_{\nu R}$.

PMNS matrix U_{PMNS} contains only one irremovable phase.

- ₹ ₹ ►

SQC

Symmetry-based models

TBM PMNS from A₄ symmetry

Lepton mixing: Majorana

For Majorana neutrinos, the mass matrix is

$$\nu_{Li}^{T}(\mathcal{M}_{\nu})_{ij}\mathcal{C}\nu_{Lj} = (\nu_{L}^{\text{mass}})^{T} U_{\nu}^{T}\mathcal{M}_{\nu}U_{\nu}\mathcal{C}\nu_{L}^{\text{mass}} = (\nu_{L}^{\text{mass}})^{T}D_{\nu}\mathcal{C}\nu_{L}^{\text{mass}}$$

with the same matrix U_{ν} on both sides.

One can always find such U_{ν} to make D_{ν} diagonal with real posivite values. But once this is done, there is no freedom left to remove phases!

$$U_{PMNS}^{ ext{Majorana}} = U_{PMNS} \cdot egin{pmatrix} 1 & 0 & 0 \ 0 & e^{ilpha} & 0 \ 0 & 0 & e^{ieta} \end{pmatrix},$$

These two additional Majorana phases are the echo of the complex neutrino mass matrix $\mathcal{M}_{\nu}.$

<ロト <同ト < 国ト < 国ト

SQC

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Lepton mixing

U_{PMNS} is close to the tri-bimaximal mixing pattern [Harrison, Perkins, Scott, 2002]:

$$U_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Nonzero s_{13} highlights deviation, but proximity of U_{PMNS} to the TBM is indicative of some symmetry.

Igor Ivanov (CFTP, IST)

< A

SQC

э

Basics of group theory •••••• Symmetry-based models

TBM PMNS from A₄ symmetry

Basics of finite group theory

Igor Ivanov (CFTP, IST)

Neutrino mass models 3

• • = • • = • UW, January 2018 10/53

< A

Sac

э

PMNS	matrix			
000000000				

Symmetry-based models

TBM PMNS from *A*₄ **symmetry**

Groups

Set G is a group if it satisfies the following four axioms:

• closure of *G* under composition (usually called multiplication):

for any $g_1, \, g_2 \in G, \,$ define their product $g_1 \cdot g_2 \in G$;

• the multiplication is associative: $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$ for all $g_1, g_2, g_3 \in G$;

• there exists a special element called identity element *e* with the properties:

 $g \cdot e = e \cdot g = g$ for any $g \in G$;

• every element is invertible: for any $g \in G$, there exists another element in G (denoted g^{-1}) such that

$$g^{-1} \cdot g = g \cdot g^{-1} = e \,.$$

SQC

Symmetry-based models

TBM PMNS from A₄ symmetry

Groups

Set G is a group if it satisfies the following four axioms:

• closure of G under composition (usually called multiplication):

for any $g_1, g_2 \in G$, define their product $g_1 \cdot g_2 \in G$;

- the multiplication is associative: $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$ for all $g_1, g_2, g_3 \in G;$
- there exists a special element called identity element e with the properties:

$$g \cdot e = e \cdot g = g$$
 for any $g \in G$;

• every element is invertible: for any $g \in G$, there exists another element in G (denoted g^{-1}) such that

$$g^{-1} \cdot g = g \cdot g^{-1} = e \,.$$

SQC

Groups

In addition, if $g \cdot h = h \cdot g$ for all elements $g, h \in G$, the group is called abelian. If it fails at least for one pair, the group is called non-abelian.

Non-abelian groups are much, much, much more complicated than abelian groups.

Groups arise in physics in the context of transformations and symmetries. It is the most appropriate language to describe hidden consequences of physics formulas or laws.

Sar

Groups

In addition, if $g \cdot h = h \cdot g$ for all elements $g, h \in G$, the group is called abelian. If it fails at least for one pair, the group is called non-abelian.

Non-abelian groups are much, much, much more complicated than abelian groups.

Groups arise in physics in the context of transformations and symmetries. It is the most appropriate language to describe hidden consequences of physics formulas or laws.

▶ < ∃ ▶

SQC

Groups can be finite or infinite.

- A finite group G has finite number of elements: $G = \{e, g_2, g_3, \dots, g_n\}$. Its size n is called the order of the group and is denoted |G|.
- In a finite group, successive multiplications will sooner or later terminate in
 e. Pick up any g ∈ G and consider successive powers:

$$g^1 \equiv g \quad g^2 \equiv g \cdot g , \quad g^3 \equiv g \cdot g \cdot g , \quad g^k \equiv \underbrace{g \cdot \cdots \cdot g}_{k \text{ times}} .$$

Then, there must exist an integer p such that $g^p = e$. This integer p is called the order of the element g.

• Infinite groups can be discrete or continuous (= topological).

(日) (同) (三) (三)

Basics examples

- Integers \mathbb{Z} and reals \mathbb{R} are groups under addition. The identity element is 0. They are not groups under multiplication!
- Reals on the interval [0, 1] form a group under addition with periodic boundary condition (0.999 · · · = 0). These are fractional part of reals: ℝ/ℤ.

Complex numbers with |z| = 1 form under multiplication the circle group, or the rephasing group U(1).

The two last groups are isomorphic: $\mathbb{R}/\mathbb{Z}\simeq U(1).$

• Cyclic groups \mathbb{Z}_n for any n > 1 are defined as

$$\mathbb{Z}_n = \{e, a, a^2, a^3, \ldots, a^{n-1}\}$$
 with condition $a^n = e$,

isomorphic to integers modulo *n* under addition: $\mathbb{Z}/n\mathbb{Z}$.

Sar

Basics examples

- Integers Z and reals R are groups under addition. The identity element is 0. They are not groups under multiplication!
- Reals on the interval [0, 1] form a group under addition with periodic boundary condition (0.999 · · · = 0). These are fractional part of reals: ℝ/ℤ.

Complex numbers with |z| = 1 form under multiplication the circle group, or the rephasing group U(1).

The two last groups are isomorphic: $\mathbb{R}/\mathbb{Z} \simeq U(1)$.

• Cyclic groups \mathbb{Z}_n for any n > 1 are defined as

$$\mathbb{Z}_n = \{e, a, a^2, a^3, \ldots, a^{n-1}\}$$
 with condition $a^n = e$,

isomorphic to integers modulo *n* under addition: $\mathbb{Z}/n\mathbb{Z}$.

(日) (同) (三) (三)

Basics examples

- Integers \mathbb{Z} and reals \mathbb{R} are groups under addition. The identity element is 0. They are not groups under multiplication!
- Reals on the interval [0, 1] form a group under addition with periodic boundary condition (0.999 · · · = 0). These are fractional part of reals: ℝ/ℤ.

Complex numbers with |z| = 1 form under multiplication the circle group, or the rephasing group U(1).

The two last groups are isomorphic: $\mathbb{R}/\mathbb{Z} \simeq U(1)$.

• Cyclic groups \mathbb{Z}_n for any n > 1 are defined as

$$\mathbb{Z}_n = \{e, a, a^2, a^3, \ldots, a^{n-1}\}$$
 with condition $a^n = e$,

isomorphic to integers modulo *n* under addition: $\mathbb{Z}/n\mathbb{Z}$.

・ロト ・同ト ・ヨト ・ヨト

Presentation of a group

How would you describe a finite group?

Simplest choice: write the multiplication table $|G| \times |G|$. Very impractical.

Much better choice: via generators and relations.

- Generators *a*, *b*, *c*, . . . form a subset of elements of *G* such that any *g* ∈ *G* can be written and their product.
- Generators are independent elements but they satisfy some constraints (relations).
- Group presentation: $G = \langle \text{generators} | \text{their relations} \rangle$.
- A cyclic group is generated by a: Z_n = ⟨a | aⁿ = e⟩. Direct product of cyclic groups: Z_n × Z_m = ⟨a, b | aⁿ = b^m = e, ab = ba⟩.

Symmetry-based models

TBM PMNS from A₄ symmetry

Representations of abelian groups

A representation of the group G is, colloquially speaking, a way of rewriting it as a group of matrices which act on some k-dimensional vector space.

The set of matrices must obey exactly the same rules as the elements of G, but otherwise there is no constraints on their form or dimension k. For example,

$$\mathbb{Z}_{2} = (e, a): \qquad a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\mathbb{Z}_{3} = (e, b, b^{2}): \qquad b = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2} \end{pmatrix}$$

where $\omega \equiv \exp(2\pi i/3)$, $\omega^3 = 1$.

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Representations of abelian groups

General theorem: for any abelian unitary group, the representing matrices can be always made diagonal by a basis choice.

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2 = (e, a, b, ab)$ with a faithfull 2D representation:

$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $a = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $b = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $ab = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

In this basis, each 1D subspace remains invariant; and the diagonal numbers form a 1D representation.

subspace
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $a = 1, b = -1,$
subspace $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $a = -1, b = 1.$

In general: irreducible representations of unitary abelian groups are 1D.

Igor Ivanov (CFTP, IST)

SQC

3

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Representations of abelian groups

General theorem: for any abelian unitary group, the representing matrices can be always made diagonal by a basis choice.

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2 = (e, a, b, ab)$ with a faithfull 2D representation:

$$e=egin{pmatrix} 1&0\0&1\end{pmatrix},\quad a=egin{pmatrix} 1&0\0&-1\end{pmatrix},\quad b=egin{pmatrix} -1&0\0&1\end{pmatrix},\quad ab=egin{pmatrix} -1&0\0&-1\end{pmatrix}.$$

In this basis, each 1D subspace remains invariant; and the diagonal numbers form a 1D representation.

subspace
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $a = 1, b = -1,$
subspace $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $a = -1, b = 1.$

In general: irreducible representations of unitary abelian groups are 1D.

Igor Ivanov (CFTP, IST)

= nar

< ロ > < 同 > < 回 > < 回 > < □ > <

Symmetry-based models

Working example: A_4

Igor Ivanov (CFTP, IST)

Neutrino mass models 3

UW, January 2018 17/53

Э

Sac

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

S_n, group of all permutations of n elements. Its order is |S_n| = n!. The smallest group is S₂ ≃ Z₂. The smallest non-abelian is

$$S_3 = \langle a, b | a^2 = b^3 = e, ab = b^2 a \rangle.$$

• A_n , group of even-signature permutations of *n* elements; $|A_n| = n!/2$.

- Symmetry groups of regular polygons and polyhedra:
 - Symmetry group of equilateral triangle $\simeq S_3$;
 - Symmetry group of tetrahedron $\simeq A_4$;
 - Symmetry group of cube $\simeq S_4$.

Irreducible representations of non-abelian groups have d > 1.

・ロト ・同ト ・ヨト ・ヨト

Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

S_n, group of all permutations of n elements. Its order is |S_n| = n!. The smallest group is S₂ ≃ Z₂. The smallest non-abelian is

$$S_3 = \langle a, b | a^2 = b^3 = e, ab = b^2 a \rangle.$$

- A_n , group of even-signature permutations of *n* elements; $|A_n| = n!/2$.
- Symmetry groups of regular polygons and polyhedra:
 - Symmetry group of equilateral triangle $\simeq S_3$;
 - Symmetry group of tetrahedron $\simeq A_4$;
 - Symmetry group of cube $\simeq S_4$.

Irreducible representations of non-abelian groups have d > 1.

Sac

・ロト ・雪ト ・ヨト

Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

S_n, group of all permutations of n elements. Its order is |S_n| = n!. The smallest group is S₂ ≃ Z₂. The smallest non-abelian is

$$S_3 = \langle a, b | a^2 = b^3 = e, ab = b^2 a \rangle.$$

- A_n , group of even-signature permutations of *n* elements; $|A_n| = n!/2$.
- Symmetry groups of regular polygons and polyhedra:
 - Symmetry group of equilateral triangle $\simeq S_3$;
 - Symmetry group of tetrahedron $\simeq A_4$;
 - Symmetry group of cube $\simeq S_4$.

Irreducible representations of non-abelian groups have d > 1.

・ロト ・同ト ・ヨト ・ヨト

Group A_4

 A_4 is the smallest group with irreducible 3D representation:

$$A_4 = \langle S, T | S^2 = T^3 = e, (ST)^3 = e \rangle, \quad |A_4| = 12.$$

It contains:

- three elements of order 2: S, T^2ST, TST^2 ;
- together with e, they form the Klein subgroup $\mathbb{Z}_2 \times \mathbb{Z}_2$;
- four cycles of order 3 generated by T, ST, TS, T^2ST^2 (8 elements of order 3 in total).

▶ < ∃ ▶

Sac

Basics of group theory

Symmetry-based models

A_4 : transformation S

DQC

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

A_4 : transformation T

Basics of group theory Symmetry-based models

TBM PMNS from A₄ symmetry

Group A_4

3D irreducible representation: diagonal-S basis

• order 2:

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad T^2 ST = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad TST^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• order 3:

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad ST = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix},$$
$$TS = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad T^2 S T^2 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix},$$

and their squares.

Image: A matrix and a matrix

Э

Symmetry-based models

Group A₄

3D irreducible representation: diagonal-T basis

One can switch to another basis in the same 3D space, in which T becomes diagonal.

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \quad \omega \equiv e^{2\pi i/3}, \quad \omega^3 = 1.$$

Then, *S* takes an "ugly" shape:

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}.$$

Nevertheless, all group multiplications hold: $S^2 = e$, etc

∃ ► < ∃ ►</p>

Image: A matrix

Sac
Group A_4

Subspaces in the diagonal-T basis are convenient to define three non-equivalent 1D irreps: 1, 1', 1"

The full table of all irreps of A_4 :

irrep	5	Т
1	S = 1	T = 1
1'	S=1	$T = \omega$
$1^{\prime\prime}$	S = 1	$T = \omega^2$
3	matrix S	matrix T

Notice: the trivial singlet 1 is invariant under the entire A_4 .

- ∢ ≣ ▶

SQC

э

Building symmetry-based models with the example of A₄ 3HDM

Igor Ivanov (CFTP, IST)

Neutrino mass models 3

UW, January 2018 24/53

∃ ► < ∃ ►</p>

.

SQC

э

Tensor product decomposition

Models begin with lagrangian \mathcal{L} , which encodes all interactions.

Terms in the lagrangian are products of various fields:

$$\mathcal{L} = \cdots + \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \cdots + Y_{ij}^a \overline{Q_{Li}} \Phi_a d_{Rj} + \cdots$$

We assume that each set of fields (LH fermions, RH fermions, Higgses, etc) transforms as a certain representation of group G.

We want to find which combinations are fully G-invariant.

We must use the tensor product of representations.

Sar

Symmetry-based models

TBM PMNS from A₄ symmetry

Tensor product decomposition

Take 3D vectors $a_i = (a_1, a_2, a_3)$ and $b_j = (b_1, b_2, b_3)$ and construct their tensor product $a_i b_j$. How does it transform under SO(3) rotations?

$$a_i b_j = \delta_{ij} \frac{(\vec{a}\vec{b})}{3} + \epsilon_{ijk} \cdot \underbrace{\mathbf{v}_k}_{=[\vec{a} \times \vec{b}]/2} + \left[\frac{1}{2} \left(a_i b_j + a_j b_i\right) - \delta_{ij} \frac{(\vec{a}\vec{b})}{3}\right]$$

which means that inside the 9D tensor $a_i b_j$ there are three invariant subspaces: singlet, $\propto \delta_{ij}$; triplet, $\propto \epsilon_{ijk} v_k$, and 5-plet, the traceless symmetric part of $a_i b_j$. Group-theoretically: $3 \otimes 3 = 1 \otimes 3 \otimes 5$.

This is how tensor product decomposition (= Clebsch-Gordan coefs) works in the group SO(3).

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Tensor product decomposition

For each group, these rules are different (= Clebsch-Gordan coefs are different). For A_4 , if $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are two irreducible triplets, then $3 \otimes 3 = 1 \oplus 1' \oplus 1'' \oplus 3_1 \oplus 3_2$.

The explicit expressions for their components (in the S-symmetric basis!) are:

$$\begin{aligned} 1 &= a_1 b_1 + a_2 b_2 + a_3 b_3 \,, \\ 1' &= a_1 b_1 + \omega^2 a_2 b_2 + \omega a_3 b_3 \,, \\ 1'' &= a_1 b_1 + \omega a_2 b_2 + \omega^2 a_3 b_3 \,, \\ 3_1 &= (a_2 b_3, a_3 b_1, a_1 b_2) \,, \\ 3_2 &= (a_3 b_2, a_1 b_3, a_2 b_1) \,. \end{aligned}$$

The products of singlets are intuitive: $1' \otimes 1'' = 1$, etc.

TBM PMNS from A₄ symmetry

Picking up symmetric terms

When building symmetry-constrained lagrangians, we

- write products of fields, each transforming as a certain irrep of the group G,
- perform tensor product decomposition,
- out of all final irreps, keep only trivial singlets as they are G-symmetric.

For example, in three-Higgs-doublet model based on group A_4 , we have three Higgs doublets Φ_1 , Φ_2 , Φ_3 . In general, the quadratic part of the potential has nine terms $\Phi_i^{\dagger}\Phi_i$.

But knowing that, for the group A_4 , $3 \otimes 3 = 1 \oplus 1' \oplus 1'' \oplus 3_1 \oplus 3_2$, we keep only the singlet. Therefore, the Higgs potential is

$$V = -m^2 \left(\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 + \Phi_3^{\dagger} \Phi_3 \right) + V_4$$

Picking up symmetric terms

When building symmetry-constrained lagrangians, we

- write products of fields, each transforming as a certain irrep of the group G,
- perform tensor product decomposition.
- out of all final irreps, keep only trivial singlets as they are G-symmetric.

For example, in three-Higgs-doublet model based on group A_4 , we have three Higgs doublets Φ_1 , Φ_2 , Φ_3 . In general, the quadratic part of the potential has nine terms $\Phi_i^{\dagger} \Phi_i$.

But knowing that, for the group A_4 , $3 \otimes 3 = 1 \oplus 1' \oplus 1'' \oplus 3_1 \oplus 3_2$, we keep only the singlet. Therefore, the Higgs potential is

$$V = -m^2 \left(\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 + \Phi_3^{\dagger} \Phi_3 \right) + V_4$$

SQC

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Picking up symmetric terms

For the quartic part, we decompose $(\Phi_i^{\dagger} \Phi_i)(\Phi_i^{\dagger} \Phi_i)$,

 $[(3 \otimes 3) \otimes (3 \otimes 3)]_{svm} = [(1 \oplus 1' \oplus 1'' \oplus 3_1 \oplus 3_2) \otimes (1 \oplus 1' \oplus 1'' \oplus 3_1 \oplus 3_2)]_{svm}$ $= 1 \otimes 1 + 1' \otimes 1'' + \underbrace{(3_1 \otimes 3_1)}_{+} + \underbrace{(3_2 \otimes 3_2)}_{+} + \underbrace{(3_1 \otimes 3_2)}_{+} + \ldots,$ =1 =10

which gives five trivial singlets 1:

$$V_{4} = \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} + \Phi_{2}^{\dagger} \Phi_{2} + \Phi_{3}^{\dagger} \Phi_{3} \right)^{2} \\ + \lambda_{2} \left[(\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + (\Phi_{2}^{\dagger} \Phi_{2}) (\Phi_{3}^{\dagger} \Phi_{3}) + (\Phi_{3}^{\dagger} \Phi_{3}) (\Phi_{1}^{\dagger} \Phi_{1}) \right] \\ + \lambda_{3} \left[(\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + (\Phi_{2}^{\dagger} \Phi_{3}) (\Phi_{3}^{\dagger} \Phi_{2}) + (\Phi_{3}^{\dagger} \Phi_{1}) (\Phi_{1}^{\dagger} \Phi_{3}) \right] \\ + \left(\lambda_{4} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + (\Phi_{2}^{\dagger} \Phi_{3})^{2} + (\Phi_{3}^{\dagger} \Phi_{1})^{2} \right] + h.c. \right)$$

500

Э

Symmetry-based models

TBM PMNS from A₄ symmetry

Spontaneous symmetry breaking

In this way, we get the full A_4 -symmetric potential in 3HDM.

But the minimum of this potential (v_1, v_2, v_3) may break this group, fully or completely. Which options are available for the minimum in the A_4 -symmetric 3HDM?

It turns out that vevs (v_1, v_2, v_3) cannot be arbitrary! Depending on paremeters λ , only four vev alignments are possible [Degee, Ivanov, Keus, 2012]:

- (1,0,0). The residual symmetry group is $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (1,1,1). The residual symmetry group is \mathbb{Z}_3 .
- $(1, \omega, \omega^2)$. The residual symmetry group is \mathbb{Z}_3 .
- $(1, e^{i\alpha}, 0)$. The residual symmetry group is \mathbb{Z}_2 .

Conclusion: it is impossible to break the A_4 symmetry completely.

Image: A 1 = 1

Sar

Symmetry-based models

TBM PMNS from A₄ symmetry

Spontaneous symmetry breaking

In this way, we get the full A_4 -symmetric potential in 3HDM.

But the minimum of this potential (v_1, v_2, v_3) may break this group, fully or completely. Which options are available for the minimum in the A_4 -symmetric 3HDM?

It turns out that vevs (v_1, v_2, v_3) cannot be arbitrary! Depending on paremeters λ , only four vev alignments are possible [Degee, Ivanov, Keus, 2012]:

- (1,0,0). The residual symmetry group is $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (1,1,1). The residual symmetry group is \mathbb{Z}_3 .
- $(1, \omega, \omega^2)$. The residual symmetry group is \mathbb{Z}_3 .
- $(1, e^{i\alpha}, 0)$. The residual symmetry group is \mathbb{Z}_2 .

Conclusion: it is impossible to break the A_4 symmetry completely.

SQC

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Extending A_4 3HDM to charged leptons

Extending A₄ symmetry of 3HDM to the Majorana LH neutrino mass matrix [Gonzales Felipe, Serodio, Silva, 2013].

Charged lepton Yukawa interactions:

$$\overline{L_i}Y_{ij}^a \underbrace{\Phi_a}_{3}\ell_{Rj} + h.c.$$

We know that $\Phi_a = (\Phi_1, \Phi_2, \Phi_3)$ transforms as triplet 3 under A_4 .

Therefore, the product of L_i and ℓ_{Rj} L_i ℓ_{Rj} must also transform as a triplet 3 to33produce the trivial singlet 1 at the end.(1, 1', 1'')3

(1, 1', 1'')

Sar

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Extending A_4 3HDM to charged leptons

For example, if $\overline{L_i} \sim (1, 1', 1'')$ and $\ell_{\textit{Rj}} \sim$ 3, we get:

$$\overline{L_{i}}Y_{ij}^{a}\Phi_{a}\ell_{Rj} = y_{1}\overline{L_{1}}\underbrace{\Phi_{a}\ell_{Rj}}_{1} + y_{2}\overline{L_{2}}\underbrace{\Phi_{a}\ell_{Rj}}_{1''} + y_{3}\overline{L_{3}}\underbrace{\Phi_{a}\ell_{Rj}}_{1'}$$

$$= y_{1}\overline{L_{1}}(\Phi_{1}\ell_{R1} + \Phi_{2}\ell_{R2} + \Phi_{3}\ell_{R3})$$

$$+ y_{2}\overline{L_{2}}(\Phi_{1}\ell_{R1} + \omega\Phi_{2}\ell_{R2} + \omega^{2}\Phi_{3}\ell_{R3})$$

$$+ y_{3}\overline{L_{3}}(\Phi_{1}\ell_{R1} + \omega^{2}\Phi_{2}\ell_{R2} + \omega\Phi_{3}\ell_{R3})$$

Pick up a vev alignment, for example, v(1,1,1). Then, charged lepton mass matrix is

$$M_{\ell} = v \begin{pmatrix} y_1 & y_1 & y_1 \\ y_2 & \omega y_2 & \omega^2 y_2 \\ y_3 & \omega^2 y_3 & \omega y_3 \end{pmatrix}$$

which, after diagonalization gives $m_{\ell} = \{y_1v, y_2v, y_3v\} \rightarrow \mathsf{OK}$.

Sar

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Extending A_4 3HDM to charged leptons

For example, if $\overline{L_i} \sim (1, 1', 1'')$ and $\ell_{\textit{Rj}} \sim$ 3, we get:

$$\overline{L_i} Y_{ij}^a \Phi_a \ell_{Rj} = y_1 \overline{L_1} \underbrace{\Phi_a \ell_{Rj}}_{1} + y_2 \overline{L_2} \underbrace{\Phi_a \ell_{Rj}}_{1''} + y_3 \overline{L_3} \underbrace{\Phi_a \ell_{Rj}}_{1'}$$
$$= y_1 \overline{L_1} (\Phi_1 \ell_{R1} + \Phi_2 \ell_{R2} + \Phi_3 \ell_{R3})$$
$$+ y_2 \overline{L_2} (\Phi_1 \ell_{R1} + \omega \Phi_2 \ell_{R2} + \omega^2 \Phi_3 \ell_{R3})$$
$$+ y_3 \overline{L_3} (\Phi_1 \ell_{R1} + \omega^2 \Phi_2 \ell_{R2} + \omega \Phi_3 \ell_{R3})$$

Pick up a vev alignment, for example, v(1,1,1). Then, charged lepton mass matrix is

$$M_{\ell} = v \begin{pmatrix} y_1 & y_1 & y_1 \\ y_2 & \omega y_2 & \omega^2 y_2 \\ y_3 & \omega^2 y_3 & \omega y_3 \end{pmatrix},$$

which, after diagonalization gives $m_{\ell} = \{y_1v, y_2v, y_3v\} \rightarrow \mathsf{OK}.$

► < Ξ > Ξ

Basics of group theory

Symmetry-based models

TBM PMNS from *A*₄ **symmetry**

Extending A_4 3HDM to Majorana neutrinos

Then, include Majorana neutrino terms:

$$c_{ij}^{ab}(L_i^T \tilde{\Phi}_a^*) \mathcal{C}(\tilde{\Phi}_b^{\dagger} L_j).$$

Group-theoretically, we see

Since $\overline{L_i} \sim (1, 1', 1'')$, the product $L \otimes L$ also contains 1, 1', and 1'', which are coupled to $3 \otimes 3$:

$$\frac{g_1}{\Lambda} (L_1 L_1 + L_2 L_3 + L_3 L_2) (\tilde{\Phi}_1 \tilde{\Phi}_1 + \tilde{\Phi}_2 \tilde{\Phi}_2 + \tilde{\Phi}_3 \tilde{\Phi}_3) \\ + \frac{g_2}{\Lambda} (L_1 L_2 + L_2 L_1 + L_3 L_3) (\tilde{\Phi}_1 \tilde{\Phi}_1 + \omega \tilde{\Phi}_2 \tilde{\Phi}_2 + \omega^2 \tilde{\Phi}_3 \tilde{\Phi}_3) \\ + \frac{g_3}{\Lambda} (L_1 L_3 + L_2 L_2 + L_3 L_1) (\tilde{\Phi}_1 \tilde{\Phi}_1 + \omega^2 \tilde{\Phi}_2 \tilde{\Phi}_2 + \omega \tilde{\Phi}_3 \tilde{\Phi}_3)$$

Igor Ivanov (CFTP, IST)

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Extending A_4 3HDM to Majorana neutrinos

Next, substituting the chosen vev alignment (1, 1, 1), we get neutrino mass matrix:

$$\mathcal{M}_{\nu} = rac{g_1 v^2}{2 \Lambda} \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight)$$

We obtain three degenerate neutrinos!

Conclusion

extending A_4 symmetry to charged leptons and Majorana neutrinos with irrep assignment

$$\Phi \sim 3$$
, $L \sim (1, 1', 1'')$, $\ell_R \sim 3$

and with the vev alignment $\langle \phi^0 \rangle = v(1,1,1)$ is ruled out by experiment.

Sar

Symmetry-based models

TBM PMNS from A₄ symmetry

Extending A_4 3HDM to Majorana neutrinos

One needs to check all possible irrep assignments and all possible vev alignments. This was done in [Gonzales Felipe, Serodio, Silva, 2013].

The result is: all possible combinations are ruled out experimentally. The problems can be:

- massless charged leptons,
- degenerate neutrino masses,
- insufficient neutrino mixing.

Thus, 3HDM scalar sector offers too little freedom to produce viable Majorana neutrino masses through the A_4 symmetry group.

One needs to enlarge the scalar sector to get a viable neutrino sector.

Symmetry-based models

TBM PMNS from A₄ symmetry

Extending A₄ 3HDM to Majorana neutrinos

One needs to check all possible irrep assignments and all possible vev alignments. This was done in [Gonzales Felipe, Serodio, Silva, 2013].

The result is: all possible combinations are ruled out experimentally. The problems can be:

- massless charged leptons,
- degenerate neutrino masses,
- insufficient neutrino mixing.

Thus, 3HDM scalar sector offers too little freedom to produce viable Majorana neutrino masses through the A_4 symmetry group.

One needs to enlarge the scalar sector to get a viable neutrino sector.

TBM PMNS from A_4 symmetry

Igor Ivanov (CFTP, IST)

Neutrino mass models 3

Image: A UW, January 2018 35/53

< A

Sac

Classic seesaw again

Leptonic Yukawas:

$$\overline{L_{i}}Y_{ij}^{\ell}\Phi\ell_{Rj} + \overline{L_{i}}Y_{ij}^{\nu}\tilde{\Phi}\nu_{Rj} + \frac{1}{2}\overline{(\nu_{Ri})^{c}}(M_{R})_{ij}\nu_{Rj} + h.c.$$

$$= \overline{\ell_{L}}M_{\ell}\ell_{R} + \frac{1}{2}\left[\overline{\nu_{L}}, \overline{(\nu_{R})^{c}}\right] \begin{pmatrix} 0 & m_{D} \\ m_{D}^{T} & M_{R} \end{pmatrix} \begin{pmatrix} (\nu_{L})^{c} \\ \nu_{R} \end{pmatrix} + h.c.$$

which leads to

$$\mathcal{M}_{\nu} = -m_D (M_R)^{-1} m_D^T.$$

The classic seesaw does not constrain matrices m_D and $M_R \rightarrow$ no predictions on $M_{\nu} \rightarrow$ no predictions on U_{PMNS} .

(日) (同) (三) (三)

SQC

Flavons

Flavor symmetry-based modes assume that L_i , $(\ell_R)_i$, and $(\nu_R)_i$ transform in certain way under a discrete flavor symmetry group G.

Problem: combining L, ℓ_R , and ν_R , via only Higgs doublets leads to contradiction to experiment!

Recipe: leave the poor Φ alone! Add flavons φ_a : new auxiliary scalar fields, which will take care of the shape of the fermion sector.

<ロト <同ト < 国ト < 国ト

Flavons

Flavons

- EW singlets \rightarrow play no role in electroweak symmetry breaking;
- transform non-trivially under G:

instead of
$$Y_{ij}\overline{L_i}\Phi\ell_{Rj}$$
 we use $Y_{ij}^{a}\frac{\varphi_{a}}{\Lambda}(\overline{L_i}\Phi\ell_{Rj})$.

Symmetry under G strongly constraints Y_{ij}^a .

 they get vev after minimization of flavon scalar potential φ_a → ⟨φ_a⟩ → spontaneous breaking of flavor symmetry induces usual Yukawa interactions

$$Y_{ij} = \sum_{a} Y^{a}_{ij} \frac{\langle \varphi_{a} \rangle}{\Lambda}$$

with the resulting Y_{ij} constrained by flavor symmetry.

SQA

Symmetry-based models

A₄ symmetric model

	ī	e _R	μ_{R}	$ au_R$	ν_R	Φ	φ_{T}	φ_{S}	ξ
$SU(2)_L$	2	1	1	1	1	2	1	1	1
A_4	3	1	1'	$1^{\prime\prime}$	3	1	3	3	1

We assume:

- LH doublets L and RH neutrinos ν_R form A_4 triplets;
- right charged leptons e_R , μ_R , τ_R form three different A_4 singlets 1, 1', 1";
- add three sorts of flavons:
 - A_4 -triplet φ_T helps join L with ℓ_R (\rightarrow charged lepton masses),
 - A_4 -triplet φ_S produces one Majorana term for ν_R ,
 - A_4 -singlet ξ produces another Majorana term for ν_R .

SQA

A₄ symmetric model

Warning: this construction is not yet self-consistent! So far nothing explains why φ_T and φ_S play different roles!

To forbid "wrong terms", we introduce yet another quantum number: "charge" under the group $\mathbb{Z}_3.$

	ī	e _R	μ_{R}	$ au_R$	ν_R	φ	φ_{T}	φ_{S}	ξ
$SU(2)_L$	2	1	1	1	1	2	1	1	1
A_4	3	1	1'	$1^{\prime\prime}$	3	1	3	3	1
\mathbb{Z}_3	ω^2	ω	ω	ω	ω	1	1	ω	ω

The true symmetry group of the model is $A_4 \times \mathbb{Z}_3$ but I will skip \mathbb{Z}_3 for clarity.

<ロト <同ト < 国ト < 国ト

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

A₄ symmetric model

TMB mixing from A₄ symmetry [Altarelli, Feruglio, 2006]

	T	e _R	μ_R	$ au_R$	ν_R	φ	φ_{T}	φ_{S}	ξ
$SU(2)_L$	2	1	1	1	1	2	1	1	1
A_4	3	1	1'	$1^{\prime\prime}$	3	1	3	3	1

 \mathcal{L} = charged leptons separately for *e*, μ , and τ +Dirac mass term + two Majorana mass terms

$$= \frac{y_e}{\Lambda} \underbrace{(\overline{L}\varphi_T)}_{3\times 3\to 1} \underbrace{e_R}_{1} \Phi + \frac{y_\mu}{\Lambda} \underbrace{(\overline{L}\varphi_T)}_{3\times 3\to 1''} \underbrace{\mu_R}_{1'} \Phi + \frac{y_\tau}{\Lambda} \underbrace{(\overline{L}\varphi_T)}_{3\times 3\to 1'} \underbrace{\tau_R}_{1''} \Phi$$
$$+ y_D \underbrace{(\overline{L}\nu_R)}_{3\times 3\to 1} \underbrace{\tilde{\Phi}}_{(3\times 3)_1 \times 1} \underbrace{(\nu_R\nu_R)\xi}_{3\times 3\to 1} + h.c.$$

Igor Ivanov (CFTP, IST)

A₄ symmetric model

It is convenient to work in the T-diagonal basis \rightarrow charged lepton mass matrix will be diagonal.

Contractions written explicitly (for explicit expressions, see e.g. [Altarelli, Feruglio, 1002.0211]):

$$\begin{array}{rcl} (\overline{\ell_L}\varphi_{\mathcal{T}})_1 &=& \overline{e_L}(\varphi_{\mathcal{T}})_1 + \overline{\mu_L}(\varphi_{\mathcal{T}})_3 + \overline{\tau_L}(\varphi_{\mathcal{T}})_2 \\ (\overline{\ell_L}\varphi_{\mathcal{T}})_{1''} &=& \overline{e_L}(\varphi_{\mathcal{T}})_2 + \overline{\mu_L}(\varphi_{\mathcal{T}})_1 + \overline{\tau_L}(\varphi_{\mathcal{T}})_3 \\ (\overline{\ell_L}\varphi_{\mathcal{T}})_{1'} &=& \overline{e_L}(\varphi_{\mathcal{T}})_3 + \overline{\mu_L}(\varphi_{\mathcal{T}})_2 + \overline{\tau_L}(\varphi_{\mathcal{T}})_1 \end{array}$$

and $(\nu_R \nu_R \varphi_S)_1$ gives

$$\nu_{Ri} \left[\left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{array} \right) \varphi_{S1} + \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{array} \right) \varphi_{S2} + \left(\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{array} \right) \varphi_{S3} \right] \nu_{Rj}$$

∃ ► < ∃ ►</p>

SQC

Symmetry-based models

TBM PMNS from A₄ symmetry

Flavons alignment

The flavon potential is also A_4 symmetric and has "Mexican hat" form. It produces nonzero vevs with the following alignment:

 $\langle arphi_{\mathcal{T}}
angle \propto (1,0,0)\,, \quad \langle arphi_{\mathcal{S}}
angle \propto (1,1,1)\,, \quad \langle \xi
angle
eq 0\,.$

This is the vev alignment which we postulate when building our model.

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0\\ 0 & \omega & 0\\ 0 & 0 & \omega^2 \end{pmatrix}, \quad \omega \equiv e^{2\pi i/3}.$$

• $\langle \varphi_T \rangle$ conserves *T* (subgroup \mathbb{Z}_3),

• $\langle \varphi_S \rangle$ conserves *S* (and *TST*², subgroup $\mathbb{Z}_2 \times \mathbb{Z}_2$).

・ロト ・同ト ・ヨト ・ヨト

SQC

Symmetry-based models

TBM PMNS from A₄ symmetry

Flavons alignment

The flavon potential is also A_4 symmetric and has "Mexican hat" form. It produces nonzero vevs with the following alignment:

 $\langle arphi_{\mathcal{T}}
angle \propto \left(1,0,0
ight), \quad \langle arphi_{\mathcal{S}}
angle \propto \left(1,1,1
ight), \quad \langle \xi
angle
eq 0.$

This is the vev alignment which we postulate when building our model.

$$S = rac{1}{3} \left(egin{array}{ccc} -1 & 2 & 2 \ 2 & -1 & 2 \ 2 & 2 & -1 \end{array}
ight) \,, \quad T = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & \omega & 0 \ 0 & 0 & \omega^2 \end{array}
ight) \,, \quad \omega \equiv e^{2\pi i/3} \,.$$

• $\langle \varphi_T \rangle$ conserves *T* (subgroup \mathbb{Z}_3),

• $\langle \varphi_S \rangle$ conserves *S* (and *TST*², subgroup $\mathbb{Z}_2 \times \mathbb{Z}_2$).

・ロト ・得ト ・ヨト ・ヨト

Sar

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Consequences of flavons alignment

Charged leptons $\langle \varphi_T \rangle \sim (1, 0, 0)$:

$$\begin{aligned} &\frac{y_e}{\Lambda}(\overline{L}\varphi_T)e_R\Phi + \frac{y_\mu}{\Lambda}(\overline{L}\varphi_T)\mu_R\Phi + \frac{y_\tau}{\Lambda}(\overline{L}\varphi_T)\tau_R\Phi \\ &\rightarrow \quad \frac{\langle\varphi_T\rangle}{\Lambda}\left(y_e\overline{L_e}e_R + y_\mu\overline{L_\mu}\mu_R + y_\tau\overline{L_\tau}\tau_R\right)\Phi + h.c. \\ &\rightarrow \quad \left(\overline{e_L},\overline{\mu_L},\overline{\tau_L}\right)\left(\begin{array}{c}m_e & 0 & 0\\ 0 & m_\mu & 0\\ 0 & 0 & m_\tau\end{array}\right)\left(\begin{array}{c}e_R\\\mu_R\\\tau_R\end{array}\right) + h.c. \end{aligned}$$

Charged lepton mass matrix is automatically diagonal.

▶ < ∃ ▶

SQC

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Consequences of flavons alignment

Dirac mass matrix:

$$y_D(\overline{L}\nu_R)\tilde{\Phi} = y_D\overline{\nu_{Li}} \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix} \nu_{Rj}\tilde{\Phi},$$

which after EWSB gives $\overline{\nu_{Li}}(m_D)_{ii}\nu_{Ri}$ with

$$m_D = \frac{y_D v}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \ .$$

Igor Ivanov (CFTP, IST)

 ▶ < ∃ ▶

SQC

Basics of group theory

Symmetry-based models

TBM PMNS from A_4 symmetry

Consequences of flavons alignment

Majorana mass matrix for ν_R :

$$\begin{split} \mathcal{M}_{R} &= y_{a} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \langle \xi \rangle \\ &+ y_{b} \left[\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \langle \varphi_{51} \rangle + \begin{pmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix} \langle \varphi_{52} \rangle + \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \langle \varphi_{53} \rangle \right] \\ &= a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + b \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} . \end{split}$$

- ₹ ₹ ►

990

э

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Consequences of flavons alignment

Overall result:

$$\mathcal{M}_{\nu} = -m_D (M_R)^{-1} m_D^T \,,$$

where

$$m_D = \frac{y_D v}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} , \quad M_R = \begin{pmatrix} a+2b & -b & -b \\ -b & 2b & a-b \\ -b & a-b & 2b \end{pmatrix} .$$

Then we will need to diagonalize it:

$$D_{\nu} = U^{T} \mathcal{M}_{\nu} U \,,$$

and, since the charged lepton matrix is already diagonal,

$$U_{PMNS} = U$$
.

- ∢ ⊒ →

< 口 > < 同

SQC

э

PMNS	matrix
00000	0000

Symmetry-based models

TBM PMNS from A₄ symmetry

Э

48/53

990

Inverting M_R

The simple form of

$$M_R = \left(egin{array}{cccc} a+2b & -b & -b \ -b & 2b & a-b \ -b & a-b & 2b \end{array}
ight)\,.$$

allows to explicitly calculate eigenvalues and eigenvectors:

$$\begin{split} \lambda &= 3b + a \,, \qquad \vec{v} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} \,, \\ \lambda &= a \,, \qquad \vec{v} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \,, \\ \lambda &= 3b - a \,, \qquad \vec{v} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \,. \end{split}$$

э

- ∢ ⊒ →

< 口 > < 同

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

This means that

Inverting \overline{M}_R

$$\begin{pmatrix} \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} a+2b & -b & -b \\ -b & 2b & a-b \\ -b & a-b & 2b \end{pmatrix} \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
$$= \begin{pmatrix} 3b+a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 3b-a \end{pmatrix}$$

Or, in short,

$$U^T M_R U = D_R \quad \Leftrightarrow \quad U D_R U^T = M_R.$$

Image: A matrix and a matrix

▶ < ∃ >

Э

Calculating \mathcal{M}_{ν}

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Therefore,

$$M_{R}^{-1} = U D_{R}^{-1} U^{T} = U \begin{pmatrix} \frac{1}{3b+a} & 0 & 0\\ 0 & \frac{1}{a} & 0\\ 0 & 0 & \frac{1}{3b-a} \end{pmatrix} U^{T}.$$

The light neutrino mass matrix is therefore

$$\mathcal{M}_{\nu} = m_D M_R^{-1} m_D^T = m_D \cdot U D_R^{-1} U^T \cdot m_D^T$$
$$= U \cdot U^T m_D U \cdot D_R^{-1} \cdot U^T m_D^T U \cdot U^T.$$

We need to calculate $U^T m_D U$.

- ∢ ⊒ ▶

F 4

< 口 > < 同

SQC

Basics of group theory

Symmetry-based models

TBM PMNS from A₄ symmetry

Calculating \mathcal{M}_{ν}

Notice that

$$m_D = rac{y_D v}{\sqrt{2}} \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight) \, ,$$

is exactly like the *a*-term of M_R . Therefore,

$$U^{\mathsf{T}} m_D U = \frac{y_D v}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \,.$$

Overall result:

$$\mathcal{M}_{\nu} = U(U^{T} m_{D} U) D_{R}^{-1} (U^{T} m_{D}^{T} U) U^{T} = \frac{y_{D}^{2} v^{2}}{2} U D_{R}^{-1} U^{T}.$$

Igor Ivanov (CFTP, IST)

- ∢ ⊒ →

.

< 口 > < 同

Э

PMNS	matrix
00000	0000

Symmetry-based models

TBM PMNS from A_4 symmetry

Consequences

$$\mathcal{M}_{\nu} = \frac{y_D^2 v^2}{2} U \begin{pmatrix} \frac{1}{3b+a} & 0 & 0\\ 0 & \frac{1}{a} & 0\\ 0 & 0 & \frac{1}{3b-a} \end{pmatrix} U^{T}.$$

• U diagonalizes $\mathcal{M}_{\nu} \rightarrow U = U_{PMNS}$ is of the TBM form;

• neutrino masses are:

$$m_1 = \frac{y_D^2 v^2}{3b+a}, \quad m_2 = \frac{y_D^2 v^2}{a}, \quad m_3 = \frac{y_D^2 v^2}{3b-a}.$$

Very heavy flavon parameters $a, b \rightarrow$ very light neutrinos.

mass sum rule:

1	_ 1	2

which is a prediction of the A_4 model! Be careful: a and b are complex.

• both NO and IO are possible; the sum rule implies a lower bound!

Э

Sac
PMNS	matrix
000000000	

Basics of group theory

Symmetry-based models

TBM PMNS from A_4 symmetry

Consequences

$$\mathcal{M}_{\nu} = \frac{y_D^2 v^2}{2} U \left(\begin{array}{ccc} \frac{1}{3b+a} & 0 & 0 \\ 0 & \frac{1}{a} & 0 \\ 0 & 0 & \frac{1}{3b-a} \end{array} \right) \ U^{\mathsf{T}} \, .$$

- U diagonalizes $\mathcal{M}_{\nu} \rightarrow U = U_{PMNS}$ is of the TBM form;
- neutrino masses are:

$$m_1 = \frac{y_D^2 v^2}{3b+a}, \quad m_2 = \frac{y_D^2 v^2}{a}, \quad m_3 = \frac{y_D^2 v^2}{3b-a}.$$

Very heavy flavon parameters $a, b \rightarrow$ very light neutrinos.

mass sum rule:

$$\frac{1}{m_3} = \frac{1}{m_1} - \frac{2}{m_2}$$

which is a prediction of the A_4 model! Be careful: a and b are complex.

• both NO and IO are possible; the sum rule implies a lower bound!

Э

Sac

Other symmetry groups

This is a typical symmetry-based recipe:

- pick up G, select irreps for L, ℓ_R , ν_R , add flavons at will;
- choose flavon vev alignment among possible choices;
- calculate M_{ℓ} , m_D , $M_R \rightarrow$ calculate \mathcal{M}_{ν} ;
- (analytically) diagonalize M_{ℓ} , $\mathcal{M}_{\nu} \rightarrow$ derive U_{PMNS} ;
- derive sum rule for $m_{1,2,3}$.

Many series of finite groups have been studied [Holthausen, Lim, Lindner, 2012] and some are close to the experimental PMNS matrix.

SQC

3