A natural $S_4 \times SO(10)$ model of flavour

Fredrik Björkeroth¹

in collaboration with:

Francisco J. de Anda², Stephen F. King¹, Elena Perdomo¹

¹ University of Southampton, ² Tepatitlán's Institute for Theoretical Studies, Jalisco

Planck 2017, 25.05.17

SO(10) is great

- Unifies all fermions of a family into one 16 representation of SO(10)
- Predicts right-handed neutrinos and seesaw

But!

- Unifies all fermion Yukawa couplings also
- Naive SO(10) like $\lambda_{ij}H\psi_i\psi_j$ suggests no mixing
- In reality, different hierarchies:

•
$$y_u : y_d : y_t \sim 10^{-6} : 10^{-3} : 1$$

• $y_d : y_s : y_b \sim 10^{-5} : 10^{-4} : 10^{-1}$

Mixing patterns in PMNS, CKM completely different

[Stone, 1212.6374]

The model

1. Minimality

2. Naturalness

3. Completeness

- 1. Minimality
 - $\cdot\,$ Smallest number of fields
 - \cdot Low-dimensional representations
- 2. Naturalness

3. Completeness

- 1. Minimality
 - $\cdot\,$ Smallest number of fields
 - \cdot Low-dimensional representations
- 2. Naturalness
 - \cdot Understanding fermion hierarchies
 - $\cdot ~ \mathcal{O}(1)$ dimensionless parameters
 - · "Universal sequential dominance"
- 3. Completeness

- 1. Minimality
 - $\cdot\,$ Smallest number of fields
 - \cdot Low-dimensional representations
- 2. Naturalness
 - · Understanding fermion hierarchies
 - $\cdot ~ \mathcal{O}(1)$ dimensionless parameters
 - · "Universal sequential dominance"
- 3. Completeness
 - $\cdot\,$ Successfully account for quark and lepton data
 - \cdot Address doublet-triplet splitting*
 - · Generate a μ term^{*}

 $\circ S_4$

- $\cdot\,$ Ensures "horizontal" unification of SM fermions
- \cdot Enforces CSD3 vacuum alignments
- *SO*(10)
 - $\cdot\,$ Ensures "vertical" unification of SM fermions
 - · Predicts right-handed neutrinos
- $\circ \ \mathbb{Z}_4 \times \mathbb{Z}_4$
 - $\cdot\,$ Prevents unwanted mixed terms
- $\circ \ \mathbb{Z}_4^R$
 - $\cdot\,$ Breaks to matter (or R) parity, protects LSP

Matter

 $\cdot ~\psi \sim (3', 16)$ contains all SM fields

- Higgs
 - \cdot H_{10}^{u} , H_{10}^{d} gives MSSM Higgs h_{u} , h_{d}
 - \cdot H₁₆ breaks SO(10), gives RH neutrinos mass
 - · $3(+1) \times H_{45}$ break SU(5), provide Clebsch-Gordan coefficients
- Flavons
 - $\cdot \phi \sim (3', 1)$
- Messengers
 - $\cdot \chi \sim (1, 16), \ \overline{\chi} \sim (1, \overline{16}), \ \rho \sim (1, 1)$

Renormalisable at GUT scale

$$\begin{split} \mathcal{W}_{Y}^{(\text{GUT})} &= \psi \phi_{a} \overline{\chi}_{a} + \overline{\chi}_{a} \chi_{a} H_{45}^{Z} + \chi_{a} \chi_{a} H_{10}^{u} + \rho \chi_{3} H_{\overline{16}} + M_{\rho} \rho \rho \\ &+ \overline{\chi}_{b} \chi_{b}' \left(H_{45}^{X} + H_{45}^{Y} \right) + \chi_{b}' \chi_{b}' H_{10}^{d} + \chi_{1} \chi_{2} H_{10}^{d} \end{split}$$

Planck-suppressed terms allowed by symmetries

$$W_Y^{\rm (Planck)} = \frac{\chi_a \chi_a H_{\overline{16}} H_{\overline{16}}}{M_P} + \frac{\psi \psi \phi_3 H_{10}^d}{M_P}, \label{eq:WY}$$

Mass structures

Diagrams

Up-type quarks and Dirac neutrinos

Down-type quarks and charged leptons

Right-handed neutrinos

Flavon VEVs which preserve SU generator of S_4 [King, Luhn '16]

$$\langle \phi_1 \rangle = v_1 \begin{pmatrix} 1\\ 3\\ -1 \end{pmatrix} \quad \langle \phi_2 \rangle = v_2 \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix} \quad \langle \phi_3 \rangle = v_3 \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$$

VEVs driven to scales with the hierarchy

 $v_1 \ll v_2 \ll v_3 \sim M_{\rm GUT},$

From product of triplets, like $\langle \phi \rangle \langle \phi \rangle^T$, construct a 3 × 3 numerical matrices!

We can then define numerical matrices

$$Y_{11} = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix} \quad Y_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad Y_{33} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$Y_{12} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 6 \end{pmatrix} \quad Y_P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

• Y_{11} , Y_{22} , Y_{33} are rank 1

- Y_{12} comes from mixed $H^d_{10}(\psi\phi_1)(\psi\phi_2)$ term
- Y_P comes from S_4 triple product $\psi \psi \phi_3 H_{10}^d$

$$Y_{11} = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix} Y_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} Y_{33} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} Y_{12} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 6 \end{pmatrix} Y_P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

The fermion mass/Yukawa matrices are then given by

$$\begin{aligned} Y^{u} &= y_{1}^{u} e^{i\eta} Y_{11} + y_{2}^{u} Y_{22} + y_{3}^{u} e^{i\eta'} Y_{33} \\ Y^{\nu} &= y_{1}^{\nu} e^{i\eta} Y_{11} + y_{2}^{\nu} Y_{22} + y_{3}^{\nu} e^{i\eta'} Y_{33} \\ M^{R} &= M_{1}^{R} e^{i\eta} Y_{11} + M_{2}^{R} Y_{22} + M_{3}^{R} e^{i\eta'} Y_{33} \\ Y^{d} &= y_{12}^{d} e^{i\frac{\eta}{2}} Y_{12} + y_{2}^{d} e^{i\alpha_{d}} Y_{22} + y_{3}^{d} e^{i\beta_{d}} Y_{33} + y^{P} e^{i\gamma} Y_{P} \\ Y^{e} &= y_{12}^{e} e^{i\frac{\eta}{2}} Y_{12} + y_{2}^{e} e^{i\alpha_{e}} Y_{22} + y_{3}^{e} e^{i\beta_{e}} Y_{33} + y^{P} e^{i\gamma} Y_{P} \end{aligned}$$

All hierarchies controlled by VEVs of flavons $\phi_{1,2,3} \rightarrow v_{1,2,3}$

Universal sequential dominance

Choosing reasonable values of v_i :

 $v_1 \approx 0.002 M_{\rm GUT}$ $v_2 \approx 0.05 M_{\rm GUT}$ $v_3 \approx 0.5 M_{\rm GUT}$ Estimated Yukawa parameters

$$\begin{split} y_1^u &\sim y_1^\nu \sim v_1^2/M_{\rm GUT}^2 \approx 4 \times 10^{-6} \\ y_2^u &\sim y_2^\nu \sim y_2^d \sim y_2^e \sim v_2^2/M_{\rm GUT}^2 \approx 2.5 \times 10^{-3} \\ y_3^u &\sim y_3^\nu \sim y_3^d \sim y_3^e \sim v_3^2/M_{\rm GUT}^2 \approx 0.25 \\ y_{12}^d &\sim y_{12}^e \sim v_1 v_2/M_{\rm GUT}^2 \approx 1 \times 10^{-4} \\ y^P &\sim v_3/M_P &\approx 5 \times 10^{-4} \end{split}$$

RH neutrino parameters

Neutrino Majorana matrix after seesaw also has the CSD3 structure

$$\begin{split} m^{\nu} &= \mu_1 e^{i\eta} Y_{11} + \mu_2 Y_{22} + \mu_3 e^{i\eta'} Y_{33} \\ &= \mu_1 e^{i\eta} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix} + \mu_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + \mu_3 e^{i\eta'} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

where the parameters μ_i are

$$\mu_i = v_u^2 \frac{(y_i^\nu)^2}{M_i^{\rm R}}$$

Almost all mixing in Y^d

- Hierarchy in Y^u very large $(m_u \ll m_c \ll m_t)$
- Texture (1,1) zero in Y^d gives GST relation [Gatto, Sartori, Tonin '68]

Keeping only important terms in Y^d (and ignoring phases)

$$Y^{d} \approx \begin{pmatrix} 0 & y_{12}^{d} & y_{12}^{d} - y^{P} \\ \cdot & y_{2}' & y_{2}' + 2(y_{12}^{d} - y^{P}) \\ \cdot & \cdot & y_{3}^{d} \end{pmatrix}$$

Mixing angles approximated by

$$\theta_{12}^{q} \approx \frac{Y_{12}^{d}}{Y_{22}^{d}} = \frac{y_{12}^{d}}{y_{2}^{\prime}} \quad \theta_{13}^{q} \approx \frac{Y_{13}^{d}}{Y_{33}^{d}} = \frac{y_{12}^{d} - y^{\mathcal{P}}}{y_{3}^{d}} \quad \theta_{23}^{q} \approx \frac{Y_{23}^{d}}{Y_{33}^{d}} = \frac{y_{2}^{\prime} + 2(y_{12}^{d} - y^{\mathcal{P}})}{y_{3}^{d}}$$

Down-type quark Yukawa eigenvalues

$$y_d \approx (y_{12}^d)^2 / y_2' \qquad y_s \approx y_2' \qquad y_b \approx y_3^d$$

Solving for y_{12}^d , y_2' and y_3^d and reintroducing into mixing angles gives

$$\theta_{12}^q \approx \sqrt{\frac{y_d}{y_s}} \quad \theta_{13}^q \approx \frac{\sqrt{y_d y_s} - y^P}{y_b} \quad \theta_{23}^q \approx \frac{y_s + 2(\sqrt{y_s y_d} - y^P)}{y_b}$$

With GUT-scale values^{*} from observation (with $y^P = 0$)

$$\theta_{12}^q \approx 12.85^\circ \qquad \theta_{13}^q \approx 0.23^\circ \qquad \theta_{23}^q \approx 1.48^\circ$$

* assuming no SUSY threshold corrections

Numerical fit

- From MSSM to GUT scale
 - $\cdot\,$ Quark, lepton masses and mixings need to be run up to ${\it M}_{\rm GUT}$
 - $\cdot\,$ This analysis was performed for MSSM [Antusch, Maurer '13]
 - + SUSY threshold corrections parametrised by factors $ar{\eta}_i$
- Fitting procedure
 - $\cdot \,\, \chi^2$ -minimisation to find best fit
 - $\cdot\,$ MCMC to find Bayesian 95% credible intervals
- Lepton data from NuFit

[Esteban, Gonzalez-Garcia, Maltoni, Martinez-Soler, Schwetz '16]

Observable	D	ata		Model			
0.000114010	Central value	1σ range	Best fit	Interval			
$\theta_{12}^{\ell} /^{\circ}$	33.57	32.81 → 34.32	33.62	31.69 → 34.46			
θ_{13}^{ℓ} /°	8.460	8.310 → 8.610	8.455	$8.167 \rightarrow 8.804$			
θ_{23}^{ℓ} /°	41.75	40.40 → 43.10	41.96	$39.47 \rightarrow 43.15$			
δ^{ℓ} /°	261.0	202.0 → 312.0	300.9	$280.7 \rightarrow 308.4$			
$y_e / 10^{-5}$	1.017	$1.011 \rightarrow 1.023$	1.017	$1.005 \rightarrow 1.029$			
y_{μ} $/10^{-3}$	2.147	$2.134 \rightarrow 2.160$	2.147	$2.121 \rightarrow 2.173$			
$y_{\tau} / 10^{-2}$	3.654	3.635 → 3.673	3.654	3.616 → 3.692			
$\Delta m_{21}^2 / (10^{-5} {\rm eV}^2)$	7.510	7.330 → 7.690	7.515	7.108 → 7.864			
$\Delta m_{31}^2 / (10^{-3} {\rm eV}^2)$	2.524	2.484 → 2.564	2.523	2.443 → 2.605			
m_1 /meV			0.441	0.260 → 0.550			
<i>m</i> ₂ /meV			8.680	8.435 → 8.888			
<i>m</i> ₃ /meV			50.24	49.44 → 51.05			
$\sum m_i$ /meV	<	230	59.36	58.49 → 60.19			

Observable	D	ata		Model				
	Central value	1σ range		Best fit	Interval			
$\theta_{12}^q /^\circ$	13.03	12.99 → 13.07		13.02	12.94 → 13.10			
$\theta_{13}^{\overline{q}}$ /°	0.039	$0.037 \rightarrow 0.040$		0.039	$0.036 \rightarrow 0.041$			
$\theta_{23}^q /^\circ$	0.445	$0.438 \rightarrow 0.452$		0.439	$0.426 \rightarrow 0.450$			
$\delta^{\overline{q}}$ /°	69.22	$66.12 \rightarrow 72.31$		69.21	$63.22 \rightarrow 73.94$			
$y_u / 10^{-6}$	2.988	2.062 → 3.915		3.012	$1.039 \rightarrow 4.771$			
$y_c / 10^{-3}$	1.462	$1.411 \rightarrow 1.512$		1.493	$1.445 \rightarrow 1.596$			
Уt	0.549	$0.542 \rightarrow 0.556$		0.547	$0.532 \rightarrow 0.562$			
$y_d / 10^{-5}$	2.485	$2.212 \rightarrow 2.758$		2.710	2.501 → 2.937			
$y_{s} / 10^{-4}$	4.922	$4.656 \rightarrow 5.188$		5.168	$4.760 \rightarrow 5.472$			
Уь	0.141	$0.136 \rightarrow 0.146$		0.137	$1.263 \rightarrow 1.429$			

Conclusions

Yes, but.

Yes

- Matter hierarchies fully explained* by flavon VEVs, including hierarchy *differences* between up-type and down-type quarks
- Large lepton mixing controlled by RH neutrinos (sequential dominance: $M_3^R \sim M_{GUT}$) [King '98]

But

- $\circ\,$ Setting all λ couplings to 1, lightest RH neutrino predicted $\sim 10^7\,$ GeV, but fit prefers $\sim 10^5\,$ GeV
- $\circ\,$ Can be fixed by setting one coupling $\lambda_1^N \sim 0.01$

- Unifies all known fermions in single (3', 16) of $S_4 \times SO(10)$
- Qualitatively explains mass hierarchies using low-rank matrix structures coming from flavon vacuum alignments
- $\circ\,$ Fits all known quark and lepton masses and mixings within $1\sigma\,$
- Generates μ term of $\mathcal{O}(\text{TeV})$ (not shown here)
- Splits Higgs doublets and triplets via DW mechanism [Dimopoulos, Wilczek '82] (not shown here)

Future work

• cosmology: leptogenesis & inflation

Μ	Matter, Higgs, flavons						Messengers					
	S_4	<i>SO</i> (10)	\mathbb{Z}_4	\mathbb{Z}_4	\mathbb{Z}_4^R			S_4	<i>SO</i> (10)	\mathbb{Z}_4	\mathbb{Z}_4	\mathbb{Z}_4^R
ψ	3′	16	1	1	1	_	$\overline{\chi}_1$	1	16	3	3	1
H_{10}^{U}	1	10	0	2	0		χ_1	1	16	0	3	1
H_{10}^d	1	10	2	0	0		$\overline{\chi}_2$	1	16	1	3	1
$H_{\overline{16}}$	1	16	2	1	0		χ_2	1	$\frac{16}{10}$	2	3	1
H_{16}^{10}	1	16	1	2	0		χ3	1	16	1	1	1
$H_{45}^{X,Y}$	1	45	2	1	0		χ_3	1	10	2	1	1
H_{45}^{Z}	1	45	1	2	0		χ_3	1	16	1	2 0	1
H_{45}^{B-L}	1	45	2	2	2		<i>n</i> ₂	-		_	0	-
ξ	1	1	2	2	0		ρ	Ţ	T	0	2	T
ϕ_1	3′	1	0	0	0							
ϕ_2	3′	1	2	0	0							
ϕ_3	3′	1	2	2	0							