On the quantum structure of indirect BSM effects

Alex Pomarol, CERN \& UAB (Barcelona)

Purpose of this talk:

Little story about zeros...

Purpose of this talk:

Little story about zeros...

...on certain one-loop quantum corrections in EFT's that explicit calculations show that cancel for no "reason"

Purpose of this talk:

Little story about zeros...

...on certain one-loop quantum corrections in EFT's that explicit calculations show that cancel for no "reason"
Interest?

Purpose of this talk:

Little story about zeros...

...on certain one-loop quantum corrections in EFT's that explicit calculations show that cancel for no "reason" Interest?

The SM is an EFT with higher-dim operators (what we call BSM!) At the quantum-level operator mix:

- To understand these mixings is crucial in order to see how restrictions can arise from well-measured quantities: $\mathrm{S}, \mathrm{T}, \mathrm{h} \mathrm{\gamma Y}, \ldots$

- Effects can be important in the future to unravel the UV model

Purpose of this talk:

Little story about zeros...

...on certain one-loop quantum corrections in EFT's that explicit calculations show that cancel for no "reason" Interest?
The SM is an EFT with higher-dim operators (what we call BSM!) At the quantum-level operator mix:

- To understand these mixings is crucial in order to see how restrictions can arise from well-measured quantities: $\mathrm{S}, \mathrm{T}, \mathrm{h} \gamma \mathrm{Y}, \ldots$

- Effects can be important in the future to unravel the UV model

We will see that an interesting set of one-loop non-renormalization results can be derived (the choice of the correct basis is crucial)

EFT captures the (indirect) impact of BSMs

Under the assumption that the new-physics scale Λ is heavier than M_{w}, we can perform an expansion in derivatives and SM fields
(assuming lepton \& baryon number)

$$
\mathcal{L}_{\text {eff }}=\frac{\Lambda^{4}}{g_{*}^{2}} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda}, \frac{g_{H} H}{\Lambda}, \frac{g_{f_{L, R}} f_{L, R}}{\Lambda^{3 / 2}}, \frac{g F_{\mu \nu}}{\Lambda^{2}}\right) \simeq \mathcal{L}_{4}+\mathcal{L}_{6}+\cdots
$$

One-loop mixing of dim-6 operators

Interesting situations could arise from mixing:

Tree-level
$\mathcal{O}_{\text {tree }}$

One-loop induced
$\mathcal{O}_{\text {loop }}$
at \wedge

One-loop mixing of dim-6 operators

Interesting situations could arise from mixing:

Tree-level
One-loop induced
$\mathcal{O}_{\text {tree }}$
$\xrightarrow[c_{\text {loop }}\left(m_{W}\right)]{\sim} \frac{c_{\text {tree }}}{16 \pi^{2}} \log \frac{\Lambda}{m_{W}}$
$\mathcal{O}_{\text {loop }}$
at \wedge
at mw

Due to the log, dominant effect from running!!
$\longrightarrow \log \left(3 \mathrm{TeV} / m_{W}\right)^{2} \sim 7$

One-loop mixing of dim-6 operators

Example I: SM after integrating out W/Z:

Tree-level
One-loop induced

$$
\mathcal{O}_{\text {tree }}=\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{s}_{L} \gamma^{\mu} c_{L}\right)
$$

$$
\mathcal{O}_{l o o p}=\bar{s}_{L} \sigma^{\mu \mu} b_{R} F_{\mu \nu}
$$

One-loop mixing of dim-6 operators

Example I: SM after integrating out W/Z:

Tree-level

$\mathcal{O}_{\text {tree }}=\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{s}_{L} \gamma^{\mu} c_{L}\right)$

$$
\mathcal{O}_{\text {loop }}=\bar{s}_{L} \sigma^{\mu \mu} b_{R} F_{\mu \nu}
$$

One-loop induced

RG evolution

No mixing between "tree" and "loop" operators at the one-loop level
B.Grinstein, R..Springer and M.Wise 90
no explanation of the reason of why this happens!

One-loop mixing of dim-6 operators

Example 2: HyY from BSMs (SUSY/SILH)

Tree-level

$$
\mathcal{O}_{\text {tree }}=\left(\partial_{\mu}|H|^{2}\right)^{2}
$$

One-loop induced

$$
\mathcal{O}_{\text {loop }}=|H|^{2} B^{\mu \nu} B_{\mu \nu}
$$

\hookrightarrow affects hVV
\rightarrow affects h $\gamma \gamma$

One-loop mixing of dim-6 operators

Example 2: HyY from BSMs (SUSY/SILH)

Tree-level

$$
\mathcal{O}_{\text {tree }}=\left(\partial_{\mu}|H|^{2}\right)^{2}
$$

No mixing between "tree" and "loop" operators at the one-loop level

Otherwise the analysis of Higgs couplings from ATLAS/CMS
(the (in)famous "kappas") would have had
a very different interpretation in BSMs!

Pattern of operator mixing I

"Loop" operators

defined as arising
from renormalizable BSMs

$H^{\dagger} \bar{f}_{R} \sigma^{\mu \nu} t^{a} f_{L} F_{\mu \nu}^{a} \longrightarrow$ fermion dipoles
$H^{\dagger} t^{a} t^{b} H F_{\mu \nu}^{a} F^{b \mu \nu} \longrightarrow \mathrm{~h} \gamma \gamma, \mathrm{hZ} \mathrm{\gamma}, \mathrm{hGG}$
$f^{a b c} F_{\mu}^{a \nu} F_{\nu}^{b \rho} F_{\rho}^{c \mu} \longrightarrow$ TGC

+ CP-violating

Pattern of operator mixing I

"Loop" operators

defined as arising from renormalizable BSMs

$$
H^{\dagger} \bar{f}_{R} \sigma^{\mu \nu} t^{a} f_{L} F_{\mu \nu}^{a}
$$

$$
H^{\dagger} t^{a} t^{b} H F_{\mu \nu}^{a} F^{b \mu \nu}
$$

$$
f^{a b c} F_{\mu}^{a \nu} F_{\nu}^{b \rho} F_{\rho}^{c \mu}
$$

+ CP-violating

"Current-current"

 operators$$
\begin{gathered}
J_{i} \cdot J_{j} \\
J_{H}^{a \mu}=H^{\dagger} t^{a} D^{\mu} H \\
J_{f}^{a \mu}=\bar{f} t^{a} \gamma^{\mu} f \\
\quad, \ldots
\end{gathered}
$$

Pattern of operator mixing 1

"Loop" operators

"Current-current" operators

from renormalizable BSMs
defined as arising

$$
\begin{array}{ccc}
H^{\dagger} \bar{f}_{R} \sigma^{\mu \nu} t^{a} f_{L} F_{\mu \nu}^{a} & J_{i} \cdot J_{j} \\
H^{\dagger} t^{a} t^{b} H F_{\mu \nu}^{a} F^{b \mu \nu} & \begin{array}{c}
\begin{array}{c}
\text { explicit calculations } \\
\text { show no mixing }
\end{array}
\end{array} & \begin{array}{c}
J_{H}^{a \mu}=H^{\dagger} t^{a} D^{\mu} H \\
f^{a b c} F_{\mu}^{a \nu} F_{\nu}^{b \rho} F_{\rho}^{c \mu} \\
+ \text { CP-violating }
\end{array} \\
& J_{f}^{a \mu}=\bar{f} t^{a} \gamma^{\mu} f
\end{array}
$$

One exception to this rule:

$$
\mathcal{O}_{y y}=\left(\bar{f}_{R} t^{a} f_{L}\right)\left(\bar{f}_{R} t^{a} f_{L}\right) \sim \psi^{4} \text { in weyl notation }
$$

Pattern of operator mixing 1

"Loop" operators

"Current-current" operators

from renormalizable BSMs
$H^{\dagger} \bar{f}_{R} \sigma^{\mu \nu} t^{a} f_{L} F_{\mu \nu}^{a}$
$H^{\dagger} t^{a} t^{b} H F_{\mu \nu}^{a} F^{b \mu \nu}$
$f^{a b c} F_{\mu}^{a \nu} F_{\nu}^{b \rho} F_{\rho}^{c \mu}$
+CP -violating
defined as arising

$H^{\dagger} \bar{f}_{R} \sigma^{\mu \nu} t^{a} f_{L} F_{\mu \nu}^{a}$	$J_{i} \cdot J_{j}$
$H^{\dagger} t^{a} t^{b} H F_{\mu \nu}^{a} F^{b \mu \nu}$	explicit calculations show no mixing
$f^{a b c} F_{\mu}^{a \nu} F_{\nu}^{b \rho} F_{\rho}^{c \mu}$	$J_{H}^{a \mu}=H^{\dagger} t^{a} D^{\mu} H$
+ CP-violating	$J_{f}^{a \mu}=\bar{f} t^{a} \gamma^{\mu} f$
One exception to this rule:	,\ldots,

$$
\mathcal{O}_{y y}=\left(\bar{f}_{R} t^{a} f_{L}\right)\left(\bar{f}_{R} t^{a} f_{L}\right) \sim \psi^{4} \text { in weyl notation }
$$

Pattern of operator mixing II

Holomorphy:

In the basis: $\quad \mathcal{O}_{3 F_{ \pm}}=\mathcal{O}_{3 F} \mp i \mathcal{O}_{3 \tilde{F}}$
$\mathcal{O}_{F F_{ \pm}}=\mathcal{O}_{F F} \mp i \mathcal{O}_{F \tilde{F}}$
$\left\{\begin{array}{l}\mathcal{O}_{3 F}=f^{a b c} F_{\mu}^{a \nu} F_{\nu}^{b \rho} F_{\rho}^{c \mu} \\ \mathcal{O}_{F F}=H^{\dagger} t^{a} t^{b} H F_{\mu \nu}^{a} F^{b \mu \nu}\end{array}\right.$

The one-loop anomalous dimensions of the complex Wilson-coefficients do not depend on their complex-conjugates:

$$
\frac{\partial \gamma c_{i}}{\partial c_{j}^{*}}=0_{i} \quad c_{i}=\left\{c_{3 F_{+}}, c_{F F_{+}}, c_{D}, c_{y}, c_{y y}, c_{R}^{u d}\right\}
$$

Only one exception to this rule was found from explicit calculations

Pattern of operator mixing I+II

* suggests a possible explanation using supersymmetry:
J.Elias-Miro, J.R.Espinosa, A.P. 15

Supersymmetry can be an useful tool even for non-supersymmetric theories $\quad \Leftrightarrow$ for an alternative approach, see Cheung-Shen I5
using Spinor Helicity formalism
e.g. : QCD n-gluon scattering at tree-level:

Same as in Susy-QCD as gauginos appear at the loop-level !

* easy to prove: $A_{n}^{\text {tree }}\left[g^{-} g^{+} g^{+} \cdots g^{+}\right]=A_{n}^{\text {tree }}\left[g^{+} g^{+} \cdots g^{+}\right]=0$

Supersymmetrization

Dim-4 operators:

SM \longrightarrow MSSM (with one Higgs)

if both $y_{u} \& y_{d}$ are simultaneously present, a source of susy-breaking is needed

$$
\int d^{2} \theta y_{u} H Q U+\int d^{4} \theta y_{d} H^{\dagger} Q D \eta^{\dagger} \quad \eta \stackrel{\downarrow}{\equiv} \theta^{2}
$$

Supersymmetrization

Dim-4 operators:

SM \longrightarrow MSSM (with one Higgs)

if both $y_{u} \& y_{d}$ are simultaneously present, a source of susy-breaking is needed

$$
\int d^{2} \theta y_{u} H Q U+\int d^{4} \theta y_{d} H^{\dagger} Q D \eta^{\dagger} \quad \eta \equiv \theta^{2}
$$

Dim-6 operators:

\longrightarrow F-term of non-chiral operators

e.g. $\mathcal{O}_{F F}=|\phi|^{2} F_{\mu \nu} F^{\mu \nu} \longrightarrow \Phi^{\dagger} e^{V_{\Phi}} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha}=-\frac{1}{2} \theta^{2} \mathcal{O}_{F F}+\cdots$

Supersymmetrization

Dim-4 operators:

SM \longrightarrow MSSM (with one Higgs)

if both $y_{u} \& y_{d}$ are simultaneously present, a source of susy-breaking is needed

$$
\int d^{2} \theta y_{u} H Q U+\int d^{4} \theta y_{d} H^{\dagger} Q D \eta^{\dagger} \quad \eta \equiv \theta^{2}
$$

Dim-6 operators:

\longrightarrow F-term of non-chiral operators

$\begin{aligned} \text { e.g. } \mathcal{O}_{F F}=|\phi|^{2} F_{\mu \nu} F^{\mu \nu} \longrightarrow & \Phi^{\dagger} e^{V_{\Phi}} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha}=-\frac{1}{2} \theta^{2} \mathcal{O}_{F F}+\cdots \\ & \text { Break susy! } \int d^{4} \theta \Phi^{\dagger} e_{\Phi}^{V} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} \eta^{\dagger}\end{aligned}$

Supersymmetrization

Dim-4 operators:

SM \longrightarrow MSSM (with one Higgs)

if both $y_{\mathrm{u}} \& y_{\mathrm{d}}$ are simultaneously present, a source of susy-breaking is needed

$$
\int d^{2} \theta y_{u} H Q U+\int d^{4} \theta y_{d} H^{\dagger} Q D \eta^{\dagger} \quad \eta \stackrel{\downarrow}{\equiv} \theta^{2}
$$

Dim-6 operators:
Loop operators \longrightarrow F-term of non-chiral operators
$\begin{aligned} \text { e.g. } \mathcal{O}_{F F}=|\phi|^{2} F_{\mu \nu} F^{\mu \nu} \longrightarrow & \Phi^{\dagger} e^{V_{\Phi}} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha}=-\frac{1}{2} \theta^{2} \mathcal{O}_{F F}+\cdots \\ & \text { Break susy! } \int d^{4} \theta \Phi^{\dagger} e_{\Phi}^{V} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} \eta^{\dagger}\end{aligned}$
same for fermion dipoles (ffF) \& vector dipoles (F^{3})

Loop operators \longrightarrow F-term of non-chiral operators

$$
\begin{gathered}
\mathcal{O}_{F F}=|\phi|^{2} F_{\mu \nu} F^{\mu \nu} \longrightarrow \Phi^{\dagger} e^{V_{\Phi}} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha}=-\frac{1}{2} \theta^{2} \mathcal{O}_{F F}+\cdots \\
\mathcal{O}_{D}=\phi\left(q \sigma^{\mu \nu} u\right) F_{\mu \nu} \longrightarrow \Phi\left(Q \stackrel{\leftrightarrow}{\mathcal{D}}_{\alpha} U\right) \mathcal{W}^{\alpha}=-\theta^{2} \mathcal{O}_{D}+\cdots \\
\mathcal{O}_{3 F}=f^{a b c} F_{\mu}^{a \nu} F_{\nu}^{b \rho} F_{\rho}^{c \mu} \longrightarrow f^{a b c} \mathcal{D}^{\beta} \mathcal{W}^{a \alpha} \mathcal{W}_{\beta}^{b} \mathcal{W}_{\alpha}^{c}=i \theta^{2} \mathcal{O}_{3 F}+\cdots
\end{gathered}
$$

Supersymmetrization

Dim-4 operators:

$$
\text { SM } \longrightarrow \text { MSSM (with one Higgs) }
$$

if both $y_{u} \& y_{d}$ are simultaneously present, a source of susy-breaking is needed

$$
\int d^{2} \theta y_{u} H Q U+\int d^{4} \theta y_{d} H^{\dagger} Q D \eta^{\dagger} \quad \eta \stackrel{\downarrow}{\equiv} \theta^{2}
$$

Dim-6 operators:
Loop operators \longrightarrow F-term of non-chiral operators
e.g. $\quad \mathcal{O}_{F F}=|\phi|^{2} F_{\mu \nu} F^{\mu \nu}$
same for finton dipoles (ffF) \& vector dipoles (F^{3})

Supersymmetrization

Dim-4 operators:

$$
\text { SM } \longrightarrow \text { MSSM (with one Higgs) }
$$

if both $y_{u} \& y_{d}$ are simultaneously present, a source of susy-breaking is needed

$$
\int d^{2} \theta y_{u} H Q U+\int d^{4} \theta y_{d} H^{\dagger} Q D \eta^{\dagger} \quad \eta \stackrel{\downarrow}{\equiv} \theta^{2}
$$

Dim-6 operators:
Loop operators \longrightarrow F-term of non-chiral operators
e.g. $\quad \mathcal{O}_{F F}=|\phi|^{2} F_{\mu \nu} F^{\mu \nu}$
same for f - mon dipole an spurion (η) for power counting

Are there "tree" operators of the same class

(Susy protected: arising from F-term of non-chiral operators)?

$$
\begin{aligned}
\mathcal{O}_{y_{u}}=|\phi|^{2} \phi q u & \longrightarrow\left(\Phi^{\dagger} e^{V_{\Phi}} \Phi\right) \Phi Q U=\theta^{2} \mathcal{O}_{y_{u}}+\cdots \\
\mathcal{O}_{y_{u} y_{d}}=q u q d & \longrightarrow(Q U) \mathcal{D}^{2}(Q D)=-4 \theta^{2} \mathcal{O}_{y_{u} y_{d}}+\cdots
\end{aligned}
$$

the rest from susy-preserving term or with other spurion dependence

Groups of dim-6 operators

The SM EFT $\boldsymbol{\theta}_{y y}$ operators:

$$
\begin{aligned}
& \mathcal{O}_{y_{u} y_{d}}=\left(\bar{Q}_{L}^{r} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} d_{R}\right), \\
& \mathcal{O}_{y_{u} y_{d}}^{(8)}=\left(\bar{Q}_{L}^{r} T^{A} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} T^{A} d_{R}\right), \\
& \mathcal{O}_{y_{u} y_{e}}=\left(\bar{Q}_{L}^{r} u_{R}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} e_{R}\right), \\
& \mathcal{O}_{y_{u} y_{e}}^{\prime}=\left(\bar{Q}_{L}^{r \alpha} e_{R}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} u_{R}^{\alpha}\right),
\end{aligned}
$$

The SM EFT $\boldsymbol{O}_{\text {yy }}$ operators:

$$
\begin{aligned}
\mathcal{O}_{y_{u} y_{d}} & =\left(\bar{Q}_{L}^{r} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} d_{R}\right), \\
\mathcal{O}_{y_{u y}, y_{d}} & =\left(\bar{Q}_{L}^{r} T^{A} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} T^{A} d_{R}\right), \\
\mathcal{O}_{y_{u} y_{e}} & =\left(\bar{Q}_{L}^{r} u_{1}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} e_{e}\right), \\
\mathcal{O}_{y_{u} y_{e}} & =\left(\bar{Q}_{L}^{r} e_{R}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} u_{R}^{\alpha}\right),
\end{aligned}
$$

trivially cannot contribute

\downarrow
from integrating out a scalar with quantum numbers:
a) $(1,2)_{1 / 2}$
b) $(8,2)_{1 / 2}$
c) Leptoquark $(3,2)-7 / 6$

Holomorphy:

J.Elias-Miro, J.R.Espinosa, A.P. 16

Holomorphy:

$\frac{\partial \gamma_{c_{i}}}{\partial c_{j}^{*}}=0$

J.Elias-Miro, J.R.Espinosa, A.P. 16

Operators with η^{\dagger}
cannot generate those with η

Holomorphy:

$$
\frac{\partial \gamma_{c_{i}}}{\partial c_{j}^{*}}=0
$$

Operators with η^{\dagger}
cannot generate those with η

Exception: Extra spurions from (susy-breaking) dim-4 operators (must be $\propto y_{u} y_{d}$):

* Simple spurion analysis with supersymmetry explains the one-loop mixing pattern observed in the SM EFT

But the SM is not supersymmetric...

Are superpartners playing a crucial role in the zeros?
When in the susy limit we have zero mixing, one can just look at loops with either SM fields or super-partners: take the easiest!

$$
\left(i \phi^{*} \stackrel{\leftrightarrow}{D}_{\mu} \phi\right) \psi^{\dagger} \bar{\sigma}^{\mu} \psi
$$

But the SM is not supersymmetric...

Are superpartners playing a crucial role in the zeros?
When in the susy limit we have zero mixing, one can just look at loops with either SM fields or super-partners: take the easiest!

Not possible to give $|\phi|^{2} F_{\mu \nu}^{2}$
Similarly for the other cases

Holomorphy:

Again, we can either look at SM field loop or super-partner loop: The simplest: the diagrams with fermions, as you can follow the fermion-line to see if it changes direction. No contribution is found!

* Holomorphy is preserved beyond SUSY

This analysis can lead to prove:

$$
\begin{array}{ll}
\mathcal{O}_{+}=\left[2 \mathcal{O}_{r}+\mathcal{O}_{H}-\mathcal{O}_{T}\right]=D_{\mu}\left(H_{i}^{\dagger} H_{j}^{\dagger}\right) D^{\mu}\left(H^{i} H^{j}\right) & \mathcal{O}_{4 f}=\left(\bar{f} \gamma^{\mu} t^{a} f\right)\left(\bar{f} \gamma_{\mu} t^{a} f\right) \\
\mathcal{O}_{-}=\frac{1}{2}\left[\mathcal{O}_{H}-\mathcal{O}_{T}\right]=\left|H^{\dagger} D_{\mu} H\right|^{2} & \mathcal{O}_{H f}=i\left(H^{\dagger} t^{a}\right)_{i}\left(\bar{f} t^{a}\right)_{j} \gamma^{\mu} D_{\mu}\left(H^{i} f^{j}\right)
\end{array}
$$

SUSY embedding defines the EFT basis where the mixing of operators is the most minimal

From less to more "diagonal" basis at the one-loop:

Hawigara's bas	SILH basis	Warsaw's basis	'‘Susy'
K.Hagiwara, S.Ishihara,	G.Giudice, C.Grojean,	B.Grzadkowski, M.Iskrzynski,	
R.Szalapski, D.Zeppenfeld 92	A.Pomarol, R.Rattazzi 07	M.Misiak, J.Rosiek 10	

Best basis for the QCD Chiral lagrangian

Ordinary basis:

$$
\begin{aligned}
& \mathcal{L}_{\chi}=\frac{f^{2}}{4}\left\langle D^{\mu} U D_{\mu} U\right\rangle+\cdots \\
& \quad-i L_{9}\left\langle F_{R}^{\mu \nu} D_{\mu} U D_{\nu} U^{\dagger}+F_{L}^{\mu \nu} D_{\mu} U^{\dagger} D_{\nu} U\right\rangle+L_{10}\left\langle U^{\dagger} F_{R}^{\mu \nu} U F_{L \mu \nu}\right\rangle
\end{aligned}
$$

Better basis:
"Jj]" operator: $\left\langle\left(U^{\dagger} \overleftrightarrow{D_{\nu}} U\right) D_{\mu} F_{L}^{\mu \nu}+\left(U \overleftrightarrow{D_{\nu}} U^{\dagger}\right) D_{\mu} F_{R}^{\mu \nu}\right\rangle$
"loop" operator: $\left\langle U^{\dagger} F_{R}^{\mu \nu} U F_{L \mu \nu}\right\rangle$
\hookrightarrow embedded in $\left\langle\mathcal{U}^{\dagger} \mathcal{W}_{R}^{\alpha} \mathcal{U} \mathcal{W}_{\alpha L}\right\rangle \quad \mathcal{U} \equiv e^{i \Phi}$
Φ being a chiral superfield
Not renormalized by loop of pions:

$$
\gamma_{\text {loop }} \propto \gamma_{9}+\gamma_{10}=\frac{1}{64 \pi^{2}}-\frac{1}{64 \pi^{2}}=0
$$

Conclusions

- Dim-6 operator mixing is crucial to understand the impact of BSM on the SM
- Supersymmetry helps to group the operators that mainly mix among themselves
- Exercise: From the measurement $B \rightarrow \mu \mu, B \rightarrow X \gamma$, which deviations on TGC constrains each experiment? Can top anomalous-couplings affect S?
- Open questions: Beyond one-loop, relation with Spinor Helicity formalism (Cheung-Shen I5), ...

RESTRICTED AREA

MONITORED BY VIDEO CAMERA

	Operators	SSB spurion
	$\begin{gathered} \mathcal{O}_{+}=D_{\mu}\left(H_{i}^{\dagger} H_{j}^{\dagger}\right) D^{\mu}\left(H^{i} H^{j}\right) \\ \mathcal{O}_{4 f}=\left(\bar{f} \gamma^{\mu} t^{a} f\right)\left(\bar{f} \gamma_{\mu} t^{a} f\right) \\ \mathcal{O}_{H f}=i\left(H^{\dagger} t^{a}\right)_{i}\left(\bar{f} t^{a}\right)_{j} \gamma^{\mu} D_{\mu}\left(H^{i} f^{j}\right) \end{gathered}$	η^{0}
	$\mathcal{O}_{R}^{u d}=\left(i H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tilde{H}\right)\left(\bar{d}_{R} \gamma^{\mu} u_{R}\right)$	$\overline{\mathcal{D}}_{\dot{\alpha}} \eta^{\dagger}$
	$\mathcal{O}_{-}=\left\|H^{\dagger} D_{\mu} H\right\|^{2}$	$\left\|\overline{\mathcal{D}}_{\dot{\alpha}} \eta^{\dagger}\right\|^{2}$
	$\mathcal{O}_{6}=\|H\|^{6}$	$\|\eta\|^{2}$
	$\begin{gathered} \mathcal{O}_{y}=\|H\|^{2} H \bar{f}_{R} f_{L} \\ \mathcal{O}_{y y}=\left(\bar{f}_{R} t^{a} f_{L}\right)\left(\bar{f}_{R} t^{a} f_{L}\right) \end{gathered}$	η^{\dagger}
0 1	$\begin{gathered} \mathcal{O}_{D}=H^{\dagger} \bar{f}_{R} \sigma^{\mu \nu} t^{a} f_{L} F_{\mu \nu}^{a} \\ \mathcal{O}_{F F_{+}}=H^{\dagger} t^{a} t^{b} H F_{\mu \nu}^{a}\left(F^{b \mu \nu}-i \tilde{F}^{b \mu \nu}\right) \\ \mathcal{O}_{3 F_{+}}=f^{a b c} F_{\mu}^{a \nu} F_{\nu}^{b \rho}\left(F_{\rho}^{c \mu}-i \tilde{F}_{\rho}^{c \mu}\right) \end{gathered}$	

Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators. We also distinguish those that can arise from a supersymmetric D-term (η^{0}) from those that break supersymmetry either by an spurion $\overline{\mathcal{D}}_{\dot{\alpha}} \eta^{\dagger}, \eta^{\dagger},\left|\overline{\mathcal{D}}_{\dot{\alpha}} \eta^{\dagger}\right|^{2}$ or $|\eta|^{2}$. We denote by $F_{\mu \nu}^{a}$ ($\tilde{F}_{\mu \nu}^{a}$) any SM gauge (dual) field-strength. The t^{a} matrices include the $U(1)_{Y}, S U(2)_{L}$ and $S U(3)_{c}$ generators, depending on the quantum numbers of the fields involved. Fermion operators are written schematically with $f=\left\{Q_{L}, u_{R}, d_{R}, L_{L}, e_{R}\right\}$. Right: For each operator in the left column, we provide the super-operator at which it is embedded.

Different Basis

From SILH by using:

$$
\begin{aligned}
& \mathcal{O}_{B}=\mathcal{O}_{H B}+\frac{1}{4} \mathcal{O}_{W B}+\frac{1}{4} \mathcal{O}_{B B}, \\
& \mathcal{O}_{W}=\mathcal{O}_{H W}+\frac{1}{4} \mathcal{O}_{W W}+\frac{1}{4} \mathcal{O}_{W B}
\end{aligned}
$$

Hawigara etal. basis: $\mathcal{O}_{W}, \mathcal{O}_{B} \rightarrow \mathcal{O}_{W W}, \mathcal{O}_{W B}$
Grzadkowski etal. basis: $\mathcal{O}_{W}, \mathcal{O}_{B}, \mathcal{O}_{H W}, \mathcal{O}_{H B} \rightarrow \mathcal{O}_{W W}, \mathcal{O}_{W B}, \mathcal{O}_{L}^{(3)}, \mathcal{O}_{L}$
Using also EoM: $\quad \begin{aligned} c_{W} \mathcal{O}_{W} & \leftrightarrow c_{W} \frac{g^{2}}{g_{*}^{2}}\left[-\frac{3}{2} \mathcal{O}_{H}+2 \mathcal{O}_{6}+\frac{1}{2} \mathcal{O}_{y}+\frac{1}{4} \sum_{f} \mathcal{O}_{L}^{(3) f}\right], \\ c_{B} \mathcal{O}_{B} & \leftrightarrow c_{B} \frac{g^{\prime 2}}{g_{*}^{2}}\left[-\frac{1}{2} \mathcal{O}_{T}+\frac{1}{2} \sum_{f}\left(Y_{L}^{f} \mathcal{O}_{L}^{f}+Y_{R}^{f} \mathcal{O}_{R}^{f}\right)\right],\end{aligned}$

Affecting well-measured quantities by operator mixing under the RG flow:

J. Elias-Miro, J.R. Espinosa, E. Masso, A.P. I3

$$
\begin{align*}
16 \pi^{2} \gamma_{c_{T}}= & \left(4 N_{c} y_{t}^{2}-9 g^{2}-3 g^{\prime 2}\right) c_{T}+\frac{3}{2} g^{\prime 2} c_{H}+4 N_{c} y_{t}^{2}\left(c_{R}-c_{L}\right) \tag{65}\\
16 \pi^{2} \gamma_{c_{R}}= & {\left[2\left(4+N_{c}\right) y_{t}^{2}-9 g^{2}-\frac{8}{3} g^{\prime 2}\right] c_{R}+\frac{8}{9} g^{\prime 2}\left[\left(N_{c}+1\right) c_{R R}+N_{c} c_{L R}\right] } \\
& +2 y_{t}^{2}\left[\frac{1}{4} c_{H}-c_{L}+N_{c} c_{L R}-2\left(N_{c}+1\right) c_{R R}\right] \tag{66}\\
16 \pi^{2} \gamma_{c_{L}}= & {\left[2\left(2+N_{c}\right) y_{t}^{2}-9 g^{2}-\frac{8}{3} g^{\prime 2}\right] c_{L}+\frac{2}{9} g^{\prime 2}\left[\left(2 N_{c}+1\right) c_{L L}+C_{F} c_{L L}^{(8)}+\frac{N_{c}}{2} c_{L R}\right] } \\
& +y_{t}^{2}\left\{-\frac{1}{4} c_{H}-c_{R}-9 c_{L}^{(3)}-2 N_{c} c_{L R}+4 N_{c} c_{L L}+2\left[c_{L L}+C_{F} c_{L L}^{(8)}\right]\right\} \tag{67}\\
16 \pi^{2} \gamma_{c_{L}(3)}= & {\left[2\left(1+N_{c}\right) y_{t}^{2}-\frac{17}{3} g^{2}-3 g^{\prime 2}\right] c_{L}^{(3)}+\frac{2}{3} g^{2}\left[c_{L L}+C_{F} c_{L L}^{(8)}\right] } \\
& +y_{t}^{2}\left\{\frac{1}{4} c_{H}-3 c_{L}-2\left[c_{L L}+C_{F} c_{L L}^{(8)}\right]\right\} \tag{68}\\
16 \pi^{2} \gamma_{c_{W}}= & \frac{1}{3} g_{H}^{2}\left[-\left(c_{H}+c_{T}\right)+16 N_{c} c_{L}^{(3)}\right], \tag{69}\\
16 \pi^{2} \gamma_{c_{B}}= & \frac{1}{3} g_{H}^{2}\left[-\left(c_{H}+5 c_{T}\right)+\frac{8}{3} N_{c}\left(2 c_{R}+c_{L}\right)\right] . \tag{70}
\end{align*}
$$

T: $\quad \Delta c_{T}=-0.0030 c_{H}+0.16\left(c_{L}-c_{R}\right) \lesssim 0.002 / \xi$,
S:
$\Delta\left(c_{B}+c_{W}\right)=0.010 c_{H}-0.083 c_{R}-0.041 c_{L}-0.25 c_{L}^{(3)} \lesssim 0.003 \Lambda^{2} / M_{w}^{2}$,
Zbb:
$\Delta\left[c_{L}+c_{L}^{(3)}\right]=0.014 c_{R}-0.031 c_{L}+0.057 c_{L}^{(3)}-0.17 c_{L L}-0.0064 c_{L L}^{(8)}+0.081 c_{L R} \lesssim 0.002 / \xi$.
hүу: $\quad \kappa_{\gamma \gamma}\left(m_{h}\right)=\kappa_{\gamma \gamma}(\Lambda)-\gamma_{\gamma \gamma} \log \frac{\Lambda}{m_{h}}$

$$
\begin{aligned}
& 16 \pi^{2} \gamma_{\gamma \gamma}=\left[6 y_{t}^{2}-\frac{3}{2}\left(3 g^{2}+g^{\prime 2}\right)+12 \lambda\right] \kappa_{B B}+\left[\frac{3}{2} g^{2}-2 \lambda\right]\left(\kappa_{H W}+\kappa_{H B}\right) \\
& \text { hүZ: } \\
& 16 \pi^{2} \gamma_{\gamma Z}=\kappa_{\gamma Z}\left[6 y_{t}^{2}+12 \lambda-\frac{7}{2} g^{2}-\frac{1}{2} g^{\prime 2}\right]+\left(\kappa_{H W}+\kappa_{H B}\right)\left[2 g^{2}-3 e^{2}-2 \lambda \cos \left(2 \theta_{w}\right)\right]
\end{aligned}
$$

dominant in certain scenarios $K_{в в} \approx 0$ \& $K_{н ш}-$ К $_{\text {нв }} \approx 0$ at Λ
e.g. H as $\mathrm{PGB}: \cdot \mathrm{H} \rightarrow \mathrm{H}+\mathrm{c}$ implies $\mathrm{K}_{\text {вв }}=0$

- Left-right symmetry implies Кнш=Кнв

Prediction: $\frac{\delta \Gamma(h \rightarrow \gamma \gamma)}{\Gamma(h \rightarrow \gamma \gamma)} \simeq 1.5 \frac{\delta \Gamma(h \rightarrow \gamma Z)}{\Gamma(h \rightarrow \gamma Z)}$

- Separation of operators depending on Tree-level vs Loop origin

can arise from integrating out massive states sinin $=0,1 / 2.1$

Other interesting one-loop effects:

J. Elias-Miro, J.R. Espinosa, E. Masso,A.P. I3

Breaking of universality:

$$
\begin{aligned}
& c_{y_{t}}\left(m_{h}\right)=c_{y_{b}}\left(m_{h}\right)\left(1-\frac{8 y_{t}^{2}}{16 \pi^{2}} \log \frac{\Lambda}{m_{h}}\right)-\frac{3 y_{t}^{2} c_{H}}{16 \pi^{2}} \log \frac{\Lambda}{m_{h}} \simeq 0.88 c_{y_{b}}\left(m_{h}\right)-0.05 c_{H} \\
& c_{y_{b}}\left(m_{h}\right)=c_{y_{\tau}}\left(m_{h}\right)\left(1-\frac{y_{t}^{2}}{16 \pi^{2}} \log \frac{\Lambda}{m_{h}}\right) \simeq 0.98 c_{y_{\tau}}\left(m_{h}\right), \quad \Lambda=2 \mathrm{TeV}
\end{aligned}
$$

MSSM:

Other interesting one-loop effects:

J. Elias-Miro, J.R. Espinosa, E. Masso, A.P. I3

Breaking of universality:

$$
\begin{aligned}
& c_{y_{t}}\left(m_{h}\right)=c_{y_{b}}\left(m_{h}\right)\left(1-\frac{8 y_{t}^{2}}{16 \pi^{2}} \log \frac{\Lambda}{m_{h}}\right)-\frac{3 y_{t}^{2} c_{H}}{16 \pi^{2}} \log \frac{\Lambda}{m_{h}} \simeq 0.88 c_{y_{b}}\left(m_{h}\right)-0.05 c_{H}, \\
& c_{y_{b}}\left(m_{h}\right)=c_{y_{\tau}}\left(m_{h}\right)\left(1-\frac{y_{t}^{2}}{16 \pi^{2}} \log \frac{\Lambda}{m_{h}}\right) \simeq 0.98 c_{y_{\tau}}\left(m_{h}\right), \\
& \Lambda=2 \mathrm{TeV},
\end{aligned}
$$

MSSM:

