Introduction to neutrino mass models

Lecture 3：TBM from A_{4} symmetry

Igor Ivanov

CFTP，Instituto Superior Técnico，Lisbon

University of Warsaw
January 8－11， 2018
(1) PMNS matrix
(2) Basics of group theory
(3) Symmetry-based model-building: $A_{4} 3 \mathrm{HDM}$ example
(4) TBM PMNS from A_{4} symmetry

PMNS matrix

Quark masses in SM: single generation

Yukawa interactions provide masses to quarks:

$$
\begin{aligned}
-\mathcal{L}_{Y}^{(d)} & =y_{d}\left(\bar{Q}_{L} \Phi d_{R}+\bar{d}_{R} \Phi^{\dagger} Q_{L}\right) \rightarrow y_{d}\left(\bar{u}_{L}, \bar{d}_{L}\right)\binom{0}{\frac{v}{\sqrt{2}}} d_{R}+\text { h.c. } \\
& =\frac{y_{d} v}{\sqrt{2}}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right) \equiv m_{d} \bar{d} d .
\end{aligned}
$$

Quark masses in SM: single generation

Yukawa interactions provide masses to quarks:

$$
\begin{aligned}
-\mathcal{L}_{Y}^{(d)} & =y_{d}\left(\bar{Q}_{L} \Phi d_{R}+\bar{d}_{R} \Phi^{\dagger} Q_{L}\right) \rightarrow y_{d}\left(\bar{u}_{L}, \bar{d}_{L}\right)\binom{0}{\frac{v}{\sqrt{2}}} d_{R}+\text { h.c. } \\
& =\frac{y_{d} v}{\sqrt{2}}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right) \equiv m_{d} \bar{d} d . \\
-\mathcal{L}_{Y}^{(u)} & =y_{u}\left(\bar{Q}_{L} \tilde{\Phi} u_{R}+\bar{u}_{R} \tilde{\phi}^{\dagger} Q_{L}\right) \rightarrow y_{u}\left(\bar{u}_{L}, \bar{d}_{L}\right)\binom{\frac{v}{\sqrt{2}}}{0} u_{R}+\text { h.c. } \equiv m_{u} \bar{u} u .
\end{aligned}
$$

Quark masses and mixing

Three generations $Q_{L i}, d_{R i}, u_{R i}, i=1,2,3$:

$$
d_{i}=(d, s, b) \quad u_{i}=(u, c, t)
$$

Yukawa interactions are parametrized with coupling matrices $\Gamma_{i j}$ and $\Delta_{i j}$:

$$
\begin{aligned}
-\mathcal{L}_{Y} & =\bar{Q}_{L i} \Gamma_{i j} \Phi d_{R j}+\bar{Q}_{L i} \Delta_{i j} \tilde{\Phi} u_{R j}+\text { h.c. } \\
& \rightarrow \bar{d}_{L i}\left(M_{d}\right)_{i j} d_{R j}+\bar{u}_{L i}\left(M_{u}\right)_{i j} u_{R j}+\text { h.c. }
\end{aligned}
$$

where the 3×3 mass matrices are

$$
\left(M_{d}\right)_{i j}=\Gamma_{i j} \frac{v}{\sqrt{2}}, \quad\left(M_{u}\right)_{i j}=\Delta_{i j} \frac{v}{\sqrt{2}}
$$

and are, in general, non-diagonal and complex.

CKM matrix

M_{d} is diagonalized by $d_{L}=V_{d L} d_{L}^{\text {phys }}, d_{R}=V_{d R} d_{R}^{\text {phys }}$, and so is M_{u} :

$$
\begin{aligned}
& V_{d L}^{\dagger} M_{d} V_{d R}=D_{d}=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right), \\
& V_{u L}^{\dagger} M_{u} V_{u R}=D_{u}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right),
\end{aligned}
$$

But then the charged current matrix can become non-trivial:

$$
\bar{u}_{L i} \gamma^{\mu} W_{\mu}^{+} d_{L i}=\bar{u}_{L i}^{\text {phys }} \gamma^{\mu} W_{\mu}^{+} V_{i j} d_{L j}^{\text {phys }}, \quad \text { where } \quad V_{i j}=V_{u L}^{\dagger} V_{d L} \neq \delta_{i j} .
$$

Conclusion

if coupling matrices $\Gamma_{i j}$ and $\Delta_{i j}$ are distinct,
then quark mass eigenstates \neq charged current eigenstates.

The CKM matrix V (Cabibbo-Kobayashi-Maskawa mixing matrix) describes how charged currents mix quarks from different generations

CKM matrix

M_{d} is diagonalized by $d_{L}=V_{d L} d_{L}^{\text {phys }}, d_{R}=V_{d R} d_{R}^{\text {phys }}$, and so is M_{u} :

$$
\begin{aligned}
& V_{d L}^{\dagger} M_{d} V_{d R}=D_{d}=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right), \\
& V_{u L}^{\dagger} M_{u} V_{u R}=D_{u}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right),
\end{aligned}
$$

But then the charged current matrix can become non-trivial:

$$
\bar{u}_{L i} \gamma^{\mu} W_{\mu}^{+} d_{L i}=\bar{u}_{L i}^{\text {phys }} \gamma^{\mu} W_{\mu}^{+} V_{i j} d_{L j}^{\text {phys }}, \quad \text { where } \quad V_{i j}=V_{u L}^{\dagger} V_{d L} \neq \delta_{i j} .
$$

Conclusion

if coupling matrices $\Gamma_{i j}$ and $\Delta_{i j}$ are distinct, then quark mass eigenstates \neq charged current eigenstates.

The CKM matrix V (Cabibbo-Kobayashi-Maskawa mixing matrix) describes how charged currents mix quarks from different generations.

Lepton mixing: Dirac

Massive neutrinos implies that they are either Dirac or Majorana.
For Dirac neutrinos, we add $\nu_{R i}, i=1,2,3$, write only Dirac mass term, get lepton mass matrices M_{ℓ} and \mathcal{M}_{ν}, and diagonalize them as before:

$$
\begin{aligned}
& U_{\ell L}^{\dagger} M_{\ell} U_{\ell R}=D_{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) \\
& U_{\nu L}^{\dagger} \mathcal{M}_{\nu} U_{\nu R}=D_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right),
\end{aligned}
$$

The charged weak currents are written in the generation space as

$$
\underbrace{\overline{\ell_{L i}} \gamma^{\mu} W_{\mu}^{-} \nu_{L i}}_{\text {original }}=\underbrace{\left(\overline{e_{L}}, \overline{\mu_{L}}, \overline{\tau_{L}}\right) \gamma^{\mu} W_{\mu}^{-}\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)}_{\text {flavor basis }} \equiv\left(\overline{e_{L}}, \overline{\mu_{L}}, \overline{\tau_{L}}\right) \gamma^{\mu} W_{\mu}^{-} U_{P N M S}\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

Lepton mixing: Dirac

$$
\underbrace{\overline{\ell_{L i}} \gamma^{\mu} W_{\mu}^{-} \nu_{L i}}_{\text {original }}=\underbrace{\left(\overline{e_{L}}, \overline{\mu_{L}}, \overline{\tau_{L}}\right) \gamma^{\mu} W_{\mu}^{-}\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)}_{\text {flavor basis }} \equiv\left(\overline{e_{L}}, \overline{\mu_{L}}, \overline{\tau_{L}}\right) \gamma^{\mu} W_{\mu}^{-} U_{P N M S}\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

Flavor basis is defined as the charged lepton mass basis:

$$
\ell_{L i}=U_{\ell} \ell_{L}^{\text {mass }}, \quad \nu_{L i}=U_{\nu} \nu_{L}^{\text {mass }}
$$

Therefore, the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is

$$
U_{P M N S}=U_{\ell}^{\dagger} U_{\nu} .
$$

If M_{ℓ} is already diagonal, then $U_{P M N S}=U_{\nu}$.

Lepton mixing: Dirac

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=U_{P N M S}\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

After removing phases, the standard parametrization is

$$
U_{P M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
$$

Since \mathcal{M}_{ν} is diagonalized by bi-unitary transformation

some phases from $U_{\nu L}$ can be moved to $U_{\nu R}$
PMANS matrix UPMNS contains only one irremovable phase

Lepton mixing: Dirac

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=U_{P N M S}\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right) .
$$

After removing phases, the standard parametrization is

$$
U_{P M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
$$

Since \mathcal{M}_{ν} is diagonalized by bi-unitary transformation

$$
U_{\nu L}^{\dagger} \mathcal{M}_{\nu} U_{\nu R}=D_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right),
$$

some phases from $U_{\nu L}$ can be moved to $U_{\nu R}$.
PMNS matrix UPMNS contains only one irremovable phase.

Lepton mixing: Majorana

For Majorana neutrinos, the mass matrix is

$$
\nu_{L i}^{T}\left(\mathcal{M}_{\nu}\right)_{i j} \mathcal{C} \nu_{L j}=\left(\nu_{L}^{\text {mass }}\right)^{T} U_{\nu}^{T} \mathcal{M}_{\nu} U_{\nu} \mathcal{C} \nu_{L}^{\text {mass }}=\left(\nu_{L}^{\text {mass }}\right)^{T} D_{\nu} \mathcal{C} \nu_{L}^{\text {mass }}
$$

with the same matrix U_{ν} on both sides.
One can always find such U_{ν} to make D_{ν} diagonal with real posivite values. But once this is done, there is no freedom left to remove phases!

$$
U_{P M N S}^{\text {Majorana }}=U_{P M N S} \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{i \beta}
\end{array}\right)
$$

These two additional Majorana phases are the echo of the complex neutrino mass matrix \mathcal{M}_{ν}.

Lepton mixing

PMNS

$U_{\text {PMNS }}$ is close to the tri-bimaximal mixing pattern [Harrison, Perkins, Scott, 2002]:

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

Nonzero s_{13} highlights deviation, but proximity of $U_{P M N S}$ to the TBM is indicative of some symmetry.

Basics of finite group theory

Groups

Set G is a group if it satisfies the following four axioms:

- closure of G under composition (usually called multiplication):
for any $g_{1}, g_{2} \in G$, define their product $g_{1} \cdot g_{2} \in G$;
- the multiplication is associative: $g_{1} \cdot\left(g_{2} \cdot g_{3}\right)=\left(g_{1} \cdot g_{2}\right) \cdot g_{3}$ for all $g_{1}, g_{2}, g_{3} \in G$;
- there exists a special element called identity element e with the properties:
- every element is invertible: for any $g \in G$, there exists another element in G (denoted g^{-1}) such that

Groups

Set G is a group if it satisfies the following four axioms:

- closure of G under composition (usually called multiplication):
for any $g_{1}, g_{2} \in G$, define their product $g_{1} \cdot g_{2} \in G$;
- the multiplication is associative: $g_{1} \cdot\left(g_{2} \cdot g_{3}\right)=\left(g_{1} \cdot g_{2}\right) \cdot g_{3}$ for all $g_{1}, g_{2}, g_{3} \in G$;
- there exists a special element called identity element e with the properties:

$$
g \cdot e=e \cdot g=g \quad \text { for any } g \in G ;
$$

- every element is invertible: for any $g \in G$, there exists another element in G (denoted g^{-1}) such that

$$
g^{-1} \cdot g=g \cdot g^{-1}=e
$$

Groups

In addition, if $g \cdot h=h \cdot g$ for all elements $g, h \in G$, the group is called abelian. If it fails at least for one pair, the group is called non-abelian. Non-abelian groups are much, much, much more complicated than abelian groups.

Groups arise in physics in the context of transformations and symmetries. It is the most appropriate language to describe hidden consequences of physics formulas or laws.

Groups

In addition, if $g \cdot h=h \cdot g$ for all elements $g, h \in G$, the group is called abelian. If it fails at least for one pair, the group is called non-abelian. Non-abelian groups are much, much, much more complicated than abelian groups.

Groups arise in physics in the context of transformations and symmetries. It is the most appropriate language to describe hidden consequences of physics formulas or laws.

Groups

Groups can be finite or infinite.

- A finite group G has finite number of elements: $G=\left\{e, g_{2}, g_{3}, \ldots, g_{n}\right\}$. Its size n is called the order of the group and is denoted $|G|$.
- In a finite group, successive multiplications will sooner or later terminate in e. Pick up any $g \in G$ and consider successive powers:

$$
g^{1} \equiv g \quad g^{2} \equiv g \cdot g, \quad g^{3} \equiv g \cdot g \cdot g, \quad g^{k} \equiv \underbrace{g \cdots \cdot}_{k \text { times }}
$$

Then, there must exist an integer p such that $g^{p}=e$. This integer p is called the order of the element g.

- Infinite groups can be discrete or continuous (= topological).

Basics examples

- Integers \mathbb{Z} and reals \mathbb{R} are groups under addition. The identity element is 0 . They are not groups under multiplication!
- Reals on the interval $[0,1]$ form a group under addition with periodic boundary condition $(0.999 \cdots=0)$. These are fractional part of reals: \mathbb{R} / \mathbb{Z}.

Complex numbers with $|z|=1$ form under multiplication the circle groun or the rephasing group $U(1)$

The two last groups are isomorphic: $\mathbb{R} / \mathbb{Z} \simeq U(1)$

- Cyclic groups \mathbb{T}_{n} for any $n>1$ are defined as

isomorphic to integers modulo n under addition: $\mathbb{Z} / n \mathbb{Z}$.

Basics examples

- Integers \mathbb{Z} and reals \mathbb{R} are groups under addition. The identity element is 0 . They are not groups under multiplication!
- Reals on the interval $[0,1]$ form a group under addition with periodic boundary condition $(0.999 \cdots=0)$. These are fractional part of reals: \mathbb{R} / \mathbb{Z}.
Complex numbers with $|z|=1$ form under multiplication the circle group, or the rephasing group $U(1)$.
The two last groups are isomorphic: $\mathbb{R} / \mathbb{Z} \simeq U(1)$.
- Cyclic groups \mathbb{Z}_{n} for any $n>1$ are defined as
isomorphic to integers modulo n under addition: $\mathbb{Z} / n \mathbb{Z}$.

Basics examples

- Integers \mathbb{Z} and reals \mathbb{R} are groups under addition. The identity element is 0 . They are not groups under multiplication!
- Reals on the interval $[0,1]$ form a group under addition with periodic boundary condition $(0.999 \cdots=0)$. These are fractional part of reals: \mathbb{R} / \mathbb{Z}.
Complex numbers with $|z|=1$ form under multiplication the circle group, or the rephasing group $U(1)$.
The two last groups are isomorphic: $\mathbb{R} / \mathbb{Z} \simeq U(1)$.
- Cyclic groups \mathbb{Z}_{n} for any $n>1$ are defined as

$$
\mathbb{Z}_{n}=\left\{e, a, a^{2}, a^{3}, \ldots, a^{n-1}\right\} \text { with condition } a^{n}=e
$$

isomorphic to integers modulo n under addition: $\mathbb{Z} / n \mathbb{Z}$.

Presentation of a group

How would you describe a finite group?
Simplest choice: write the multiplication table $|G| \times|G|$. Very impractical.
Much better choice: via generators and relations.

- Generators a, b, c, \ldots form a subset of elements of G such that any $g \in G$ can be written and their product.
- Generators are independent elements but they satisfy some constraints (relations).
- Group presentation: $G=\langle$ generators $|$ their relations \rangle.
- A cyclic group is generated by $a: \mathbb{Z}_{n}=\left\langle a \mid a^{n}=e\right\rangle$.

Direct product of cyclic groups: $\mathbb{Z}_{n} \times \mathbb{Z}_{m}=\left\langle a, b \mid a^{n}=b^{m}=e, a b=b a\right\rangle$.

Representations of abelian groups

A representation of the group G is, colloquially speaking, a way of rewriting it as a group of matrices which act on some k-dimensional vector space.

The set of matrices must obey exactly the same rules as the elements of G, but otherwise there is no constraints on their form or dimension k. For example,

$$
\begin{array}{rll}
\mathbb{Z}_{2}=(e, a): & a=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { or } & \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\mathbb{Z}_{3}=\left(e, b, b^{2}\right): & b=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \text { or }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) .
\end{array}
$$

where $\omega \equiv \exp (2 \pi i / 3), \omega^{3}=1$.

Representations of abelian groups

General theorem: for any abelian unitary group, the representing matrices can be always made diagonal by a basis choice.

Example: $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=(e, a, b, a b)$ with a faithfull 2 D representation:

$$
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad a=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad b=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad a b=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

In this basis, each 1D subspace remains invariant; and the diagonal numbers form

a 1D representation

subspace

Representations of abelian groups

General theorem: for any abelian unitary group, the representing matrices can be always made diagonal by a basis choice.

Example: $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=(e, a, b, a b)$ with a faithfull 2 D representation:

$$
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad a=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad b=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad a b=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

In this basis, each 1D subspace remains invariant; and the diagonal numbers form a 1 D representation.

$$
\begin{aligned}
& \text { subspace }\binom{1}{0} \quad a=1, b=-1, \\
& \text { subspace }\binom{0}{1} \quad a=-1, b=1 .
\end{aligned}
$$

In general: irreducible representations of unitary abelian groups are 1D.

Working example: A_{4}

Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

- S_{n}, group of all permutations of n elements. Its order is $\left|S_{n}\right|=n$!. The smallest group is $S_{2} \simeq \mathbb{Z}_{2}$. The smallest non-abelian is

$$
S_{3}=\left\langle a, b \mid a^{2}=b^{3}=e, a b=b^{2} a\right\rangle .
$$

- A_{n}, group of even-signature permutations of n elements; $\left|A_{n}\right|=n!/ 2$.
- Symmetry groups of regular polygons and polyhedra
- Symmetry group of equilateral triangle $\simeq S_{3}$;
- Symmetry group of tetrahedron $\simeq A_{4}$
- Symmetry group of cube $\simeq S_{4}$

Irreducible representations of non-abelian groups have d

Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

- S_{n}, group of all permutations of n elements. Its order is $\left|S_{n}\right|=n$!. The smallest group is $S_{2} \simeq \mathbb{Z}_{2}$. The smallest non-abelian is

$$
S_{3}=\left\langle a, b \mid a^{2}=b^{3}=e, a b=b^{2} a\right\rangle .
$$

- A_{n}, group of even-signature permutations of n elements; $\left|A_{n}\right|=n!/ 2$.
- Symmetry groups of regular polygons and polyhedra:
- Symmetry group of equilateral triangle $\simeq S_{3}$;
- Symmetry group of tetrahedron $\simeq A_{4}$;
- Symmetry group of cube $\simeq S_{4}$.

Irreducible representations of non-abelian groups have $d>1$

Non-abelian groups

There is a much richer list of (finite) non-abelian groups. Some examples:

- S_{n}, group of all permutations of n elements. Its order is $\left|S_{n}\right|=n$!. The smallest group is $S_{2} \simeq \mathbb{Z}_{2}$. The smallest non-abelian is

$$
S_{3}=\left\langle a, b \mid a^{2}=b^{3}=e, a b=b^{2} a\right\rangle .
$$

- A_{n}, group of even-signature permutations of n elements; $\left|A_{n}\right|=n!/ 2$.
- Symmetry groups of regular polygons and polyhedra:
- Symmetry group of equilateral triangle $\simeq S_{3}$;
- Symmetry group of tetrahedron $\simeq A_{4}$;
- Symmetry group of cube $\simeq S_{4}$.

Irreducible representations of non-abelian groups have $d>1$.

Group A_{4}

A_{4} is the smallest group with irreducible 3D representation:

$$
A_{4}=\left\langle S, T \mid S^{2}=T^{3}=e,(S T)^{3}=e\right\rangle, \quad\left|A_{4}\right|=12 .
$$

It contains:

- three elements of order 2: $S, T^{2} S T, T S T^{2}$;
- together with e, they form the Klein subgroup $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$;
- four cycles of order 3 generated by $T, S T, T S, T^{2} S T^{2}$ (8 elements of order 3 in total).

A_{4} : transformation S

A_{4}

$$
t_{3}
$$

- rotation by 180°

S

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right)=\left(\begin{array}{c}
t_{4} \\
t_{3} \\
t_{2} \\
t_{1}
\end{array}\right)
$$

A_{4} : transformation T

A4

- rotation by 120° anti-clockwise (seen from a vertex) T

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right)=\left(\begin{array}{l}
t_{1} \\
t_{3} \\
t_{4} \\
t_{2}
\end{array}\right)
$$

Group A_{4}

3D irreducible representation: diagonal- S basis

- order 2:

$$
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad T^{2} S T=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad T S T^{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- order 3:

$$
\begin{array}{ll}
T=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), & S T=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right), \\
T S=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right), & T^{2} S T^{2}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right),
\end{array}
$$

and their squares.

Group A_{4}

3D irreducible representation: diagonal- T basis
One can switch to another basis in the same 3D space, in which T becomes diagonal.

$$
T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \quad \omega \equiv e^{2 \pi i / 3}, \quad \omega^{3}=1
$$

Then, S takes an "ugly" shape:

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) .
$$

Nevertheless, all group multiplications hold: $S^{2}=e$, etc

Group A_{4}

Subspaces in the diagonal- T basis are convenient to define three non-equivalent 1D irreps: $1,1^{\prime}, 1^{\prime \prime}$

The full table of all irreps of A_{4} :

irrep	S	T
1	$S=1$	$T=1$
1^{\prime}	$S=1$	$T=\omega$
$1^{\prime \prime}$	$S=1$	$T=\omega^{2}$
3	matrix S	matrix T

Notice: the trivial singlet 1 is invariant under the entire A_{4}.

Building symmetry-based models with the example of $A_{4} 3 \mathrm{HDM}$

Tensor product decomposition

Models begin with lagrangian \mathcal{L}, which encodes all interactions.
Terms in the lagrangian are products of various fields:

$$
\mathcal{L}=\cdots+\lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\cdots+Y_{i j}^{a} \overline{Q_{L i}} \Phi_{a} d_{R j}+\cdots
$$

We assume that each set of fields (LH fermions, RH fermions, Higgses, etc) transforms as a certain representation of group G.

We want to find which combinations are fully G-invariant.

We must use the tensor product of representations.

Tensor product decomposition

Take 3D vectors $a_{i}=\left(a_{1}, a_{2}, a_{3}\right)$ and $b_{j}=\left(b_{1}, b_{2}, b_{3}\right)$ and construct their tensor product $a_{i} b_{j}$. How does it transform under $S O(3)$ rotations?

$$
a_{i} b_{j}=\delta_{i j} \frac{(\vec{a} \vec{b})}{3}+\epsilon_{i j k} \cdot \underbrace{v_{k}}_{=[\vec{a} \times \vec{b}] / 2}+\left[\frac{1}{2}\left(a_{i} b_{j}+a_{j} b_{i}\right)-\delta_{i j} \frac{(\vec{a} \vec{b})}{3}\right],
$$

which means that inside the 9D tensor $a_{i} b_{j}$ there are three invariant subspaces: singlet, $\propto \delta_{i j} ;$ triplet, $\propto \epsilon_{i j k} v_{k}$, and 5-plet, the traceless symmetric part of $a_{i} b_{j}$. Group-theoretically: $3 \otimes 3=1 \otimes 3 \otimes 5$.

This is how tensor product decomposition (= Clebsch-Gordan coefs) works in the group $S O(3)$.

Tensor product decomposition

For each group, these rules are different (= Clebsch-Gordan coefs are different).
For A_{4}, if $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$ are two irreducible triplets, then

$$
3 \otimes 3=1 \oplus 1^{\prime} \oplus 1^{\prime \prime} \oplus 3_{1} \oplus 3_{2} .
$$

The explicit expressions for their components (in the S-symmetric basis!) are:

$$
\begin{aligned}
1 & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
1^{\prime} & =a_{1} b_{1}+\omega^{2} a_{2} b_{2}+\omega a_{3} b_{3} \\
1^{\prime \prime} & =a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3} \\
3_{1} & =\left(a_{2} b_{3}, a_{3} b_{1}, a_{1} b_{2}\right) \\
3_{2} & =\left(a_{3} b_{2}, a_{1} b_{3}, a_{2} b_{1}\right) .
\end{aligned}
$$

The products of singlets are intuitive: $1^{\prime} \otimes 1^{\prime \prime}=1$, etc.

Picking up symmetric terms

When building symmetry-constrained lagrangians, we

- write products of fields, each transforming as a certain irrep of the group G,
- perform tensor product decomposition,
- out of all final irreps, keep only trivial singlets as they are G-symmetric.
For example, in three-Higgs-doublet model based on group A_{4}, we have three Higgs doublets $\Phi_{1}, \Phi_{2}, \Phi_{3}$. In general, the quadratic part of the potential has nine terms $\Phi_{i}^{\dagger} \Phi$

But knowing that, for the group $A_{4}, 3 \otimes 3=1 \oplus 1^{\prime} \oplus 1^{\prime \prime} \oplus 3_{1} \oplus 3_{2}$, we keep only the singlet. Therefore, the Higgs potential is

Picking up symmetric terms

When building symmetry-constrained lagrangians, we

- write products of fields, each transforming as a certain irrep of the group G,
- perform tensor product decomposition,
- out of all final irreps, keep only trivial singlets as they are G-symmetric.

For example, in three-Higgs-doublet model based on group A_{4}, we have three Higgs doublets $\Phi_{1}, \Phi_{2}, \Phi_{3}$. In general, the quadratic part of the potential has nine terms $\phi_{i}^{\dagger} \phi_{j}$.

But knowing that, for the group $A_{4}, 3 \otimes 3=1 \oplus 1^{\prime} \oplus 1^{\prime \prime} \oplus 3_{1} \oplus 3_{2}$, we keep only the singlet. Therefore, the Higgs potential is

$$
V=-m^{2}\left(\Phi_{1}^{\dagger} \Phi_{1}+\Phi_{2}^{\dagger} \Phi_{2}+\Phi_{3}^{\dagger} \Phi_{3}\right)+V_{4}
$$

Picking up symmetric terms

For the quartic part, we decompose $\left(\Phi_{i}^{\dagger} \Phi_{j}\right)\left(\Phi_{k}^{\dagger} \Phi_{l}\right)$,

$$
\begin{aligned}
& {[(3 \otimes 3) \otimes(3 \otimes 3)]_{\text {sym }}=\left[\left(1 \oplus 1^{\prime} \oplus 1^{\prime \prime} \oplus 3_{1} \oplus 3_{2}\right) \otimes\left(1 \oplus 1^{\prime} \oplus 1^{\prime \prime} \oplus 3_{1} \oplus 3_{2}\right)\right]_{\text {sym }}} \\
& =1 \otimes 1+1^{\prime} \otimes 1^{\prime \prime}+\underbrace{\left(3_{1} \otimes 3_{1}\right)}_{=1 \oplus \ldots}+\underbrace{\left(3_{2} \otimes 3_{2}\right)}_{=1 \oplus \ldots}+\underbrace{\left(3_{1} \otimes 3_{2}\right)}_{=1 \oplus \ldots}+\ldots,
\end{aligned}
$$

which gives five trivial singlets 1 :

$$
\begin{aligned}
V_{4} & =\lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}+\Phi_{2}^{\dagger} \Phi_{2}+\Phi_{3}^{\dagger} \Phi_{3}\right)^{2} \\
& +\lambda_{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\left(\Phi_{3}^{\dagger} \Phi_{3}\right)+\left(\Phi_{3}^{\dagger} \Phi_{3}\right)\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\right] \\
& +\lambda_{3}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left(\Phi_{2}^{\dagger} \Phi_{3}\right)\left(\Phi_{3}^{\dagger} \Phi_{2}\right)+\left(\Phi_{3}^{\dagger} \Phi_{1}\right)\left(\Phi_{1}^{\dagger} \Phi_{3}\right)\right] \\
& +\left(\lambda_{4}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left(\Phi_{2}^{\dagger} \Phi_{3}\right)^{2}+\left(\Phi_{3}^{\dagger} \Phi_{1}\right)^{2}\right]+\text { h.c. }\right)
\end{aligned}
$$

Spontaneous symmetry breaking

In this way, we get the full A_{4}-symmetric potential in 3 HDM .
But the minimum of this potential $\left(v_{1}, v_{2}, v_{3}\right)$ may break this group, fully or completely. Which options are available for the minimum in the A_{4}-symmetric 3HDM?

It turns out that vevs $\left(v_{1}, v_{2}, v_{3}\right)$ cannot be arbitrary! Depending on paremeters only four vev alignments are possible [Degee, Ivanov, Keus, 2012]

- $(1,0,0)$. The residual symmetry group is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- $(1,1,1)$. The residual symmetry group is \mathbb{Z}_{3}
- $\left(1, \omega, \omega^{2}\right)$. The residual symmetry group is \mathbb{T}_{3}
- $\left(1, e^{i \alpha}, 0\right)$. The residual symmetry group is \mathbb{Z}_{2} Conclusion: it is impossible to break the Λ_{4} symmetry completely.

Spontaneous symmetry breaking

In this way, we get the full A_{4}-symmetric potential in $3 H D M$.
But the minimum of this potential $\left(v_{1}, v_{2}, v_{3}\right)$ may break this group, fully or completely. Which options are available for the minimum in the A_{4}-symmetric 3HDM?

It turns out that vevs $\left(v_{1}, v_{2}, v_{3}\right)$ cannot be arbitrary! Depending on paremeters λ, only four vev alignments are possible [Degee, Ivanov, Keus, 2012]:

- $(1,0,0)$. The residual symmetry group is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- $(1,1,1)$. The residual symmetry group is \mathbb{Z}_{3}.
- $\left(1, \omega, \omega^{2}\right)$. The residual symmetry group is \mathbb{Z}_{3}.
- $\left(1, e^{i \alpha}, 0\right)$. The residual symmetry group is \mathbb{Z}_{2}.

Conclusion: it is impossible to break the A_{4} symmetry completely.

Extending $A_{4} 3 H D M$ to charged leptons

Extending A_{4} symmetry of 3HDM to the Majorana LH neutrino mass matrix [Gonzales Felipe, Serodio, Silva, 2013].
Charged lepton Yukawa interactions:

$$
\overline{L_{i}} Y_{i j}^{a} \underbrace{\Phi_{a}}_{3} \ell_{R j}+\text { h.c. }
$$

We know that $\Phi_{a}=\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)$ transforms as triplet 3 under A_{4}.

Therefore, the product of L_{i} and $\ell_{R j}$ must also transform as a triplet 3 to produce the trivial singlet 1 at the end.

L_{i}	$\ell_{R j}$
3	3
$\left(1,1^{\prime}, 1^{\prime \prime}\right)$	3
3	$\left(1,1^{\prime}, 1^{\prime \prime}\right)$

Extending $A_{4} 3 H D M$ to charged leptons

For example, if $\overline{L_{i}} \sim\left(1,1^{\prime}, 1^{\prime \prime}\right)$ and $\ell_{R j} \sim 3$, we get:

$$
\begin{aligned}
\overline{L_{i}} Y_{i j}^{a} \Phi_{a} \ell_{R j}= & y_{1} \overline{L_{1}} \underbrace{\Phi_{a} \ell_{R j}}_{1}+y_{2} \overline{L_{2}} \underbrace{\Phi_{2} \ell_{R j}}_{1^{\prime \prime}}+y_{3} \overline{L_{3}} \underbrace{\Phi_{a} \ell_{R j}}_{1^{\prime}} \\
= & y_{1} \overline{L_{1}}\left(\Phi_{1} \ell_{R 1}+\Phi_{2} \ell_{R 2}+\Phi_{3} \ell_{R 3}\right) \\
& +y_{2} \overline{L_{2}}\left(\Phi_{1} \ell_{R 1}+\omega \Phi_{2} \ell_{R 2}+\omega^{2} \Phi_{3} \ell_{R 3}\right) \\
& +y_{3} \overline{L_{3}}\left(\Phi_{1} \ell_{R 1}+\omega^{2} \Phi_{2} \ell_{R 2}+\omega \Phi_{3} \ell_{R 3}\right)
\end{aligned}
$$

Pick up a vev alignment, for example, $v(1,1,1)$. Then, charged lepton mass matrix is

which, after diagonalization gives $m_{\ell}=\left\{y_{1} v, y_{2} v, y_{3} v\right\} \rightarrow \mathrm{OK}$

Extending $A_{4} 3 H D M$ to charged leptons

For example, if $\overline{L_{i}} \sim\left(1,1^{\prime}, 1^{\prime \prime}\right)$ and $\ell_{R j} \sim 3$, we get:

$$
\begin{aligned}
\overline{L_{i}} Y_{i j}^{a} \Phi_{a} \ell_{R j}= & y_{1} \overline{L_{1}} \underbrace{\Phi_{2} \ell_{R j}}_{1}+y_{2} \overline{L_{2}} \underbrace{\Phi_{2} \ell_{R j}}_{1^{\prime \prime}}+y_{3} \overline{L_{3}} \underbrace{\Phi_{a} \ell_{R j}}_{1^{\prime}} \\
= & y_{1} \overline{L_{1}}\left(\Phi_{1} \ell_{R 1}+\Phi_{2} \ell_{R 2}+\Phi_{3} \ell_{R 3}\right) \\
& +y_{2} \overline{L_{2}}\left(\Phi_{1} \ell_{R 1}+\omega \Phi_{2} \ell_{R 2}+\omega^{2} \Phi_{3} \ell_{R 3}\right) \\
& +y_{3} \overline{L_{3}}\left(\Phi_{1} \ell_{R 1}+\omega^{2} \Phi_{2} \ell_{R 2}+\omega \Phi_{3} \ell_{R 3}\right)
\end{aligned}
$$

Pick up a vev alignment, for example, $v(1,1,1)$. Then, charged lepton mass matrix is

$$
M_{\ell}=v\left(\begin{array}{ccc}
y_{1} & y_{1} & y_{1} \\
y_{2} & \omega y_{2} & \omega^{2} y_{2} \\
y_{3} & \omega^{2} y_{3} & \omega y_{3}
\end{array}\right)
$$

which, after diagonalization gives $m_{\ell}=\left\{y_{1} v, y_{2} v, y_{3} v\right\} \rightarrow O K$.

Extending $A_{4} 3 H D M$ to Majorana neutrinos

Then, include Majorana neutrino terms:

$$
c_{i j}^{a b}\left(L_{i}^{T} \tilde{\Phi}_{a}^{*}\right) \mathcal{C}\left(\tilde{\Phi}_{b}^{\dagger} L_{j}\right)
$$

Group-theoretically, we see

$$
(L \otimes L) \otimes(\underbrace{\tilde{\Phi}}_{3} \otimes \underbrace{\tilde{\Phi}}_{3})
$$

Since $\overline{L_{i}} \sim\left(1,1^{\prime}, 1^{\prime \prime}\right)$, the product $L \otimes L$ also contains $1,1^{\prime}$, and $1^{\prime \prime}$, which are coupled to $3 \otimes 3$:

$$
\begin{aligned}
& \frac{g_{1}}{\Lambda}\left(L_{1} L_{1}+L_{2} L_{3}+L_{3} L_{2}\right)\left(\tilde{\Phi}_{1} \tilde{\Phi}_{1}+\tilde{\Phi}_{2} \tilde{\Phi}_{2}+\tilde{\Phi}_{3} \tilde{\Phi}_{3}\right) \\
+ & \frac{g_{2}}{\Lambda}\left(L_{1} L_{2}+L_{2} L_{1}+L_{3} L_{3}\right)\left(\tilde{\Phi}_{1} \tilde{\Phi}_{1}+\omega \tilde{\Phi}_{2} \tilde{\Phi}_{2}+\omega^{2} \tilde{\Phi}_{3} \tilde{\Phi}_{3}\right) \\
+ & \frac{g_{3}}{\Lambda}\left(L_{1} L_{3}+L_{2} L_{2}+L_{3} L_{1}\right)\left(\tilde{\Phi}_{1} \tilde{\Phi}_{1}+\omega^{2} \tilde{\Phi}_{2} \tilde{\Phi}_{2}+\omega \tilde{\Phi}_{3} \tilde{\Phi}_{3}\right)
\end{aligned}
$$

Extending $A_{4} 3 H D M$ to Majorana neutrinos

Next, substituting the chosen vev alignment $(1,1,1)$, we get neutrino mass matrix:

$$
\mathcal{M}_{\nu}=\frac{g_{1} v^{2}}{2 \Lambda}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

We obtain three degenerate neutrinos!

Conclusion

extending A_{4} symmetry to charged leptons and Majorana neutrinos with irrep assignment

$$
\Phi \sim 3, \quad L \sim\left(1,1^{\prime}, 1^{\prime \prime}\right), \quad \ell_{R} \sim 3
$$

and with the vev alignment $\left\langle\phi^{0}\right\rangle=v(1,1,1)$ is ruled out by experiment.

Extending $A_{4} 3 H D M$ to Majorana neutrinos

One needs to check all possible irrep assignments and all possible vev alignments. This was done in [Gonzales Felipe, Serodio, Silva, 2013].

The result is: all possible combinations are ruled out experimentally. The problems can be:

- massless charged leptons,
- degenerate neutrino masses,
- insufficient neutrino mixing.

Thus, 3HDM scalar sector offers too little freedom to produce viable Majorana neutrino masses through the A_{4} symmetry group.

One need's to en'arge the scalar sector to get a viable neutrino sector

Extending $A_{4} 3 H D M$ to Majorana neutrinos

One needs to check all possible irrep assignments and all possible vev alignments. This was done in [Gonzales Felipe, Serodio, Silva, 2013].

The result is: all possible combinations are ruled out experimentally. The problems can be:

- massless charged leptons,
- degenerate neutrino masses,
- insufficient neutrino mixing.

Thus, 3HDM scalar sector offers too little freedom to produce viable Majorana neutrino masses through the A_{4} symmetry group.

One needs to enlarge the scalar sector to get a viable neutrino sector.

TBM PMNS from A_{4} symmetry

Classic seesaw again

Leptonic Yukawas:

$$
\begin{gathered}
\overline{L_{i}} Y_{i j}^{\ell} \phi \ell_{R j}+\overline{L_{i}} Y_{i j}^{\nu} \tilde{\phi}_{\nu_{R j}}+\frac{1}{2} \overline{\left(\nu_{R i}\right)^{c}}\left(M_{R}\right)_{i j} \nu_{R j}+\text { h.c. } \\
=\overline{\ell_{L}} M_{\ell} \ell_{R}+\frac{1}{2}\left[\overline{\nu_{L}}, \overline{\left(\nu_{R}\right)^{c}}\right]\left(\begin{array}{cc}
0 & m_{D} \\
m_{D}^{T} & M_{R}
\end{array}\right)\binom{\left(\nu_{L}\right)^{c}}{\nu_{R}}+\text { h.c. }
\end{gathered}
$$

which leads to

$$
\mathcal{M}_{\nu}=-m_{D}\left(M_{R}\right)^{-1} m_{D}^{T} .
$$

The classic seesaw does not constrain matrices m_{D} and $M_{R} \rightarrow$ no predictions on $\mathcal{M}_{\nu} \rightarrow$ no predictions on UPMNS .

Flavons

Flavor symmetry-based modes assume that $L_{i},\left(\ell_{R}\right)_{i}$, and $\left(\nu_{R}\right)_{i}$ transform in certain way under a discrete flavor symmetry group G.

Problem: combining L, ℓ_{R}, and ν_{R}, via only Higgs doublets leads to contradiction to experiment!

Recipe: leave the poor Φ alone! Add flavons φ_{a} : new auxiliary scalar fields, which will take care of the shape of the fermion sector.

Flavons

Flavons

- EW singlets \rightarrow play no role in electroweak symmetry breaking;
- transform non-trivially under G :

$$
\text { instead of } Y_{i j} \overline{L_{i}} \phi \ell_{R j} \text { we use } Y_{i j} \frac{\varphi_{a}}{\Lambda}\left(\overline{L_{i}} \phi \ell_{R j}\right) .
$$

Symmetry under G strongly constraints $Y_{i j}^{P}$.

- they get vev after minimization of flavon scalar potential $\varphi_{a} \rightarrow\left\langle\varphi_{a}\right\rangle \rightarrow$ spontaneous breaking of flavor symmetry induces usual Yukawa interactions

$$
Y_{i j}=\sum_{a} Y_{i j}^{i} \frac{\left\langle\varphi_{\mathrm{a}}\right\rangle}{\Lambda} .
$$

with the resulting $Y_{i j}$ constrained by flavor symmetry.

A_{4} symmetric model

	\bar{L}	e_{R}	μ_{R}	τ_{R}	ν_{R}	Φ	φ_{T}	φ_{S}	ξ
$S U(2)_{L}$	$\overline{2}$	1	1	1	1	2	1	1	1
A_{4}	3	1	1^{\prime}	$1^{\prime \prime}$	3	1	3	3	1

We assume:

- LH doublets L and RH neutrinos ν_{R} form A_{4} triplets;
- right charged leptons e_{R}, μ_{R}, τ_{R} form three different A_{4} singlets $1,1^{\prime}, 1^{\prime \prime}$;
- add three sorts of flavons:
- A_{4}-triplet φ_{T} helps join L with ℓ_{R} (\rightarrow charged lepton masses),
- A_{4}-triplet φ_{S} produces one Majorana term for ν_{R},
- A_{4}-singlet ξ produces another Majorana term for ν_{R}.

A_{4} symmetric model

Warning: this construction is not yet self-consistent! So far nothing explains why φ_{T} and φ_{S} play different roles!

To forbid "wrong terms", we introduce yet another quantum number: "charge" under the group \mathbb{Z}_{3}.

	\bar{L}	e_{R}	μ_{R}	τ_{R}	ν_{R}	Φ	φ_{T}	φ_{S}	ξ
$S U(2)_{L}$	$\overline{2}$	1	1	1	1	2	1	1	1
A_{4}	3	1	1^{\prime}	$1^{\prime \prime}$	3	1	3	3	1
\mathbb{Z}_{3}	ω^{2}	ω	ω	ω	ω	1	1	ω	ω

The true symmetry group of the model is $A_{4} \times \mathbb{Z}_{3}$ but I will skip \mathbb{Z}_{3} for clarity.

A_{4} symmetric model

TMB mixing from A_{4} symmetry [Altarelli, Feruglio, 2006]

	\bar{L}	e_{R}	μ_{R}	τ_{R}	ν_{R}	Φ	φ_{T}	φ_{S}	ξ
$S U(2)_{L}$	$\overline{2}$	1	1	1	1	2	1	1	1
A_{4}	3	1	1^{\prime}	$1^{\prime \prime}$	3	1	3	3	1

$\mathcal{L}=$ charged leptons separately for e, μ, and τ

+ Dirac mass term + two Majorana mass terms

$$
\begin{aligned}
& =\frac{y_{e}}{\Lambda} \underbrace{\left(\bar{L} \varphi_{T}\right)}_{3 \times 3 \rightarrow 1} \underbrace{e_{R}}_{1} \Phi+\frac{y_{\mu}}{\Lambda} \underbrace{\left(\bar{L} \varphi_{T}\right)}_{3 \times 3 \rightarrow 1^{\prime \prime}} \underbrace{\mu_{R}}_{1^{\prime}} \Phi+\frac{y_{\tau}}{\Lambda} \underbrace{\left(\bar{L} \varphi_{T}\right)}_{3 \times 3 \rightarrow 1^{\prime}} \underbrace{\tau_{R}}_{1^{\prime \prime}} \Phi \\
& +y_{D} \underbrace{\left(\bar{L} \nu_{R}\right)}_{3 \times 3 \rightarrow 1} \tilde{\Phi}+y_{a} \underbrace{\left(\nu_{R} \nu_{R}\right) \xi}_{(3 \times 3)_{1} \times 1}+y_{b} \underbrace{\left(\nu_{R} \nu_{R} \varphi_{S}\right)}_{3 \times 3 \times 3 \rightarrow 1}+\text { h.c. }
\end{aligned}
$$

A_{4} symmetric model

It is convenient to work in the T-diagonal basis \rightarrow charged lepton mass matrix will be diagonal.

Contractions written explicitly (for explicit expressions, see e.g. [Altarelli, Feruglio, 1002.0211]):

$$
\begin{aligned}
\left(\overline{\ell_{L}} \varphi_{T}\right)_{1} & =\overline{e_{L}}\left(\varphi_{T}\right)_{1}+\overline{\mu_{L}}\left(\varphi_{T}\right)_{3}+\overline{\tau_{L}}\left(\varphi_{T}\right)_{2} \\
\left(\overline{\ell_{L}} \varphi_{T}\right)_{1^{\prime \prime}} & =\overline{e_{L}}\left(\varphi_{T}\right)_{2}+\overline{\mu_{L}}\left(\varphi_{T}\right)_{1}+\overline{\tau_{L}}\left(\varphi_{T}\right)_{3} \\
\left(\overline{\ell_{L}} \varphi_{T}\right)_{1^{\prime}} & =\overline{e_{L}}\left(\varphi_{T}\right)_{3}+\overline{\mu_{L}}\left(\varphi_{T}\right)_{2}+\overline{\tau_{L}}\left(\varphi_{T}\right)_{1}
\end{aligned}
$$

and $\left(\nu_{R} \nu_{R} \varphi_{S}\right)_{1}$ gives

$$
\nu_{R i}\left[\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) \varphi_{S 1}+\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 0
\end{array}\right) \varphi_{S 2}+\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) \varphi_{S 3}\right] \nu_{R j}
$$

Flavons alignment

The flavon potential is also A_{4} symmetric and has "Mexican hat" form. It produces nonzero vevs with the following alignment:

$$
\left\langle\varphi_{T}\right\rangle \propto(1,0,0), \quad\left\langle\varphi_{S}\right\rangle \propto(1,1,1), \quad\langle\xi\rangle \neq 0 .
$$

This is the vev alignment which we postulate when building our model.

Flavons alignment

The flavon potential is also A_{4} symmetric and has "Mexican hat" form. It produces nonzero vevs with the following alignment:

$$
\left\langle\varphi_{T}\right\rangle \propto(1,0,0), \quad\left\langle\varphi_{S}\right\rangle \propto(1,1,1), \quad\langle\xi\rangle \neq 0 .
$$

This is the vev alignment which we postulate when building our model.

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \quad \omega \equiv e^{2 \pi i / 3} .
$$

- $\left\langle\varphi_{T}\right\rangle$ conserves T (subgroup \mathbb{Z}_{3}),
- $\left\langle\varphi_{S}\right\rangle$ conserves S (and $T S T^{2}$, subgroup $\left.\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.

Consequences of flavons alignment

Charged leptons $\left\langle\varphi_{T}\right\rangle \sim(1,0,0)$:

$$
\begin{aligned}
& \frac{y_{e}}{\Lambda}\left(\bar{L} \varphi_{T}\right) e_{R} \Phi+\frac{y_{\mu}}{\Lambda}\left(\overline{L_{\varphi}} \varphi_{T}\right) \mu_{R} \Phi+\frac{y_{\tau}}{\Lambda}\left(\bar{L} \varphi_{T}\right) \tau_{R} \Phi \\
\rightarrow & \frac{\left\langle\varphi_{T}\right\rangle}{\Lambda}\left(y_{e} \overline{L_{e}} e_{R}+y_{\mu} \overline{L_{\mu}} \mu_{R}+y_{\tau} \overline{L_{\tau}} \tau_{R}\right) \Phi+\text { h.c. } \\
\rightarrow & \left(\overline{e_{L}}, \overline{\mu_{L}}, \overline{\tau_{L}}\right)\left(\begin{array}{ccc}
m_{e} & 0 & 0 \\
0 & m_{\mu} & 0 \\
0 & 0 & m_{\tau}
\end{array}\right)\left(\begin{array}{c}
e_{R} \\
\mu_{R} \\
\tau_{R}
\end{array}\right)+\text { h.c. }
\end{aligned}
$$

Charged lepton mass matrix is automatically diagonal.

Consequences of flavons alignment

Dirac mass matrix:

$$
y_{D}\left(\bar{L} \nu_{R}\right) \tilde{\Phi}=y_{D} \overline{\nu_{L i}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \nu_{R j} \tilde{\Phi}
$$

which after EWSB gives $\overline{\nu_{L i}}\left(m_{D}\right)_{i j} \nu_{R j}$ with

$$
m_{D}=\frac{y_{D} v}{\sqrt{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Consequences of flavons alignment

Majorana mass matrix for ν_{R} :

$$
\begin{aligned}
M_{R} & =y_{a}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\langle\xi\rangle \\
+y_{b} & {\left[\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right)\left\langle\varphi_{S 1}\right\rangle+\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 0
\end{array}\right)\left\langle\varphi_{S 2}\right\rangle+\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)\left\langle\varphi_{S 3}\right\rangle\right] } \\
& =a\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+b\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
\end{aligned}
$$

Consequences of flavons alignment

Overall result:

$$
\mathcal{M}_{\nu}=-m_{D}\left(M_{R}\right)^{-1} m_{D}^{T}
$$

where

$$
m_{D}=\frac{y_{D} v}{\sqrt{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad M_{R}=\left(\begin{array}{ccc}
a+2 b & -b & -b \\
-b & 2 b & a-b \\
-b & a-b & 2 b
\end{array}\right) .
$$

Then we will need to diagonalize it:

$$
D_{\nu}=U^{T} \mathcal{M}_{\nu} U
$$

and, since the charged lepton matrix is already diagonal,

$$
U_{P M N S}=U .
$$

Inverting M_{R}

The simple form of

$$
M_{R}=\left(\begin{array}{ccc}
a+2 b & -b & -b \\
-b & 2 b & a-b \\
-b & a-b & 2 b
\end{array}\right)
$$

allows to explicitly calculate eigenvalues and eigenvectors:

$$
\begin{array}{r}
\lambda=3 b+a, \quad \vec{v}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right), \\
\lambda=a, \quad \vec{v}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right), \\
\lambda=3 b-a, \quad \vec{v}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) .
\end{array}
$$

Inverting M_{R}

This means that

$$
\begin{aligned}
\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) & \left(\begin{array}{ccc}
a+2 b & -b & -b \\
-b & 2 b & a-b \\
-b & a-b & 2 b
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 b+a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 3 b-a
\end{array}\right)
\end{aligned}
$$

Or, in short,

$$
U^{T} M_{R} U=D_{R} \quad \Leftrightarrow \quad U D_{R} U^{T}=M_{R} .
$$

Calculating \mathcal{M}_{ν}

Therefore,

$$
M_{R}^{-1}=U D_{R}^{-1} U^{T}=U\left(\begin{array}{ccc}
\frac{1}{3+a} & 0 & 0 \\
0 & \frac{1}{a} & 0 \\
0 & 0 & \frac{1}{3 b-a}
\end{array}\right) U^{T} .
$$

The light neutrino mass matrix is therefore

$$
\begin{aligned}
\mathcal{M}_{\nu} & =m_{D} M_{R}^{-1} m_{D}^{T}=m_{D} \cdot U D_{R}^{-1} U^{T} \cdot m_{D}^{T} \\
& =U \cdot U^{T} m_{D} U \cdot D_{R}^{-1} \cdot U^{T} m_{D}^{T} U \cdot U^{T} .
\end{aligned}
$$

We need to calculate $U^{T} m_{D} U$.

Calculating \mathcal{M}_{ν}

Notice that

$$
m_{D}=\frac{y_{D} v}{\sqrt{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

is exactly like the a-term of M_{R}. Therefore,

$$
U^{T} m_{D} U=\frac{y_{D} v}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Overall result:

$$
\mathcal{M}_{\nu}=U\left(U^{T} m_{D} U\right) D_{R}^{-1}\left(U^{T} m_{D}^{T} U\right) U^{T}=\frac{y_{D}^{2} v^{2}}{2} U D_{R}^{-1} U^{T} .
$$

Consequences

$$
\mathcal{M}_{\nu}=\frac{y_{D}^{2} v^{2}}{2} U\left(\begin{array}{ccc}
\frac{1}{3 b+a} & 0 & 0 \\
0 & \frac{1}{a} & 0 \\
0 & 0 & \frac{1}{3 b-a}
\end{array}\right) U^{T} .
$$

- U diagonalizes $\mathcal{M}_{\nu} \rightarrow U=U_{\text {PMNS }}$ is of the TBM form;
- neutrino masses are:

Very heavy flavon parameters $a, b \rightarrow$ very light neutrinos.

- mass sum rule:

which is a prediction of the A_{4} model! Be careful: a and b are complex.
- both NO and $1 O$ are possible; the sum rule implies a lower bound!

Consequences

$$
\mathcal{M}_{\nu}=\frac{y_{D}^{2} v^{2}}{2} U\left(\begin{array}{ccc}
\frac{1}{3 b+a} & 0 & 0 \\
0 & \frac{1}{a} & 0 \\
0 & 0 & \frac{1}{3 b-a}
\end{array}\right) U^{T} .
$$

- U diagonalizes $\mathcal{M}_{\nu} \rightarrow U=U_{\text {PMNS }}$ is of the TBM form;
- neutrino masses are:

$$
m_{1}=\frac{y_{D}^{2} v^{2}}{3 b+a}, \quad m_{2}=\frac{y_{D}^{2} v^{2}}{a}, \quad m_{3}=\frac{y_{D}^{2} v^{2}}{3 b-a}
$$

Very heavy flavon parameters $a, b \rightarrow$ very light neutrinos.

- mass sum rule:

$$
\frac{1}{m_{3}}=\frac{1}{m_{1}}-\frac{2}{m_{2}} .
$$

which is a prediction of the A_{4} model! Be careful: a and b are complex.

- both NO and IO are possible; the sum rule implies a lower bound!

Other symmetry groups

This is a typical symmetry-based recipe:

- pick up G, select irreps for L, ℓ_{R}, ν_{R}, add flavons at will;
- choose flavon vev alignment among possible choices;
- calculate $M_{\ell}, m_{D}, M_{R} \rightarrow$ calculate \mathcal{M}_{ν};
- (analytically) diagonalize $M_{\ell}, \mathcal{M}_{\nu} \rightarrow$ derive $U_{P M N S}$;
- derive sum rule for $m_{1,2,3}$.

Many series of finite groups have been studied [Holthausen, Lim, Lindner, 2012] and some are close to the experimental PMNS matrix.

