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Infla-on	
(accelerated	expansion)	
	
	
	
	
-dilutes	massive	relics	(e.g.	monopoles)	
	
-solves	horizon	problem	
	
-solves	flatness	problem	if	it	lasts	long	enough		(~	55	e-folds)																			
	
-gives	mechanism	for	approximately	scale	invariant	
	primordial	inhomogenei-es	(from	quantum	fluctua-ons)	
	
-produces	a	background	of	gravitaPonal	waves	
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1.4 The Physics of Inflation

We have shown that a given FRW background with time-dependent Hubble parameter H(t)

corresponds to cosmic acceleration if and only if

" ⌘ � Ḣ

H2
< 1 . (1.4.36)

For this condition to be sustained for a su�ciently long time, requires

|⌘| ⌘ |"̇|
H"

⌧ 1 , (1.4.37)

i.e. the fractional change of " per Hubble time is small. In this section, we discuss what

microscopic physics can lead to these conditions.

1.4.1 False Vacuum Inflation

The first version of inflation considered a universe dominated by the constant energy density

of a metastable false vacuum. This leads to an exponentially expanding de Sitter space with

H = const., and hence " = ⌘ = 0. However, classically, false vacuum inflation never ends.

Quantum-mechanically, tunnelling from the false vacuum to the true vacuum ends inflation

locally, but the post-inflationary universe looks nothing like our universe. The universe is either

empty or much too inhomogeneous. This is the graceful exit problem of old inflation. Any

successful inflationary mechanism has to include a way of ending inflation and successfully

reheating the universe. We will have to work a bit harder.

1.4.2 Slow-Roll Inflation

Consider a scalar field �, the inflaton, minimally coupled to Einstein gravity10

S =

Z

d4x
p

�g

"

M2
pl

2
R � 1

2
gµ⌫@µ�@⌫� � V (�)

#

, (1.4.38)

where R is the four-dimensional Ricci scalar derived from the metric gµ⌫ and V (�) is so far an

arbitrary function:

10In principle, we could imagine a non-minimal coupling between the inflaton and the graviton, however, in

practice, non-minimally coupled theories can be transformed to minimally coupled form by a field redefinition.

Similarly, we could entertain the possibility that the Einstein-Hilbert part of the action is modified at high

energies. However, the simplest examples for this UV-modification of gravity, so-called f(R) theories, can again

be transformed into a minimally coupled scalar field with potential V (�).

A	single	scalar	field,	minimal	coupling	to	gravity,		
	
	
	
	
Canonical	kine-c	terms	
Bunch-Davies	vacuum		for	the	fluctuaPons		(“Minkowski	on	short	scales”)		
	
	

Slow	roll:																																			<<	1													”approximately	de	SiQer	expansion”							

					is	pracPcally	ruled	out	

Single	field	slow	roll		infla-on,						vanilla	
			

								sustained		for		at	least		O	(	50-60	)		e-folds	of	expansion:		
✏̇

H✏
<< 1

S =
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d4x
p
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2
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tu �I + � I
M Nrµ�Mrµ�N + GIM̄VM̄ = 0

� I
M N = GIJ̄GMJ̄,N = KJ̄MN

� i
↵ �rµL↵rµL� + Gij̄Vj̄ + Gi�̄V�̄ = 0

(I,M... all fields, i, j ... heavy, ↵, � ... light )

� H
L L = 0

� heavy
light light = 0

W = (H �H0)2w(H,L)

1

EvoluPon	is	adiabaPc		



Single-field slow-roll inflation with  canonical kinetic terms 
predicts perturbations that are 
 
adiabatic  
near scale-invariant 
almost gaussian    
 
 

self-interactions (in the potential) are limited by the slow roll condition 

Primordial		power	spectrum		 CMB	power	spectrum	

and	Bunch	Davies	vacuum,	
minimal	coupling	to	gravity	

Bispectrum	is	negligible,	O(slow	roll)	



Baumann’s	2013	lecture
s	@	Varenna	



+ … = 0	

large		k								“inside	the	horizon”						:		fricPon	negligible	
	
small		k								“outside	the	horizon”			:		fricPon	dominates,	
																							
	

	 	 	 	fluctua-ons	freeze	out	at				

FluctuaPon	equaPons	are	like	a	simple	harmonic	oscillator		
with	fricPon	from	the	expansion		



Can	trade	fluctuaPons	in	scalar	field	for	fluctuaPons	in	spaPal	curvature	

In	single-clock	inflaPon	these	are	conserved	on	superhorizon	scales		
(regardless	of	the	details	of	reheaPng	–	conservaPon	of	energy	momentum)	



InflaPon	in	mulP-scalar	theories	

single-field	or	mulP-field	?		



MulPfield	inflaPon	with	light	fields	(e.g.	moduli)	has	at	least	two	undesirable	properPes		
for	model		building	
								-potenPally	large	isocurvature	perturbaPons	
								-curvature	perturbaPon	is	not	conserved	on	superhorizon	scales	
		
																																							
	
																																																																																																																		

The	problem:	



MulPfield	inflaPon	with	light	fields	(e.g.	moduli)	has	at	least	two	undesirable	properPes		
for	model		building	
								-potenPally	large	isocurvature	perturbaPons	
								-curvature	perturbaPon	is	not	conserved	on	superhorizon	scales	
		
																																							
	
																																																																																																																		

The	problem:	

InflaPon	in	BSM	scenarios	includes		the	challenge	to	find	
							a	“single	field”-	looking		needle			
																																(almost	scale	invariant,	adiabaPc,	gaussian	perturbaPons)	
							in	a	“mulPfield”	haystack.	
	
	NB:	opens	the	possibility	to	detect	other	fields	interac-ng	with	the	inflaton	
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The	problem:	

InflaPon	in	BSM	scenarios	includes		the	challenge	to	find	
							a	“single	field”-	looking		needle			
																																(almost	scale	invariant,	adiabaPc,	gaussian	perturbaPons)	
							in	a	“mulPfield”	haystack.	
	
	NB:	opens	the	possibility	to	detect	other	fields	interac-ng	with	the	inflaton	
	

Usual	approach:		stabilize	spectators	and	integrate	them	out	
																																																																																															(more	on	this	in	a	moment)		

	
But	maybe	there	is	another	possibility	



MulPfield	inflaPon	with	light	fields	(e.g.	moduli)	has	at	least	two	undesirable	properPes		
for	model		building	
								-potenPally	large	isocurvature	perturbaPons	
								-curvature	perturbaPon	is	not	conserved	on	superhorizon	scales	
			

The	message	of	this	talk:		
	
There	is	a	regime	in	which		these	two	“problems”	cancel	each	other	on	observable		
scales:	“massless”(*)	isocurvature	perturbaPon	freezes	and	sources	curvature.	Sustained	
over	many	efolds.		We	get		
								-scale	invariant	spectra	
								-suppressed	isocurvature		
								-suppressed	tensor-to-scalar	raPo	
Requires	sustained	turns	(**)		
	
	
(*)	there	is	a	new	“Stueckelberg-like”	shig	symmetry	involving	both	R	and	σ	
(**)	can	be	inherited	from	symmetries	of	the	background	
																																																															(e.g.	“axion-dilaton”		hyperbolic	coset	spaces)	
	
																																																																																																																		

The	problem:	



If	there	is	a	large	separaPon	of	scales	we	can	
integrate	out	heavy	modes	to	get		
effecPvely	single	field	inflaPon	
	
	
	
	
However,	to	get	the	right	observables,	one	has	to	
pay	ajenPon	to	derivaPve	interacPons	

First,	a	comment	about	integraPng	out	heavy	fields.	



HEAVY		vs	LIGHT	–	what	is	the	“right”	definiPon	?		

1)						Calculate	the	mass	matrix	from	V									

2)						Calculate	the	mass	matrix	of	fluctuaPons	about	the	classical	soluPon	

3)						Calculate	natural	frequencies	of	fluctuaPons		-	fast	vs	slow			

All	three	agree	on	a	staPc	background		--	otherwise,	not,	in	general			



On	a	turning	trajectory:	

1)		If	the	heavy	field	has	mass2		=	M2						on	a	straight	trajectory				

2)	The	heavy	fluctuaPon		has			mass2		=		

3)	The	fast	mode	has	frequency		 �2
heavy = M2

effc�2
s = M2 + 3�̇2

	(long	wavelengths)	

M2
e� = M2 � �̇2

AA	Atal	Cespedes	Gong	Palma	Pa-l	1205.0710	
Cas-llo	Koch	Palma				1312.3338	

REVIEWS:						
Chluba	Hamann	Pa-l	1505.01834	
Welling	MSc	Thesis		arxiv	2015	



If	M2	>>	H2		,	
a	sufficiently	heavy	field	can	s-ll	be	integrated	out	–	but…	
	
		
get	an	effecPve	single-field	theory	with	a	reduced	speed	
of	sound	for	the	adiabaPc	mode	

effective mass  of heavy field at turn 

mass		of	heavy	field	on	straight	trajectory	
(including	effect	of	curvature	of	field	manifold)		

M2
e� = M2 � �̇2

and	this	affects	the	predicPons	for	the	inflaPonary	perturbaPons	



	inflaPon	is	pracPcally	ruled	out	is	
pracPcally	ruled	out	
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leads to

� + " = � �̈

H�̇
� Ḣ

H2
⇡ M2

pl

V 00

V
⌘ ⌘v . (1.4.49)

Hence, a convenient way to assess a potential V (�) is to compute the potential slow-roll param-

eters11 ✏v and ⌘v. When these are small, slow-roll inflation occurs:

✏v ⌘
M2

pl

2

✓

V 0

V

◆2

⌧ 1 and |⌘v| ⌘ M2
pl

|V 00|
V

⌧ 1 . (1.4.50)

The amount of inflation is measured by the number of e-folds of accelerated expansion

N ⌘
Z af

ai

d ln a =

Z tf

ti

H(t) dt , (1.4.51)

where ti and tf are defined as the times when "(ti) = "(tf ) ⌘ 1. In the slow-roll regime we can

use

Hdt =
H

�̇
d� ⇡ �3H

V 0 · Hd� ⇡ 1p
2✏v

d�

Mpl
(1.4.52)

to write (1.4.51) as an integral in the field space of the inflaton

N =

Z �f

�i

1p
2✏v

d�

Mpl
, (1.4.53)

where �i and �f are defined as the boundaries of the interval where ✏v < 1. The largest scales

observed in the CMB are produced some 40 to 60 e-folds before the end of inflation

Ncmb =

Z �f

�cmb

1p
2✏v

d�

Mpl
⇡ 40 � 60 . (1.4.54)

A successful solution to the horizon problem requires at least Ncmb e-folds of inflation.

Case study: m2�2 inflation. As an example, let us give the slow-roll analysis of arguably the simplest
model of inflation: single field inflation driven by a mass term

V (�) =
1

2
m2�2 . (1.4.55)

The slow-roll parameters are

✏v(�) = ⌘v(�) = 2

✓

Mpl

�

◆2

. (1.4.56)

To satisfy the slow-roll conditions ✏v, |⌘v| < 1, we therefore need to consider super-Planckian values for
the inflaton

� >
p

2Mpl ⌘ �
f

. (1.4.57)

The relation between the inflaton field value and the number of e-folds before the end of inflation is

N(�) =
�2

4M2
pl

� 1

2
. (1.4.58)

Fluctuations observed in the CMB are created at

�cmb = 2
p

Ncmb Mpl ⇠ 15Mpl . (1.4.59)

11In contrast, the parameters " and ⌘ are often called the Hubble slow-roll parameters. During slow-roll the

parameters are related as follows: ✏v ⇡ " and ⌘v ⇡ 2✏� 1
2
⌘.

Ade	et	al	1502.01589	
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1.4 The Physics of Inflation

We have shown that a given FRW background with time-dependent Hubble parameter H(t)

corresponds to cosmic acceleration if and only if

" ⌘ � Ḣ

H2
< 1 . (1.4.36)

For this condition to be sustained for a su�ciently long time, requires

|⌘| ⌘ |"̇|
H"

⌧ 1 , (1.4.37)

i.e. the fractional change of " per Hubble time is small. In this section, we discuss what

microscopic physics can lead to these conditions.

1.4.1 False Vacuum Inflation

The first version of inflation considered a universe dominated by the constant energy density

of a metastable false vacuum. This leads to an exponentially expanding de Sitter space with

H = const., and hence " = ⌘ = 0. However, classically, false vacuum inflation never ends.

Quantum-mechanically, tunnelling from the false vacuum to the true vacuum ends inflation

locally, but the post-inflationary universe looks nothing like our universe. The universe is either

empty or much too inhomogeneous. This is the graceful exit problem of old inflation. Any

successful inflationary mechanism has to include a way of ending inflation and successfully

reheating the universe. We will have to work a bit harder.

1.4.2 Slow-Roll Inflation

Consider a scalar field �, the inflaton, minimally coupled to Einstein gravity10

S =

Z

d4x
p

�g

"

M2
pl

2
R � 1

2
gµ⌫@µ�@⌫� � V (�)

#

, (1.4.38)

where R is the four-dimensional Ricci scalar derived from the metric gµ⌫ and V (�) is so far an

arbitrary function:

10In principle, we could imagine a non-minimal coupling between the inflaton and the graviton, however, in

practice, non-minimally coupled theories can be transformed to minimally coupled form by a field redefinition.

Similarly, we could entertain the possibility that the Einstein-Hilbert part of the action is modified at high

energies. However, the simplest examples for this UV-modification of gravity, so-called f(R) theories, can again

be transformed into a minimally coupled scalar field with potential V (�).

A	single	scalar	field,	minimal	coupling	to	gravity,		
	
	
	
	
Canonical	kine-c	terms	
Bunch-Davies	vacuum		for	the	fluctuaPons		(“Minkowski	on	short	scales”)		
	
	

Slow	roll:																																			<<	1													”approximately	de	SiQer	expansion”							

					is	pracPcally	ruled	out	

Single	field	slow	roll		infla-on,						vanilla	
			

								sustained		for		at	least		O	(	50-60	)		e-folds	of	expansion:		
✏̇

H✏
<< 1

S =
Z

d4x
p
�g


1
2
R� 1

2
@µ�†@µ�� V (|�|)

�

�(t, ~x) = ⇢(t, ~x)ei✓(t,~x)

tu �I + � I
M Nrµ�Mrµ�N + GIM̄VM̄ = 0

� I
M N = GIJ̄GMJ̄,N = KJ̄MN

� i
↵ �rµL↵rµL� + Gij̄Vj̄ + Gi�̄V�̄ = 0

(I,M... all fields, i, j ... heavy, ↵, � ... light )

� H
L L = 0

� heavy
light light = 0

W = (H �H0)2w(H,L)

1

EvoluPon	is	adiabaPc		



Suppose	the	shig	symmetry		is		U(1),		inherited	from	the	background.		

Think	of	the		simplest		two-field	complePon		
	
		

The	flatness	of	the	Inflaton	potenPal	/		the	mass	of	the	inflaton	should	be	
protected	by	some		approx.		shig	symmetry										

S =
Z

d4x
p
�g


1
2
R� 1

2
@µ�†@µ�� V (|�|)

�

�(t, ~x) = ⇢(t, ~x)ei✓(t,~x)

tu �I + � I
M Nrµ�Mrµ�N + GIM̄VM̄ = 0

� I
M N = GIJ̄GMJ̄,N = KJ̄MN

� i
↵ �rµL↵rµL� + Gij̄Vj̄ + Gi�̄V�̄ = 0

(I,M... all fields, i, j ... heavy, ↵, � ... light )

� H
L L = 0

� heavy
light light = 0

W = (H �H0)2w(H,L)

1

(pseudo)	Goldstone	boson	
																														(inflaton)	

very	heavy	field				
(stabilized	at	its	adiabaPc	vacuum)			

S =
Z

d4x
p
�g


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� heavy
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W = (H �H0)2w(H,L)

1

Note:	Lorentz	invariance,		
											canonical	kine-c	terms	

(	the	inflaton	is	the	phase	of	some	complex	field	)		
		

		+		…	
sog	U(1)	breaking		
(inflaton	poten-al)	

Single	field	slow	roll		infla-on,			pistachio	
			



Very	large	mass	(	>>	H		)	

3 Quadratic Inflation

Our first example to show how a heavy field may influence the low energy dynamics is a
two-field embedding of the quadratic inflation model. The Lagrangian for the single field
model [4] is given by:

L =
1

2
@⌫�@

⌫�� 1

2
m2

��
2. (3.1)

We embed this model in the two field scenario (2.1), and consider the following Lagrangian:

L =
1

2
@⌫⇢@

⌫⇢+
1

2
⇢2@⌫✓@

⌫✓ � m2
⇢

2
(⇢� ⇢0)

2 � ⇤4✓2. (3.2)

Assuming ⇢ = ⇢0, and defining � = ⇢0✓, we recover the single field Lagrangian with the
mass m� given by m2

� = 2⇤4/⇢20. Thus, at the level of this truncation, both Lagrangians
(3.1) and (3.2) are equivalent. Going beyond this simplification demands solving the full
e.o.m. Fortunately we can rely on the reduced e.o.m to find approximate solutions. Solving
equations (2.8),(2.9) and (2.10), the minimum in the radial direction, ⇢̄, is given by the root
of the following equation:

⇢̄3 (⇢̄� ⇢0)� 16

3

⇤4

m2
⇢

= 0, (3.3)

while the angular velocity is given by

✓̇ =
2p
3

⇤2

⇢̄2
. (3.4)

With these solutions at hand we can then predict how the observables move in the (ns, r)
plane. In doing so we will split the e↵ects on the background and perturbations.

Background model: All the relevant quantities for calculating the background can be found
in equation (2.15). First of all, because ⇢̄ 6= ⇢0, the potential V will have a contribution of the

form V0 =
m2

⇢

2 (⇢̄� ⇢0)
2. It is easy to show that this contribution is negligible in comparison

with V (✓) in the computation of the slow roll parameters at N = 50� 60. Thus, we can use
V ⇠ V (✓). Under this simplification the background model yields the same predictions as
in the standard quadratic inflation, i.e. ✏ = 1/4N and ⌘ = 3/2N .

EFT for the perturbations : While the background does not change as we change ⇢0, we find
that perturbations develop a constant speed of sound which is noticeably di↵erent from 1 for
values of ⇢0 < 0.1, as can be seen in the right panel of figure 2.

Putting all these elements together we compute the prediction for (ns, r). Since ✏ and
⌘ are unchanged, and s ⇠ 0, only the tensor to scalar ratio is going to be modified, and its
modification will only be due to the change in cs. We test these predictions with a numerical
solution of the two-field system (partly done using the code from [45]), choosing ⇢0 ranging
from 0.01 to 1 and m⇢ such that (me↵/H)2 = 100 in the observable scales. We fix ⇤ such
that we have the right amplitude for the perturbations. Let us note that we have fixed
the e↵ective mass of the heavy field (which is always smaller than the bare mass m⇢) such
that it is much greater than the Hubble parameter. Our results are summarized in figure

– 6 –
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from 0.01 to 1 and m⇢ such that (me↵/H)2 = 100 in the observable scales. We fix ⇤ such
that we have the right amplitude for the perturbations. Let us note that we have fixed
the e↵ective mass of the heavy field (which is always smaller than the bare mass m⇢) such
that it is much greater than the Hubble parameter. Our results are summarized in figure

– 6 –

3 Quadratic Inflation

Our first example to show how a heavy field may influence the low energy dynamics is a
two-field embedding of the quadratic inflation model. The Lagrangian for the single field
model [4] is given by:

L =
1

2
@⌫�@

⌫�� 1

2
m2

��
2. (3.1)

We embed this model in the two field scenario (2.1), and consider the following Lagrangian:

L =
1

2
@⌫⇢@

⌫⇢+
1

2
⇢2@⌫✓@

⌫✓ � m2
⇢

2
(⇢� ⇢0)

2 � ⇤4✓2. (3.2)

Assuming ⇢ = ⇢0, and defining � = ⇢0✓, we recover the single field Lagrangian with the
mass m� given by m2

� = 2⇤4/⇢20. Thus, at the level of this truncation, both Lagrangians
(3.1) and (3.2) are equivalent. Going beyond this simplification demands solving the full
e.o.m. Fortunately we can rely on the reduced e.o.m to find approximate solutions. Solving
equations (2.8),(2.9) and (2.10), the minimum in the radial direction, ⇢̄, is given by the root
of the following equation:

⇢̄3 (⇢̄� ⇢0)� 16

3

⇤4

m2
⇢

= 0, (3.3)

while the angular velocity is given by

✓̇ =
2p
3

⇤2

⇢̄2
. (3.4)

With these solutions at hand we can then predict how the observables move in the (ns, r)
plane. In doing so we will split the e↵ects on the background and perturbations.

Background model: All the relevant quantities for calculating the background can be found
in equation (2.15). First of all, because ⇢̄ 6= ⇢0, the potential V will have a contribution of the

form V0 =
m2

⇢

2 (⇢̄� ⇢0)
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values of ⇢0 < 0.1, as can be seen in the right panel of figure 2.

Putting all these elements together we compute the prediction for (ns, r). Since ✏ and
⌘ are unchanged, and s ⇠ 0, only the tensor to scalar ratio is going to be modified, and its
modification will only be due to the change in cs. We test these predictions with a numerical
solution of the two-field system (partly done using the code from [45]), choosing ⇢0 ranging
from 0.01 to 1 and m⇢ such that (me↵/H)2 = 100 in the observable scales. We fix ⇤ such
that we have the right amplitude for the perturbations. Let us note that we have fixed
the e↵ective mass of the heavy field (which is always smaller than the bare mass m⇢) such
that it is much greater than the Hubble parameter. Our results are summarized in figure

– 6 –
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In	a	Lorentz-invariant	background	we	expect			
derivaPve	interacPons	to	first	enter	at	cubic	order,	with	dimension	five.		
																																			
																																																				
	
In	inflaPon	we	are	interested	in	the	perturbaPons.	Background	is	not	Lorentz-inv	

DerivaPve	interacPons	enter	at	quadraPc	order,	with	dimension	three	
	
	
	
The	coupling	constant	introduces	an	important	mass	scale	in	the	problem	
N.B.:	It	does	not	require	non-canonical	kinePc	terms	

�(@�)2

1

non-adiabatic perturbation �. At quadratic order, the only allowed interaction compatible with

di↵eomorphism invariance of the system and the symmetries of the background, is an operator

proportional to Ṙ� (note that, because we assumed that R already describes the adiabatic

mode, a kinetic mixing of the form Ṙ�̇ is excluded [28]). Thus, the quadratic action (with unit

sound speeds for both fields) coupling R and � is⇤

S =

Z
d4x a3


✏Ṙ2 � 2✏↵Ṙ� � ✏

a2
(rR)2 +

1

2

✓
�̇2 � 1

a2
(r�)2

◆
� 1

2
m2

��
2

�
, (2.2)

where m� is the so called e↵ective mass of �. Because of the background symmetries, ↵ and

m� are time dependent parameters. The entropy perturbation � may be considered as massive,

although one has to be careful about how to identify the relevant mass parameters that charac-

terize the behavior of the perturbations.† If m� � H then � may be integrated out, leading to

an e↵ective action for R that is characterized by a nontrivial sound speed cs determined by ↵

and m� as c�2

s = 1 + 2✏↵2/m2

� [24, 35–38]. Another regime that has been studied vastly is the

quasi-single field regime, in which m� ⇠ H, and ✏↵2 ⌧ H2 [39, 40].

We are interested in those cases in which the entropy field cannot be integrated out (i.e. it

remains light) and its e↵ect on the evolution of curvature perturbations is significant throughout

the whole period of inflation. The standard lore perspective is that a very light perturbation

�, that remains coupled to R for a long time, would generate large isocurvature perturbations

towards the end of inflation and have undesired consequences on the dynamics of the adiabatic

modeR. Here we want to show that these expectations are premature. We will consider an ultra-

light entropy perturbation � coupled to R in the way described in (2.2) and show that, under

certain circumstances, it provides interesting new physics compatible with current observations.

If we want to make � exactly massless, in the sense that the system is invariant under shifts of

� by itself, we are forced to take both m� = 0 and ↵ = 0. However, in this case, the evolution of

� will be completely decoupled from R, leading to the production of isocurvature and curvature

perturbations of comparable sizes. Depending on the details of reheating, this could imply large

levels of isocurvature perturbations in the CMB. However, there is an alternative formulation of

(2.2) which allows one to identify a sense in which � becomes e↵ectively massless on very large

scales. We can rearrange the terms in (2.2) and rewrite it as

S =

Z
d4x a3


✏(Ṙ� ↵�)2 � ✏

a2
(rR)2 +

1

2

✓
�̇2 � 1

a2
(r�)2

◆
� 1

2
µ2�2

�
, (2.3)

where µ =
p
m2

� + 2✏↵2 is the so called entropy mass of �. The key point is that when µ = 0

this action has a Stückelberg-like symmetry that involves shifts of both fields � and Ṙ. This

symmetry ensures that � behaves e↵ectively as a massless field on super horizon scales. To

see this, let us consider the long wavelength limit of (2.3), in which spatial gradients may be

⇤For a complementary discussion on the construction of multi-field actions within the e↵ective field theory

approach of inflation [29] see ref. [30].
†More precisely, because of the non-diagonal coupling Ṙ�, the parameterm� is not the mass of any propagating

state [31–34].
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of these fields paying special attention on their mode-decomposition. To start with, let us recall

that in addition to the symmetry of eqs. (2.6) and (2.7), the system is invariant under shifts of

R:

R ! R+ �C
2

. (3.1)

On the other hand, the equations of motion for R and � derived from action (2.8) are invariant

under the set of transformations

Ṙ ! Ṙ� �C
3

✏a3
� ↵

�C
4

a3
, (3.2)

� ! � � �C
4

a3
. (3.3)

These transformations may be used to identify the long wavelength solutions to the equation

of motion for R and �. In particular, the transformation involving �C
3

tells us that R has

a solution that decays as 1/✏a3, whereas the transformation involving �C
4

informs us that �

has a solution that decays as 1/a3. Disregarding these decaying modes, the invariance of the

system under (3.1) implies that the adiabatic mode R has a constant solution R
0

that becomes

manifest on super horizon scales. By the same token, the invariance of the system under the

transformation (2.7) involving �C
1

reveals that � has a constant solution �
0

. However, this

transformation also forces R to have a growing solution on super-horizon scales that is dictated

by �
0

. In other words, the long wavelength evolution of R is given by:

R ' �
0

Z N

N0

dN
↵

H
+R

0

, (3.4)

where we have introduced e-folds N (defined via dN = Hdt). If ↵/H stays nearly constant, then

the solution forR eventually becomes dominated by the particular growing solution proportional

to �
0

, and the entire system is determined by a single degree of freedom on very long wavelengths.

In this case, we obtain

R ' ↵

H
�
0

�N +R
0

, (3.5)

where �N = N �N
0

. If R
0

is the value of R at the time of horizon crossing (for a given mode

with a wavelength that crosses the horizon at N
0

), then �N is precisely the number of e-folds

elapsed since horizon crossing. Because towards the end of inflation �N is large (about 60), the

contribution to R proportional to �
0

could dominate even if the ratio ↵/H is small. We further

explore this situation in Section 4.

4 A multi-field realization

The action of eq. (2.8) appears as a particular limit of multi-field models of inflation. Indeed,

the most general action for a set of two scalar fields, with at most two space-time derivatives, is

given by

S =
1

2

Z
d4x

p�g R�
Z

d4x
p�g


1

2
�abg

µ⌫rµ�
ar⌫�

b + V

�
, (4.1)

4

� represents the entropy perturbations (i.e. the non-adiabatic mode [28]). We may now adopt

the co-moving gauge (sometimes also referred to as unitary gauge), whereby ��
||

(x, t) = 0.

In this case the variable R introduced in the ADM splitting represents the adiabatic mode of

perturbations [28].

After plugging the ADM metric back into the action (4.1) one may solve the constraint

equations to find N = 1+ Ṙ/H and Ni = ri(��R/H), where a�2r2� = ✏Ṙ+
p
2✏⌦�. These

solutions then allow one to deduce that the action for the fluctuations R and �, to quadratic

order, is given by

S =

Z
d4x a3


✏Ṙ2 � ✏

a2
(rR)2 + 2

p
2✏⌦Ṙ� +

1

2
�̇2 � 1

a2
(r�)2 � 1

2
m2

��
2

�
, (4.8)

(exactly of the form 2.2) where the e↵ective mass m� is defined in terms of the projection of the

second derivative of the potential along the normal direction Na

m2

� ⌘ NaN b(Vab � �c
abVc) + ✏H2R� ⌦2, (4.9)

where R is the Ricci scalar characterizing the two-field manifold. To complete the identification

it is enough to realize that the entropy mass µ and the parameter ↵ introduced in Section 2

correspond to the following combinations

µ2 ⌘ m2

� + 4⌦2, ↵ ⌘ � 2⌦p
2✏

. (4.10)

These identifications allow us to recover the action (2.3). Moreover, in the limit µ ! 0 we

recover the desired action (2.8). More importantly, we now see what µ ! 0 means in terms of

the dynamics of the background. Concretely, this limit corresponds to the case in which m2

�

defined in (4.9) satisfies the condition:

m2

� = �4⌦2. (4.11)

As we shall see in Section 6, this condition can arise in concrete multi-field setups without fine

tuning.

5 Enhancement of the power-spectrum

We now study the impact of the long wavelength evolution of R, as examined in Section 3, on

the spectra of the theory. In order to study the observables associated to this theory —using

tools from perturbation theory— it is useful to define the following dimensionless quantity:

� ⌘
p
2✏↵/H. (5.1)

In terms of this coupling, action (2.8) now reads:

S =

Z
d4xa3

"
✏

✓
Ṙ� �

Hp
2✏

�

◆
2

� ✏

a2
(rR)2 +

1

2
�̇2 � 1

a2
(r�)2

#
. (5.2)
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not	the	mass	of	any	physical	mode	!	
“effecPve	mass”			

2 A simple realization

The action (1.3) proposed in the previous section appears as a particular limit of multi-field

models of inflation. Indeed, the most general action characterizing the linear dynamics of fluc-

tuations of a 2-scalar field system, with at most second order space-time derivatives, is given

by

S =

Z
d4xa3


✏Ṙ2 � ✏

a2
(rR)2 + 2

p
2✏⌦Ṙ� +

1

2
�̇2 � 1

a2
(r�)2 � 1

2
M2

e↵�
2

�
, (2.1)

where � represents the scalar fluctuation tangent to the inflationary trajectory in the multi-field

space. In the previous expression, ⌦ represents the rate of bend of the inflationary trajectory in

the 2-scalar field space, and M2
e↵ is the e↵ective mass of the �-field, which is found to be given

by

M2
e↵ = V 00 + ✏H2R� ⌦2, (2.2)

where V 00 represents the Hessian of the potential projected along the normal direction of the

trajectory, and R is the Ricci scalar of the 2-scalar field space. All of these quantities are

evaluated at the position of the background inflationary trajectory. We shall see how eqs. (2.1)

and (2.2) are derived in Section 5, where we analyze a concrete example where � becomes

masless. We may now introduce the following two parameters:

m2 ⌘ M2
e↵ + 4⌦2, � ⌘ �2

⌦

H
. (2.3)

These new parameters allow us to rewrite (2.1) in a more convenient way:

S =

Z
d4xa3

"
✏

✓
Ṙ� �

Hp
2✏

�

◆2

� ✏

a2
(rR)2 +

1

2
�̇2 � 1

a2
(r�)2 � 1

2
m2�2

#
. (2.4)

In the limit m2 ! 0, this action becomes identical to that of eq. (1.3), and the system becomes

invariant under the transformations (1.4) and (1.5) discussed in the introduction. For this to be

possible, the e↵ective squared mass of � must acquire a negative value determined by the rate

of bend of the trajectory as:

M2
e↵ = �4⌦2. (2.5)

A naive analysis of (2.1) would suggest that a negative squared mass parameter implies that

the system is necessarily unstable. But this is not the case, as it turns out that Me↵ does not

represent the rest energy of any state in the system. Instead, the quantity that appears as in

the spectrum of the theory as a mass eigenstate is m, defined in eq. (2.3). In what follows we

focus on the present system for the case in which m2 = 0 exactly, and argue that the system

has a stable behavior in this limit.

3 Dynamics

Let us recall that during inflation, perturbations are dominated by quantum fluctuations that

are stretched from sub-horizon to super-horizon scales. These fluctuations respect the usual

3
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disregarded, and momentarily introduce the following non-local field redefinition:

 ̇ ⌘ Ṙ� ↵�. (2.4)

Then, on super-horizon scales, (2.3) becomes an action that describes the dynamics of two

decoupled fields:

S
sh

=

Z
d4xa3


✏ ̇2 +

1

2
�̇2 � 1

2
µ2�2

�
. (2.5)

This action is explicitly invariant under shifts of  , and one may infer that the field � behaves as

a field of mass µ on super-horizon scales. It follows that in the limit µ ! 0 the field � becomes

massless in the usual sense.‡ In terms of R and �, the symmetry obtained in the zero entropy

mass limit µ ! 0 is equivalent to the following Stückelberg-like transformation:

Ṙ ! Ṙ� ↵ �C
1

, (2.6)

� ! � + �C
1

. (2.7)

From now on we consider the case µ2 = 0 where � can be considered as an e↵ectively massless

field on super-horizon scales (see ref. [41] for a recent discussion on instabilities of the background

when µ2 is negative).

Reintroducing spatial gradients, although � can no longer be considered shift invariant by

itself, we see that the combined symmetry (2.6) and (2.7) is a symmetry of the following full

action

S =

Z
d4xa3


✏
⇣
Ṙ� ↵�

⌘
2 � ✏

a2
(rR)2 � 1

2

✓
�̇2 � 1

a2
(r�)2

◆�
. (2.8)

We will now explore the situation in which � can be e↵ectively considered as a massless pertur-

bation at sub-horizon scales. At very short wavelengths we can neglect the Hubble friction, in

other words we consider modes of wave number k2/a2 � H. In this case, we can consider the

“Minkowski” limit of the action (2.8) (basically we fix a ⇠ 1). In this regime, at leading order

in slow-roll, we see immediately that the coupling Ṙ� is invariant under � ! �+const (as it

only generates a boundary, i.e. under this transformation the action is left invariant). We are

still left with an explicit non-derivative term proportional to ✏↵2 that would break this symme-

try. Nevertheless, if ✏↵2 ⌧ H2, this term can be neglected on the same grounds as the Hubble

friction is neglected. In this case, � behaves as a massless field also on sub-horizon scales.

In fact, the system in this regime turns out to be secretly described by two exactly massless

modes. In other words, under a specific wavelength-dependent rotation of R and �, one can

obtain two other shift invariant fields (for details see Appendix A of ref. [42]) even for ↵ 6= 0.

Therefore, combining with the super-horizon result, at least within our approximations, our

system is precisely described by two massless modes. However, since we are interested in the

physical R and �, we will not further consider this direction.

‡Note that the use of the field re-definition is only a trick to explicitly see the symmetries. One could instead

work with R and � to obtain the same result.

3

non-adiabatic perturbation �. At quadratic order, the only allowed interaction compatible with

di↵eomorphism invariance of the system and the symmetries of the background, is an operator
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where m� is the so called e↵ective mass of �. Because of the background symmetries, ↵ and

m� are time dependent parameters. The entropy perturbation � may be considered as massive,

although one has to be careful about how to identify the relevant mass parameters that charac-

terize the behavior of the perturbations.† If m� � H then � may be integrated out, leading to

an e↵ective action for R that is characterized by a nontrivial sound speed cs determined by ↵
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� [24, 35–38]. Another regime that has been studied vastly is the
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certain circumstances, it provides interesting new physics compatible with current observations.

If we want to make � exactly massless, in the sense that the system is invariant under shifts of

� by itself, we are forced to take both m� = 0 and ↵ = 0. However, in this case, the evolution of

� will be completely decoupled from R, leading to the production of isocurvature and curvature

perturbations of comparable sizes. Depending on the details of reheating, this could imply large
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a2
(rR)2 +

1

2

✓
�̇2 � 1

a2
(r�)2

◆
� 1

2
m2

��
2

�
, (2.2)

where m� is the so called e↵ective mass of �. Because of the background symmetries, ↵ and

m� are time dependent parameters. The entropy perturbation � may be considered as massive,

although one has to be careful about how to identify the relevant mass parameters that charac-

terize the behavior of the perturbations.† If m� � H then � may be integrated out, leading to

an e↵ective action for R that is characterized by a nontrivial sound speed cs determined by ↵

and m� as c�2

s = 1 + 2✏↵2/m2

� [24, 35–38]. Another regime that has been studied vastly is the

quasi-single field regime, in which m� ⇠ H, and ✏↵2 ⌧ H2 [39, 40].

We are interested in those cases in which the entropy field cannot be integrated out (i.e. it

remains light) and its e↵ect on the evolution of curvature perturbations is significant throughout

the whole period of inflation. The standard lore perspective is that a very light perturbation

�, that remains coupled to R for a long time, would generate large isocurvature perturbations

towards the end of inflation and have undesired consequences on the dynamics of the adiabatic

modeR. Here we want to show that these expectations are premature. We will consider an ultra-

light entropy perturbation � coupled to R in the way described in (2.2) and show that, under

certain circumstances, it provides interesting new physics compatible with current observations.

If we want to make � exactly massless, in the sense that the system is invariant under shifts of

� by itself, we are forced to take both m� = 0 and ↵ = 0. However, in this case, the evolution of

� will be completely decoupled from R, leading to the production of isocurvature and curvature

perturbations of comparable sizes. Depending on the details of reheating, this could imply large

levels of isocurvature perturbations in the CMB. However, there is an alternative formulation of

(2.2) which allows one to identify a sense in which � becomes e↵ectively massless on very large

scales. We can rearrange the terms in (2.2) and rewrite it as

S =

Z
d4x a3


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3 Evolution of the adiabatic mode

We now examine the long-wavelength evolution of the fields R and � as determined by the

symmetries of the action (2.8). In Appendix A we o↵er a more detailed analysis of the evolution

of these fields paying special attention on their mode-decomposition. To start with, let us recall

that in addition to the symmetry of eqs. (2.6) and (2.7), the system is invariant under shifts of

R:

R ! R+ �C
2

. (3.1)

On the other hand, the equations of motion for R and � derived from action (2.8) are invariant

under the set of transformations

Ṙ ! Ṙ� �C
3

✏a3
� ↵

�C
4

a3
, (3.2)

� ! � � �C
4

a3
. (3.3)

These transformations may be used to identify the long wavelength solutions to the equation

of motion for R and �. In particular, the transformation involving �C
3

tells us that R has

a solution that decays as 1/✏a3, whereas the transformation involving �C
4

informs us that �

has a solution that decays as 1/a3. Disregarding these decaying modes, the invariance of the

system under (3.1) implies that the adiabatic mode R has a constant solution R
0

that becomes

manifest on super horizon scales. By the same token, the invariance of the system under the

transformation (2.7) involving �C
1

reveals that � has a constant solution �
0

. However, this

transformation also forces R to have a growing solution on super-horizon scales that is dictated

by �
0

. In other words, the long wavelength evolution of R is given by:

R ' �
0

Z N

N0

dN
↵

H
+R

0

, (3.4)

where we have introduced e-folds N (defined via dN = Hdt). If ↵/H stays nearly constant, then

the solution forR eventually becomes dominated by the particular growing solution proportional

to �
0

, and the entire system is determined by a single degree of freedom on very long wavelengths.

In this case, we obtain

R ' ↵

H
�
0

�N +R
0

, (3.5)

where �N = N �N
0

. If R
0

is the value of R at the time of horizon crossing (for a given mode

with a wavelength that crosses the horizon at N
0

), then �N is precisely the number of e-folds

elapsed since horizon crossing. Because towards the end of inflation �N is large (about 60), the

contribution to R proportional to �
0

could dominate even if the ratio ↵/H is small. We further

explore this situation in Section 5.

4 A multi-field realization

The action of eq. (2.8) appears as a particular limit of multi-field models of inflation. Indeed,

the most general action for a set of two scalar fields, with at most two space-time derivatives, is

4
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Figure 1: The figure shows the evolution of the amplitude of the fluctuations around the time of

horizon crossing (at around N = �60). The left panel shows the amplitude of R, whereas the

right panel shows the amplitude of �. The red dashed curves correspond to the case in which

there is no coupling between R and � (that is � = 0), and � has a nonzero entropy mass µ.

It may be seen that R freezes whereas � decays quickly once they cross the horizon. The blue

solid lines show the case in which the two fields remain coupled, with � = 0.2, and � has zero

entropy mass. In this case, R grows outside the horizon, and � freezes.

To deal with this system we may perform the following k-dependent reparametrization of the

fields, in order to obtain a new pair of fields � = (ū, v̄) given by

� ⌘
 
ū↵
v̄↵

!
=

 
cos ✓k(⌧) sin ✓k(⌧)

� sin ✓k(⌧) cos ✓k(⌧)
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u↵
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!
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�

2
ln(�k⌧). (A.11)

This transformation corresponds to a rotation by an angle ✓k(✓). With this transformation, the

equations of motion become

�00 + k2�+M2(⌧)� = 0, (A.12)

where the mass matrix M2(⌧) is found to be given by:

M2(⌧) = � 1
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2 + 3

4
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. (A.13)

Equation (A.12) allows us to be more precise about what we mean by the short wavelength

regime. Indeed, comparing the entries of the mass matrix with k2, we see that the short wave-

length limit may be formally defined as the regime characterized by k|⌧ | � max(1,�2). In this

limit, the elements of the mass matrix become negligible compared to k2, and we recover a set

of fluctuations in a Minkowski space-time. This allows us to impose Banch-Davies conditions,

which read:

ū
�

=
1p
2k

e�ik⌧ , ū
+

= 0, v̄
+

=
1p
2k

e�ik⌧ , v̄
�

= 0. (A.14)
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where ✏
⇤

is the value ✏ at horizon crossing. Comparing this result with the previous expression

(5.6) reveals that the coupling � plays a role only if

�2�N2 � 1. (5.9)

We would like to stress here a couple of interesting features. First of all, the power-spectrum P�

of the primordial non-adiabatic perturbations is not enhanced by cumulative e↵ects (i.e. by the

�2�N2 factor). Therefore, regardless of the reheating mechanism connecting primordial non-

adiabatic perturbations to the non-adiabatic perturbations in the CMB, those will be suppressed

by at least a factor �2�N2 with respect to the adiabatic perturbations. In second place, because

the tensor spectrum is not enhanced, the tensor to scalar ratio r will be suppressed too with

respect to the standard single field scenario. In other words, as we can already guess (see

Appendix C for details):

r ' 16✏

�2�N2

⌧ r
single

= 16✏ , (5.10)

where r
single

is the equivalent tensor-to-scalar ratio in the single field scenario.

6 A concrete example

In this section we o↵er a concrete 2-field model where an ultra-light field coupled to the inflaton

emerges with all the properties discussed in the previous sections. Specifically, this model

is characterized by a background trajectory that satisfies m2

� = �4⌦2, which, as we say in

Section 4, is the required condition to ensure the existence of the ultra-light field. The model to

consider has the following action:

S =
1

2

Z
d4xR�

Z
d4x


1

2
e2Y/R0(rX )2 +

1

2
(rY)2 + V (X )

�
. (6.1)

Notice that this model has a field metric describing a 2-dimensional hyperbolic manifold of

curvature �2/R2

0

, spanned by the fields X and Y. Now, it may be noticed that when V is

independent of both X and Y, the above action has a symmetry given by Y ! Y 0 = Y +C and

X ! X 0 = e�C/R0X . If the potential is flat enough, as required by inflation, this symmetry is

only weakly broken and will lead to the approximate symmetry of eqs. (2.6) and (2.7).

We are now ready to analyze the system as in Section 4. The metric in field space is given

by:

�ab =

 
e2Y/R0 0

0 1

!
. (6.2)

From it, the non-vanishing Christo↵el symbols are then found to be �X

XY

= �X

YX

= 1/R
0

, and

�Y

XX

= �e2Y/R0/R
0

. As a consequence, the Ricci scalar is found to be negative and constant

R = �2/R2

0

. The background equations of motion are given by:

Ẍ + 3HẊ +
2

R
0

Ẋ Ẏ + e�2Y/R0V
X

= 0, (6.3)

Ÿ + 3HẎ � 1

R
0

e2Y/R0Ẋ 2 = 0. (6.4)
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, spanned by the fields X and Y. Now, it may be noticed that when V is

independent of both X and Y, the above action has a symmetry given by Y ! Y 0 = Y +C and

X ! X 0 = e�C/R0X . If the potential is flat enough, as required by inflation, this symmetry is
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where ✏
⇤

is the value ✏ at horizon crossing. Comparing this result with the previous expression

(5.6) reveals that the coupling � plays a role only if

�2�N2 � 1. (5.9)
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Figure 2: (ns, r) plane as a function of R
0

for the exponential metric model with monomial
potential n = 1/2. The predictions for (ns, r) interpolate from the single field predictions (R

0

large) to the large coupling regime (R
0

small). In colors (red to green) we show the fraction of
isocurvature to curvature perturbations. Isocurvature perturbations are suppresed by an order
of magnitude or more for values of R

0

< 1.5. In blue we show the 1�� and 2�� contours from
Planck [3].

Figure 3: The normalized curvature fluctuations (left) and ratio of isocurvature to curvature
fluctuations (right) as a function of N for the mode k that excited the horizon 60-efolds before
the end of inflation (N = 0 is the end of inflation). In blue we show the numerical results, and
in black the analytical predictions given in eqs. (4.6) and (4.8).

6 Conclusions

Our results reveal that models with massless scalar fields coupled to the inflaton have inter-
esting phenomenology worth looking into it. We have shown that, while models with massless
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2 A simple realization

The action (1.3) proposed in the previous section appears as a particular limit of multi-field

models of inflation. Indeed, the most general action characterizing the linear dynamics of fluc-

tuations of a 2-scalar field system, with at most second order space-time derivatives, is given

by

S =

Z
d4xa3


✏Ṙ2 � ✏

a2
(rR)2 + 2

p
2✏⌦Ṙ� +

1

2
�̇2 � 1

a2
(r�)2 � 1

2
M2

e↵�
2

�
, (2.1)

where � represents the scalar fluctuation tangent to the inflationary trajectory in the multi-field

space. In the previous expression, ⌦ represents the rate of bend of the inflationary trajectory in

the 2-scalar field space, and M2
e↵ is the e↵ective mass of the �-field, which is found to be given

by

M2
e↵ = V 00 + ✏H2R� ⌦2, (2.2)

where V 00 represents the Hessian of the potential projected along the normal direction of the

trajectory, and R is the Ricci scalar of the 2-scalar field space. All of these quantities are

evaluated at the position of the background inflationary trajectory. We shall see how eqs. (2.1)

and (2.2) are derived in Section 5, where we analyze a concrete example where � becomes

masless. We may now introduce the following two parameters:

m2 ⌘ M2
e↵ + 4⌦2, � ⌘ �2

⌦

H
. (2.3)

These new parameters allow us to rewrite (2.1) in a more convenient way:

S =

Z
d4xa3

"
✏

✓
Ṙ� �

Hp
2✏

�

◆2

� ✏

a2
(rR)2 +

1

2
�̇2 � 1

a2
(r�)2 � 1

2
m2�2

#
. (2.4)

In the limit m2 ! 0, this action becomes identical to that of eq. (1.3), and the system becomes

invariant under the transformations (1.4) and (1.5) discussed in the introduction. For this to be

possible, the e↵ective squared mass of � must acquire a negative value determined by the rate

of bend of the trajectory as:

M2
e↵ = �4⌦2. (2.5)

A naive analysis of (2.1) would suggest that a negative squared mass parameter implies that

the system is necessarily unstable. But this is not the case, as it turns out that Me↵ does not

represent the rest energy of any state in the system. Instead, the quantity that appears as in

the spectrum of the theory as a mass eigenstate is m, defined in eq. (2.3). In what follows we

focus on the present system for the case in which m2 = 0 exactly, and argue that the system

has a stable behavior in this limit.

3 Dynamics

Let us recall that during inflation, perturbations are dominated by quantum fluctuations that

are stretched from sub-horizon to super-horizon scales. These fluctuations respect the usual

3

If	the	inflaton	trajectory	is	not	straight,	there	is	a	deriva-ve	coupling		
between	curvature	perturbaPon	and	heavy	field	perturbaPon.	
	

																			coupling	constant	=	turning	rate	of	trajectory	
(straight	=	wrt	sigma	model	metric	of	scalar	fields)	

											IntegraPng	out	the		heavy	field	results	in	a	reduced	speed	of	sound		
											for	the	adiabaPc	mode.	But	otherwise	it	is	sPll	single	field	slow	roll	infla-on.	
	

Heavy	mode	in	its	adiaba-c	vacuum,	no	interrup-on	of	slow	roll			

Summary	(I)	–	inflaton	+	heavy	field	

	modified	dispersion	relaPon	for	both	modes	

Tolley	Wyman		0910.1853														AA	Gong	Hardeman	Palma	Pa-l	1005.3848,		1010.3693	

(quadraPc)	



Summary	(II)	–	inflaton	+	ultra-light	field(s)	
	
-	MulPfield	inflaPon	with	light	fields	has	at	least	two	undesirable	properPes	for	model		
building	
								-potenPally	large	isocurvature	perturbaPons	
								-curvature	perturbaPon	is	not	conserved	on	superhorizon	scales	
			
-	In	the	ultra-light	regime	these	two	“problems”	cancel	each	other	on	observable		
scales:	“massless”(*)	isocurvature	perturbaPon	freezes	and	sources	curvature.	Sustained	
over	many	efolds.		We	get		
								-scale	invariant	spectra	
								-suppressed	isocurvature		
								-suppressed	tensor-to-scalar	raPo	
Requires	sustained	turns,	that	can	be	provided	by	the	geometry	of	the	scalar	manifold	
	
(*)	there	is		a	“Stueckelberg-like”	shig	symmetry	involving	both	R	and	σ	
									Inherited	from	symmetries	of	the	background	
									(e.g.	“axion-dilaton”		hyperbolic	coset	spaces)	
	

																																																																																																																	To	be	con-nued…	


