Light singlet scenario in R-symmetric SUSY

P. Dießner[†], J. Kalinowski[‡], Wojciech Kotlarski^{†‡}, D. Stöckinger[†]

Scalars 2015, December 6, 2015, Warsaw, Poland

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- \blacksquare implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \ \theta \rightarrow e^{i\alpha}\theta$
- Superpotential example

$$\mathcal{L} \ni \int d^2\theta \, W$$

■ Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
 $e^{i\alpha Q_R}$ $e^{i\alpha(Q_R-1)}$
$$\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$$

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- \blacksquare implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \ \theta \rightarrow e^{i\alpha}\theta$
- Superpotential example

■ Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
 $e^{i\alpha Q_R}$ $e^{i\alpha(Q_R-1)}$
$$\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$$

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- \blacksquare implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \ \theta \rightarrow e^{i\alpha}\theta$

■ Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
 $e^{i\alpha Q_R}$ $e^{i\alpha(Q_R-1)}$
$$\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$$

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- \blacksquare implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \ \theta \rightarrow e^{i\alpha}\theta$
- - Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
 $e^{i\alpha Q_R}$ $e^{i\alpha(Q_R-1)}$
$$\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$$

Low-energy R-symmetry realization

Different possible models that one can construct

■ "Natural" choice	$e^{\imath lpha Q_R}$		$e^{\imath lpha Q_R}$	$e^{i\alpha(Q_R-1)}$		
	Φ	=	$\phi(y)$ +	$\sqrt{2}\theta\psi(y)$	+	$\theta\theta F(y)$
leptons and quarks	$Q_R = 1$		$Q_R = 1$	$Q_R = 0$		
Higgs	$Q_R = 0$		$Q_R = 0$	$Q_R = -1$		

- Good: no barion and lepton number violating terms
- Bad: No Majorana masses for higgsinos and gauginos

$$W = \mu_d \, \hat{R}_d \, \hat{H}_d + \mu_u \, \hat{R}_u \, \hat{H}_u$$

$$+ \Lambda_d \, \hat{R}_d \, \hat{T} \, \hat{H}_d + \Lambda_u \, \hat{R}_u \, \hat{T} \, \hat{H}_u + \lambda_d \, \hat{S} \, \hat{R}_d \, \hat{H}_d + \lambda_u \, \hat{S} \, \hat{R}_u \, \hat{H}_u$$

$$- Y_d \, \hat{d} \, \hat{q} \, \hat{H}_d - Y_e \, \hat{e} \, \hat{l} \, \hat{H}_d + Y_u \, \hat{u} \, \hat{q} \, \hat{H}_u$$

Low-energy R-symmetry realization

Different possible models that one can construct

"Natural" choice	$e^{i\alpha Q_R}$	$e^{\imath \alpha Q_R}$	$e^{i\alpha(Q_R-1)}$	
	Φ =	$=$ $\phi(y)$ +	$\sqrt{2}\theta\psi(y) \qquad + \qquad$	$\theta\theta F(y)$
leptons and quarks	$Q_R = 1$	$Q_R = 1$	$Q_R = 0$	
Higgs	$Q_R = 0$	$Q_R = 0$	$Q_R = -1$	

- Good: no barion and lepton number violating terms
- Bad: No Majorana masses for higgsinos and gauginos

$$W = \mu_d \, \hat{R}_d \, \hat{H}_d + \mu_u \, \hat{R}_u \, \hat{H}_u$$

$$+ \Lambda_d \, \hat{R}_d \, \hat{T} \, \hat{H}_d + \Lambda_u \, \hat{R}_u \, \hat{T} \, \hat{H}_u + \lambda_d \, \hat{S} \, \hat{R}_d \, \hat{H}_d + \lambda_u \, \hat{S} \, \hat{R}_u \, \hat{H}_u$$

$$- Y_d \, \hat{d} \, \hat{q} \, \hat{H}_d - Y_e \, \hat{e} \, \hat{l} \, \hat{H}_d + Y_u \, \hat{u} \, \hat{q} \, \hat{H}_u$$

4 physical Higgses. Two options: 125 GeV Higgs is the lightest or second-to-lightest Higgs

Tree-level contribution from the mixing

$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2} \lambda \mu \right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda \mu \right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

Higgs mass vs W mass

■ Full 1-loop + leading 2-loop corrections

 $m_h = 126 \pm 2 \text{ GeV}$ $m_h = 126 \pm 8 \text{ GeV}$

Tree-level contribution from the mixing

$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2} \lambda \mu \right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda \mu \right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

"standard" Hd — Hu mixture

Higgs mass vs W mass

■ Full 1-loop + leading 2-loop corrections

Tree-level contribution from the mixing

singlet and triplet admixture

$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2} \lambda \mu \right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda \mu \right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

"standard" Hd — Hu mixture

Higgs mass vs W mass

■ Full 1-loop + leading 2-loop corrections

Tree-level contribution from the mixing

singlet and triplet admixture

$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2} \lambda \mu \right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda \mu \right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

"standard" Hd — Hu mixture

Higgs mass vs W mass

■ Full 1-loop + leading 2-loop corrections

Tree-level contribution from the mixing

$$m_{h,\text{tree}}^2 \approx m_Z^2 \cos^2 2\beta + v^2 \cos^2 2\beta \left(\frac{(g_1 M_B^D + \sqrt{2}\lambda\mu)^2}{|m_S^2 + 4(M_B^D)^2 - m_Z^2 \cos^2 2\beta|} \right)$$

■ "SM-like" Higgs composition

Tree-level contribution from the mixing

$$m_{h,\text{tree}}^2 \approx m_Z^2 \cos^2 2\beta + v^2 \cos^2 2\beta \left(\frac{(g_1 M_B^D + \sqrt{2}\lambda\mu)^2}{|m_S^2 + 4(M_B^D)^2 - m_Z^2 \cos^2 2\beta|} \right)$$

"SM-like" Higgs composition

Tree-level contribution from the mixing

$$m_{h,\text{tree}}^2 \approx m_Z^2 \cos^2 2\beta + v^2 \cos^2 2\beta \left(\frac{(g_1 M_B^D + \sqrt{2}\lambda\mu)^2}{|m_S^2 + 4(M_B^D)^2 - m_Z^2 \cos^2 2\beta|} \right)$$

■ "SM-like" Higgs composition

Tree-level contribution from the mixing

$$m_{h,\text{tree}}^2 \approx m_Z^2 \cos^2 2\beta + v^2 \cos^2 2\beta \left(\frac{(g_1 M_B^D + \sqrt{2}\lambda\mu)^2}{|m_S^2 + 4(M_B^D)^2 - m_Z^2 \cos^2 2\beta|} \right)$$

■ "SM-like" Higgs composition

Dark matter and light "inos" in general

Dark matter bino-singlino candidate

600 700 800 900 1000

 μ_u [GeV]

1500

400 500

■ 8 TeV exclusion limits

SARAH's UFO + Herwig++ and CheckMate

Summary and outlook

- Viable realization of R-symmetric SUSY

 - agreement with PEWO and flavor-physics
 - stable vacuum
 - LHC ,,friendly" particle spectra
 - viable candidate for dark matter
- Work in progress
 - R-symmetric SQCD at 13 TeV LHC

Particles content summary: MSSM vs. MRSSM

different number of physical states

completely new states

		Higgs			R-H	iggs	
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	1

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

Majorana fermions

Dirac fermions