Vacuum Stability and Landau Poles of $\operatorname{SU}(3)$ Scalars

Kristjan Kannike

NICPB, Estonia
M. Heikinheimo, K.K., F. Lyonnet, M. Raidal, K. Tuominen, H. Veermäe

$$
\text { Warsaw } \diamond \text { May 25, } 2017
$$

2 Motivation

- Sommerfeld enhancement for dark matter from higher multiplets
El Hedri, Kaminska \& de Vries, I6|2.02825
■ CP-violation with an unbroken CP-transformation

Ratz \& Trautner, I 6 | 2.08984
■ Different confinement scales for different multiplets
Kubo, Lim \& Lindner, I 403.4262

- Standard Model \& one scalar S in multiplet R of colour
- Choices are $3,8,10,15,15^{\prime}, 2 \mathrm{I}, \ldots$ of $S U(3)_{c}$
- To be asymptotically free,

$$
N_{s} T\left(R_{s}\right)<33-2 N_{f}=21
$$

- The largest multiplet to consider is 15^{\prime}

4 Model(s)

The Lagrangian is given by

$$
\begin{aligned}
L & =L_{S M}^{\text {gauge, Yukawa }}+\left|D_{\mu} H\right|^{2}+\left|D_{\mu} S\right|^{2} \\
& -\mu_{H}^{2}|H|^{2}-m_{S}^{2}|S|^{2}-V_{\text {quartic }},
\end{aligned}
$$

where

$$
V_{\text {quartic }}=\lambda_{H}|H|^{2}+\lambda_{S H}|S|^{2}|H|^{2}+V_{R}(S)
$$

5 Vacuum Stability Conditions

- The self-coupling potential of S in the representation R can be written as

$$
V_{R}(S)=\left(\lambda_{S}+\lambda_{S i} p_{i}\right)|S|^{4},
$$

where ρ_{i} are orbit space parameters

- The full potential

$$
V_{\text {quartic }}=\lambda_{H}|H|^{2}+\lambda_{S H}|S|^{2}|H|^{2}+V_{R}(S)
$$

is bounded from below if

$$
\begin{aligned}
& \lambda_{H}>0, \quad \lambda_{S}+\lambda_{S i i_{i}}>0, \\
& \lambda_{S H}>-2 \sqrt{\lambda_{H}\left(\lambda_{S}+\lambda_{S i} i_{i}\right)}
\end{aligned}
$$

5 Vacuum Stability Conditions

- The self-coupling potential of S in the representation R can be written as

$$
V_{R}(S)=\left(\lambda_{S}+\lambda_{S i} p_{i}\right)|S|^{4},
$$

where ρ_{i} are orbit space parameters

- The full potential

$$
V_{\text {quartic }}=\lambda_{H}|H|^{2}+\lambda_{S H}|S|^{2}|H|^{2}+V_{R}(S)
$$

is bounded from below if

$$
\begin{aligned}
& \lambda_{H}>0, \quad \lambda_{S}+\lambda_{\text {si }} p_{i}>0, \\
& \lambda_{S H}>-2 \sqrt{\lambda_{H}\left(\lambda_{S}+\lambda_{s i i_{i}}\right)}
\end{aligned}
$$

6 Potential of 3

- 3 of $S U(3)$ is a vector S^{i} with $\left(S^{i}\right)^{\dagger} \equiv S_{i}$
- The scalar potential of 3 is

$$
V_{3}(S)=\lambda_{5}\left(S_{i} S^{\prime}\right)^{2}
$$

- Bounded from below if $\lambda_{s}>0$

7 Potential of 8

- 8 of $S U(3)$ is a Hermitian traceless matrix S_{j}^{j}
- Cayley-Hamilton theorem: $\operatorname{tr} S^{4} \propto\left(\operatorname{tr} S^{2}\right)^{2}$
- The scalar potential of 8 is

$$
V_{8}(S)=\lambda_{S}\left(\operatorname{tr} S^{2}\right)^{2}
$$

- Bounded from below if $\lambda_{s}>0$

8 Potential of 6

- 6 of $S U(3)$ is a complex symmetric matrix $S^{j j}$
- The scalar potential of 6 is

$$
\begin{aligned}
V_{6}(S) & =\lambda_{s}\left(\operatorname{tr} s^{\dagger} S\right)^{2}+\lambda_{s \mid} \text { tr } S^{\dagger} s S^{\dagger} S \\
& =\left(\lambda_{S}+\lambda_{s \mid} \mid \rho\right)|S|^{4},
\end{aligned}
$$

where $|S|^{2}=\operatorname{tr} S^{\dagger} S$ and $\rho=\frac{\operatorname{tr} S^{\dagger} S S^{\dagger} S}{\left(\operatorname{tr} S^{\dagger} S\right)^{2}}$

- Minimise $\lambda_{s}+\lambda_{s \mid} \rho$ over ρ : need $\rho_{\text {min }}$ and $\rho_{\text {max }}$

9 Potential of 6

- The scalar potential of 6 is

$$
\begin{aligned}
V_{6}(S) & =\lambda_{S}\left(\operatorname{tr} S^{\dagger} S\right)^{2}+\lambda_{S I} \operatorname{tr} S^{\dagger} S S^{\dagger} S \\
& =\lambda_{S}(\operatorname{tr} M)^{2}+\lambda_{S I} \operatorname{tr} M^{2} \\
& =\left(\lambda_{S}+\lambda_{S I} \rho\right)|S|^{4},
\end{aligned}
$$

where $M_{i}^{j}=S_{i k} S^{j k}$ and $\operatorname{tr} M=\operatorname{tr} S^{\dagger} S=|S|^{2}$

9 Potential of 6

- The scalar potential of 6 is

$$
\begin{aligned}
V_{6}(S) & =\lambda_{S}\left(\operatorname{tr} S^{\dagger} S\right)^{2}+\lambda_{S I} \operatorname{tr} S^{\dagger} S S^{\dagger} S \\
& =\lambda_{S}(\operatorname{tr} M)^{2}+\lambda_{S I} \operatorname{tr} M^{2} \\
& =\left(\lambda_{S}+\lambda_{S I} \rho\right)|S|^{4},
\end{aligned}
$$

where $M_{i}^{j}=S_{i k} j^{j k}$ and $\operatorname{tr} M=\operatorname{tr} S^{\dagger} S=|S|^{2}$

- Then the orbit parameter is

$$
\rho=\frac{\operatorname{tr} S^{\top} S S^{\prime} S}{(\operatorname{tr} S \dagger S)^{2}}=\frac{\operatorname{tr} M^{2}}{(\operatorname{tr} M)^{2}}=\frac{\sum_{i} d_{i}^{2}}{\left(\sum_{i} d_{i}\right)^{2}}
$$

- $\rho_{\text {min }}=\frac{1}{3}$ and $\rho_{\text {max }}=1$

10 Vacuum Stability of 6

- The potential is bounded from below if

$$
\lambda_{S}+\lambda_{S I} \rho>0
$$

- The vacuum stability conditions are thus

$$
\lambda_{s}+\frac{1}{3} \lambda_{s 1}>0, \quad \lambda_{s}+\lambda_{s 1}>0
$$

■ Non-zero $\rho_{\text {min }}$ allows for $\lambda_{s}<0$

- Can play a rôle for asymptotic safety

Giudice, ssidori, Salvio \& Strumia, 1412.2769

I| Potential of 10

- I 0 of $\operatorname{SU}(3)$ is the symmetric tensor $S^{i j k}$
- The scalar potential of 10 is

$$
\begin{aligned}
V_{10}(S) & =\lambda_{s}\left(S_{i j k} S^{j j k}\right)^{2}+\lambda_{s \mid} S_{i j m} S^{i j n} S_{k l n} S^{k l m} \\
& =\lambda_{S}(\operatorname{tr} M)^{2}+\lambda_{s \mid} \operatorname{tr} M^{2},
\end{aligned}
$$

where $M_{i}^{j}=S_{i k \mid} S^{j k \mid}$

- Again,

$$
\rho=\frac{\operatorname{tr} M^{2}}{(\operatorname{tr} M)^{2}}
$$

and $\rho_{\text {min }}=\frac{1}{3}$ and $\rho_{\text {max }}=1$

12 Potential of 15^{\prime}

- I 5^{\prime} of $S U(3)$ is a completely symmetric tensor $S^{i j k}$
- The scalar potential of 15^{\prime} is

$$
\begin{aligned}
V_{\mid 5^{\prime}}(S) & =\lambda_{S}\left(S_{i j k \mid}{ }^{j j k l}\right)^{2}+\lambda_{s \mid} S_{i j k p}{ }^{i j k q} S_{I m n q} S^{1 m n p} \\
& +\lambda_{s 2} S_{j i m n} S^{j j p q} S_{k \mid p q} S^{k l m n} \\
& =\left(\lambda_{S}+\lambda_{s \mid} \rho_{1}+\lambda_{s 2} \rho_{2}\right)|S|^{4}
\end{aligned}
$$

- Vacuum is stable if

$$
\lambda_{S}+\lambda_{S 1} \rho_{1}+\lambda_{S 2} \rho_{2}>0
$$

for all allowed ρ_{1} and ρ_{2}

13 Vertices of Orbit Space

At a vertex V,

$$
\frac{\partial \rho_{i}}{\partial S_{a}^{V}}=0
$$

$\square S_{a}^{V}+\delta S_{a}$ yields $\rho_{i}^{V}+\delta \rho_{i}$
■ The deviation cannot move out of the orbit space, so $\delta \rho_{i}=0$

Kim, Nucl.Phys. BI97 (I982) I74

14 Orbit Space of 15^{\prime}

I5 Vacuum Stability

Vacuum stability conditions are yielded by the convex hull of the orbit space:

$$
\lambda_{i} \rho_{i}^{A}>0, \quad \lambda_{i} \rho_{i}^{B}>0 \Longrightarrow \lambda_{i}\left[\eta \rho_{i}^{A}+(1-\eta) \rho_{i}^{B}\right]>0
$$

with $0 \leqslant \eta \leqslant 1$

I6 Vacuum Stability

I7 Vacuum Stability

I 8 Vacuum Stability

19 Vacuum Stability

20 Vacuum Stability

21 Orbit Space of 15^{\prime}

22 Orbit Space of 15^{\prime}

23 Vacuum Stability of 15^{\prime}

- Vertices of the orbit space are
$\vec{\rho}_{I}=(1, \mid), \quad \vec{\rho}_{\|}=\left(\frac{1}{3}, \frac{47}{135}\right), \quad \vec{\rho}_{\| I}=\left(\frac{1}{3}, \frac{1}{6}\right) \quad$ and $\quad \vec{\rho}_{I V}=\left(\frac{1}{2}, \frac{1}{3}\right)$
- Vacuum stability conditions are given by

$$
\begin{array}{ll}
\text { I : } & \lambda_{S}+\lambda_{S 1}+\lambda_{s 2}>0, \\
\mathrm{II}: & \lambda_{S}+\frac{1}{3} \lambda_{S 1}+\frac{47}{135} \lambda_{s 2}>0 \\
\text { III }: & \lambda_{S}+\frac{1}{3} \lambda_{S 1}+\frac{1}{6} \lambda_{s 2}>0, \\
\mathrm{IV}: & \lambda_{S}+\frac{1}{2} \lambda_{S 1}+\frac{1}{3} \lambda_{s 2}>0
\end{array}
$$

24 Potential of 15

- 15 of $S U(3)$ is a tensor $S_{k}^{j j}$ that is symmetric in the upper indices and traceless
- The scalar potential of 15 is

$$
\begin{aligned}
& +\lambda_{53} S_{i j}^{m} S_{n}^{j i} S_{k}^{n} S_{m}^{k}+\lambda_{s 4} S_{j m}^{i}{ }_{j}^{k} s_{1}^{m} S_{i n}^{j} S_{k}^{n n} \\
& =\left(\lambda_{s}+\lambda_{s 1} \rho_{1}+\lambda_{s 2} \rho_{2}+\lambda_{s 3} \rho_{3}+\lambda_{s 4 \rho_{4}}\right)|S|^{4}
\end{aligned}
$$

25 Orbit Space of 15

The orbit space lies within the 4-box

$$
\begin{aligned}
& \frac{1}{3} \leqslant \rho_{1} \leqslant 1, \\
& 0 \leqslant \rho_{2} \leqslant \frac{1}{2}, \\
& \frac{1}{3} \leqslant \rho_{3} \leqslant 1, \\
& 0 \leqslant \rho_{4} \leqslant \frac{9}{16}
\end{aligned}
$$

26 2D Projections of Orbit Space of 15

27 Orbit Space of I5

- The full analytical shape of the orbit space of 15 would be rather hard to find
- For vacuum stability conditions, we need its convex hull
- We use the QuickHull algorithm to find its four-dimensional convex hull
Loren Petrich's Mathematica code http://Ipetrich.org/Science/\#CHDV

28 RGE Running of Higher Multiplets

- We use PyR@TE 2 to calculate the RGEs Lyonnet, Schienbein, Staub and Wingerter, 1309.7030; Lyonnet, Schienbein, 1608.07274
- The RGE for a single self-coupling has the form

$$
\frac{\mathrm{d} \lambda_{S}}{\mathrm{~d}(\ln \mu)}=b_{\lambda} \lambda_{S}^{2}-b_{\lambda g} g_{3}^{2} \lambda_{S}+b_{\lambda g g} g_{3}^{4}+2 \lambda_{S H}^{2}
$$

- The strong coupling g_{3} always generates λ_{s}

29 Running Self-Couplings of IO

30 "Walking" Self-Coupling of 3

μ / GeV

- $\beta_{\lambda_{s}}$ must have real roots $\lambda_{S \pm}$, so $b_{\lambda g}^{2}>4 b_{\lambda} b_{\lambda g g}$

31 Landau Pole vs. Mass of S

32 Conclusions

- If the potential depends on the orbit space parameters linearly, we need only the convex hull of the orbit space
- Landau poles are low for most higher multiplets of $\mathrm{SU}(3)_{c}$ due to large g_{3}
- Self-couplings of 3 and 8 walk, rather than run

