
On the quantum structure  
of indirect BSM effects

Alex Pomarol, CERN & UAB (Barcelona)



Purpose of this talk:
Little story about zeros…



Purpose of this talk:
Little story about zeros…

…on certain one-loop quantum corrections in EFT’s 
that explicit calculations show that cancel for no “reason”



Purpose of this talk:

Interest?

Little story about zeros…
…on certain one-loop quantum corrections in EFT’s 

that explicit calculations show that cancel for no “reason”



…on certain one-loop quantum corrections in EFT’s 
that explicit calculations show that cancel for no “reason”

Purpose of this talk:

Interest?
The SM is an EFT with higher-dim operators (what we call BSM!) 
At the quantum-level operator mix: 

● Effects can be important in the future to unravel the UV model

● To understand these mixings is crucial in order to see how 
   restrictions can arise from well-measured quantities:  S, T, hγγ, …

!e.g.       HZZ coupling restricted by S

Little story about zeros…



…on certain one-loop quantum corrections in EFT’s 
that explicit calculations show that cancel for no “reason”

Purpose of this talk:

Interest?
The SM is an EFT with higher-dim operators (what we call BSM!) 
At the quantum-level operator mix: 

We will see that an interesting set of one-loop non-renormalization 
results can be derived (the choice of the correct basis is crucial) 

● Effects can be important in the future to unravel the UV model

● To understand these mixings is crucial in order to see how 
   restrictions can arise from well-measured quantities:  S, T, hγγ, …

!e.g.       HZZ coupling restricted by S

Little story about zeros…



Under the assumption that the 
new-physics scale Λ is heavier than MW , 

we can perform an expansion in derivatives and SM fields

1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
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◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states
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(assuming lepton & baryon number)

SM leading 
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from the SM

EFT captures the (indirect) impact of BSMs
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Due to the log, dominant effect from running!!
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One-loop mixing of dim-6 operators



Tree-level One-loop induced

Otree O
loop

RG evolution

Example 1:   SM after integrating out W/Z:

= s̄L�
µµbRFµ⌫= (c̄L�

µbL)(s̄L�
µcL)

B.Grinstein, R..Springer and M.Wise 90

no explanation of the reason of why this happens!

No mixing between “tree” and “loop” operators 
at the one-loop level

One-loop mixing of dim-6 operators



Tree-level One-loop induced

Otree O
loop

Example 2:   Hγγ from BSMs (SUSY/SILH)

= |H|2Bµ⌫Bµ⌫= (@µ|H|2)2

 affects hVV  affects hγγ

One-loop mixing of dim-6 operators



Tree-level One-loop induced

Otree O
loop

RG evolution

Example 2:   Hγγ from BSMs (SUSY/SILH)

= |H|2Bµ⌫Bµ⌫

Otherwise the analysis of Higgs couplings from ATLAS/CMS 
(the (in)famous “kappas”) would have had 

a very different interpretation in BSMs!

= (@µ|H|2)2

No mixing between “tree” and “loop” operators 
at the one-loop level

One-loop mixing of dim-6 operators



Pattern of operator mixing I

defined as arising 
from renormalizable BSMs

“Loop” operators
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Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators.

We also distinguish those that can arise from a supersymmetric D-term (⌘0
) from those that break

supersymmetry either by an spurion D̄↵̇⌘†
, ⌘†

, |D̄↵̇⌘†|2 or |⌘|2. We denote by F a
µ⌫ (F̃ a

µ⌫) any SM gauge

(dual) field-strength. The ta matrices include the U(1)Y , SU(2)L and SU(3)c generators, depending

on the quantum numbers of the fields involved. Fermion operators are written schematically with

f = {QL, uR, dR, LL, eR}. Right: For each operator in the left column, we provide the super-operator

at which it is embedded.

then classify them according to their embedding into a supersymmetric model, depending

on whether they can arise from a super-operator with no SSB spurion (⌘0), which therefore

preserves supersymmetry, or whether they need SSB spurions, either D̄↵̇⌘†, ⌘†, |D̄↵̇⌘†|2 or ⌘⌘†

(that selects the ✓̄✓2, ✓2, ✓̄✓ and ✓̄0✓0 component of the super-operator, respectively), or their

Hermitian-conjugates. The supersymmetric embedding naturally selects a SM basis that we

present in Table 1. In this basis, the non-renormalization results between the di↵erent classes

of operators discussed in the previous section will also hold.

The operator basis of Table 1 is close to the basis defined in Ref. [11]. One significant

di↵erence is our choice of the only-Higgs JJ-operators, that we take to be O± and O6, and

of the Higgs-fermion JJ-operator OHf . As in the U(1) case, this choice is motivated by the

embedding of operators into super-field operators, as we have just mentioned (see more details

below). Concerning the classification of 4-fermion operators, our O4f operators correspond
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di↵erence is our choice of the only-Higgs JJ-operators, that we take to be O± and O6, and
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Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators.

We also distinguish those that can arise from a supersymmetric D-term (⌘0
) from those that break

supersymmetry either by an spurion D̄↵̇⌘†
, ⌘†

, |D̄↵̇⌘†|2 or |⌘|2. We denote by F a
µ⌫ (F̃ a

µ⌫) any SM gauge

(dual) field-strength. The ta matrices include the U(1)Y , SU(2)L and SU(3)c generators, depending

on the quantum numbers of the fields involved. Fermion operators are written schematically with

f = {QL, uR, dR, LL, eR}. Right: For each operator in the left column, we provide the super-operator

at which it is embedded.

then classify them according to their embedding into a supersymmetric model, depending

on whether they can arise from a super-operator with no SSB spurion (⌘0), which therefore

preserves supersymmetry, or whether they need SSB spurions, either D̄↵̇⌘†, ⌘†, |D̄↵̇⌘†|2 or ⌘⌘†

(that selects the ✓̄✓2, ✓2, ✓̄✓ and ✓̄0✓0 component of the super-operator, respectively), or their

Hermitian-conjugates. The supersymmetric embedding naturally selects a SM basis that we

present in Table 1. In this basis, the non-renormalization results between the di↵erent classes

of operators discussed in the previous section will also hold.

The operator basis of Table 1 is close to the basis defined in Ref. [11]. One significant

di↵erence is our choice of the only-Higgs JJ-operators, that we take to be O± and O6, and

of the Higgs-fermion JJ-operator OHf . As in the U(1) case, this choice is motivated by the

embedding of operators into super-field operators, as we have just mentioned (see more details

below). Concerning the classification of 4-fermion operators, our O4f operators correspond
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⌫ (F c µ
⇢ � iF̃ c µ

⇢ ) fabcD�Wa ↵Wb
�Wc

↵

Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators.

We also distinguish those that can arise from a supersymmetric D-term (⌘0
) from those that break

supersymmetry either by an spurion D̄↵̇⌘†
, ⌘†

, |D̄↵̇⌘†|2 or |⌘|2. We denote by F a
µ⌫ (F̃ a

µ⌫) any SM gauge

(dual) field-strength. The ta matrices include the U(1)Y , SU(2)L and SU(3)c generators, depending

on the quantum numbers of the fields involved. Fermion operators are written schematically with

f = {QL, uR, dR, LL, eR}. Right: For each operator in the left column, we provide the super-operator

at which it is embedded.

then classify them according to their embedding into a supersymmetric model, depending

on whether they can arise from a super-operator with no SSB spurion (⌘0), which therefore

preserves supersymmetry, or whether they need SSB spurions, either D̄↵̇⌘†, ⌘†, |D̄↵̇⌘†|2 or ⌘⌘†

(that selects the ✓̄✓2, ✓2, ✓̄✓ and ✓̄0✓0 component of the super-operator, respectively), or their

Hermitian-conjugates. The supersymmetric embedding naturally selects a SM basis that we

present in Table 1. In this basis, the non-renormalization results between the di↵erent classes

of operators discussed in the previous section will also hold.

The operator basis of Table 1 is close to the basis defined in Ref. [11]. One significant

di↵erence is our choice of the only-Higgs JJ-operators, that we take to be O± and O6, and

of the Higgs-fermion JJ-operator OHf . As in the U(1) case, this choice is motivated by the

embedding of operators into super-field operators, as we have just mentioned (see more details

below). Concerning the classification of 4-fermion operators, our O4f operators correspond
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Holomorphy:

In the basis:

Concerning loop-operators, we have the new operators O3F = fabcF a ⌫
µ F b ⇢

⌫ F c µ
⇢ and O3F̃ =

fabcF a ⌫
µ F b ⇢

⌫ F̃ c µ
⇢ , possible now for the non-Abelian groups SU(2)L and SU(3)c, which again

can only arise from a ✓2-term:

fabcD�Wa ↵Wb
�Wc

↵ = i✓2O3F+ + · · · , (31)

where we have defined O3F± = O3F ⌥ iO3F̃ . To contain O3F+ , Eq. (31) must then appear in

the ESFT multiplying the SSB-spurion ⌘†, as the rest of loop-operators.

For the loop-operators OFF = H†tatbHF a
µ⌫F

b µ⌫ and their CP-violating counterparts,

OFF̃ = H†tatbHF a
µ⌫F̃

b µ⌫ , we can proceed as above and embed them together in the super-

operators

(H†tatbeVHH)Wa ↵Wb
↵ = �1

2
✓2OFF+ + · · · . (32)

where OFF± = OFF ⌥ iOFF̃ .

3.1 One-loop operator Mixing

It is straightforward to extend the U(1) analysis of section 2 to the operators of Table 1 to show

that, with the exception of Oyy, the JJ-operators do not renormalize the loop-operators. The

only important di↵erences arise from the new type of JJ-operators, Oud
R and O�. Concerning

Oud
R , it is very simple to see that this operator cannot renormalize loop-operators (from a loop

of quarks one obtains operators with the Lorentz structure (iH̃†DµH); while the Higgs-loop

gives operators containing d̄R�µuR, and none of them can be loop-operators). Concerning

O�, we only need to worry about the renormalization of OFF . This can be studied directly in

the ESFT, as superpartner contributions from JJ-operator to loop-operators can be shown to

trivially vanish. In the ESFT, the operator O� is embedded in a super-operator containing the

SSB-spurion |D↵⌘|2. This guarantees the absence of renormalization of loop-super-operators

as these latter contain the SSB-spurion ⌘†. Besides this direct contribution, there is an indirect

route by which O� could renormalize OFF : by generating OHF = i(DµH)†ta(D⌫H)F a
µ⌫ which,

via integration by parts, can give OFF . The operator OHF can come from the super-operator

ÕHF = D̄↵̇⌘†D̄↵̇H†eVHD↵H W↵ that in principle is not protected by a simple SSB-spurion

analysis from being generated by super-operators / |D↵⌘|2. Nevertheless, contributions to

ÕHF must come from Eq. (29) with derivatives acting on the two Higgs superfields external to

the loop, and due to the derivative contractions, this can only give D̄↵̇⌘†D↵⌘D̄↵̇H†D↵HD�W�;

by the use of the EOM of V , however, this gives a JJ-super-operator and not ÕHF .

In the SM case, the exceptional Oyy operators (than can in principle renormalize the dipole

operators) are (following the notation in [3])

Oyuyd = (Q̄r
LuR)✏rs(Q̄

s
LdR) ,

O(8)
yuyd

= (Q̄r
LTAuR)✏rs(Q̄

s
LTAdR) ,

Oyuye = (Q̄r
LuR)✏rs(L̄

s
LeR) ,

O0
yuye = (Q̄r ↵

L eR)✏rs(L̄
s
Lu↵

R) , (33)
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Concerning loop-operators, we have the new operators O3F = fabcF a ⌫
µ F b ⇢

⌫ F c µ
⇢ and O3F̃ =

fabcF a ⌫
µ F b ⇢

⌫ F̃ c µ
⇢ , possible now for the non-Abelian groups SU(2)L and SU(3)c, which again

can only arise from a ✓2-term:

fabcD�Wa ↵Wb
�Wc

↵ = i✓2O3F+ + · · · , (31)

where we have defined O3F± = O3F ⌥ iO3F̃ . To contain O3F+ , Eq. (31) must then appear in

the ESFT multiplying the SSB-spurion ⌘†, as the rest of loop-operators.

For the loop-operators OFF = H†tatbHF a
µ⌫F

b µ⌫ and their CP-violating counterparts,

OFF̃ = H†tatbHF a
µ⌫F̃

b µ⌫ , we can proceed as above and embed them together in the super-

operators

(H†tatbeVHH)Wa ↵Wb
↵ = �1

2
✓2OFF+ + · · · . (32)

where OFF± = OFF ⌥ iOFF̃ .

3.1 One-loop operator Mixing

It is straightforward to extend the U(1) analysis of section 2 to the operators of Table 1 to show

that, with the exception of Oyy, the JJ-operators do not renormalize the loop-operators. The

only important di↵erences arise from the new type of JJ-operators, Oud
R and O�. Concerning

Oud
R , it is very simple to see that this operator cannot renormalize loop-operators (from a loop

of quarks one obtains operators with the Lorentz structure (iH̃†DµH); while the Higgs-loop

gives operators containing d̄R�µuR, and none of them can be loop-operators). Concerning

O�, we only need to worry about the renormalization of OFF . This can be studied directly in

the ESFT, as superpartner contributions from JJ-operator to loop-operators can be shown to

trivially vanish. In the ESFT, the operator O� is embedded in a super-operator containing the

SSB-spurion |D↵⌘|2. This guarantees the absence of renormalization of loop-super-operators

as these latter contain the SSB-spurion ⌘†. Besides this direct contribution, there is an indirect

route by which O� could renormalize OFF : by generating OHF = i(DµH)†ta(D⌫H)F a
µ⌫ which,

via integration by parts, can give OFF . The operator OHF can come from the super-operator

ÕHF = D̄↵̇⌘†D̄↵̇H†eVHD↵H W↵ that in principle is not protected by a simple SSB-spurion

analysis from being generated by super-operators / |D↵⌘|2. Nevertheless, contributions to

ÕHF must come from Eq. (29) with derivatives acting on the two Higgs superfields external to

the loop, and due to the derivative contractions, this can only give D̄↵̇⌘†D↵⌘D̄↵̇H†D↵HD�W�;

by the use of the EOM of V , however, this gives a JJ-super-operator and not ÕHF .

In the SM case, the exceptional Oyy operators (than can in principle renormalize the dipole

operators) are (following the notation in [3])

Oyuyd = (Q̄r
LuR)✏rs(Q̄

s
LdR) ,

O(8)
yuyd

= (Q̄r
LTAuR)✏rs(Q̄

s
LTAdR) ,

Oyuye = (Q̄r
LuR)✏rs(L̄

s
LeR) ,

O0
yuye = (Q̄r ↵

L eR)✏rs(L̄
s
Lu↵

R) , (33)
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The one-loop anomalous dimensions of the complex Wilson-coefficients
 do not depend on their complex-conjugates: 
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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Only one exception to this rule was found from explicit calculations

Concerning loop-operators, we have the new operators O3F = fabcF a ⌫
µ F b ⇢

⌫ F c µ
⇢ and O3F̃ =

fabcF a ⌫
µ F b ⇢

⌫ F̃ c µ
⇢ , possible now for the non-Abelian groups SU(2)L and SU(3)c, which again

can only arise from a ✓2-term:

fabcD�Wa ↵Wb
�Wc

↵ = i✓2O3F+ + · · · , (31)

where we have defined O3F± = O3F ⌥ iO3F̃ . To contain O3F+ , Eq. (31) must then appear in

the ESFT multiplying the SSB-spurion ⌘†, as the rest of loop-operators.

For the loop-operators OFF = H†tatbHF a
µ⌫F

b µ⌫ and their CP-violating counterparts,

OFF̃ = H†tatbHF a
µ⌫F̃

b µ⌫ , we can proceed as above and embed them together in the super-

operators

(H†tatbeVHH)Wa ↵Wb
↵ = �1

2
✓2OFF+ + · · · . (32)

where OFF± = OFF ⌥ iOFF̃ .

3.1 One-loop operator Mixing

It is straightforward to extend the U(1) analysis of section 2 to the operators of Table 1 to show

that, with the exception of Oyy, the JJ-operators do not renormalize the loop-operators. The

only important di↵erences arise from the new type of JJ-operators, Oud
R and O�. Concerning

Oud
R , it is very simple to see that this operator cannot renormalize loop-operators (from a loop

of quarks one obtains operators with the Lorentz structure (iH̃†DµH); while the Higgs-loop

gives operators containing d̄R�µuR, and none of them can be loop-operators). Concerning

O�, we only need to worry about the renormalization of OFF . This can be studied directly in

the ESFT, as superpartner contributions from JJ-operator to loop-operators can be shown to

trivially vanish. In the ESFT, the operator O� is embedded in a super-operator containing the

SSB-spurion |D↵⌘|2. This guarantees the absence of renormalization of loop-super-operators

as these latter contain the SSB-spurion ⌘†. Besides this direct contribution, there is an indirect

route by which O� could renormalize OFF : by generating OHF = i(DµH)†ta(D⌫H)F a
µ⌫ which,

via integration by parts, can give OFF . The operator OHF can come from the super-operator

ÕHF = D̄↵̇⌘†D̄↵̇H†eVHD↵H W↵ that in principle is not protected by a simple SSB-spurion

analysis from being generated by super-operators / |D↵⌘|2. Nevertheless, contributions to

ÕHF must come from Eq. (29) with derivatives acting on the two Higgs superfields external to

the loop, and due to the derivative contractions, this can only give D̄↵̇⌘†D↵⌘D̄↵̇H†D↵HD�W�;

by the use of the EOM of V , however, this gives a JJ-super-operator and not ÕHF .

In the SM case, the exceptional Oyy operators (than can in principle renormalize the dipole

operators) are (following the notation in [3])

Oyuyd = (Q̄r
LuR)✏rs(Q̄

s
LdR) ,

O(8)
yuyd

= (Q̄r
LTAuR)✏rs(Q̄

s
LTAdR) ,

Oyuye = (Q̄r
LuR)✏rs(L̄

s
LeR) ,

O0
yuye = (Q̄r ↵

L eR)✏rs(L̄
s
Lu↵

R) , (33)
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Concerning loop-operators, we have the new operators O3F = fabcF a ⌫
µ F b ⇢

⌫ F c µ
⇢ and O3F̃ =

fabcF a ⌫
µ F b ⇢

⌫ F̃ c µ
⇢ , possible now for the non-Abelian groups SU(2)L and SU(3)c, which again

can only arise from a ✓2-term:

fabcD�Wa ↵Wb
�Wc

↵ = i✓2O3F+ + · · · , (31)

where we have defined O3F± = O3F ⌥ iO3F̃ . To contain O3F+ , Eq. (31) must then appear in

the ESFT multiplying the SSB-spurion ⌘†, as the rest of loop-operators.

For the loop-operators OFF = H†tatbHF a
µ⌫F

b µ⌫ and their CP-violating counterparts,

OFF̃ = H†tatbHF a
µ⌫F̃

b µ⌫ , we can proceed as above and embed them together in the super-

operators

(H†tatbeVHH)Wa ↵Wb
↵ = �1

2
✓2OFF+ + · · · . (32)

where OFF± = OFF ⌥ iOFF̃ .

3.1 One-loop operator Mixing

It is straightforward to extend the U(1) analysis of section 2 to the operators of Table 1 to show

that, with the exception of Oyy, the JJ-operators do not renormalize the loop-operators. The

only important di↵erences arise from the new type of JJ-operators, Oud
R and O�. Concerning

Oud
R , it is very simple to see that this operator cannot renormalize loop-operators (from a loop

of quarks one obtains operators with the Lorentz structure (iH̃†DµH); while the Higgs-loop

gives operators containing d̄R�µuR, and none of them can be loop-operators). Concerning

O�, we only need to worry about the renormalization of OFF . This can be studied directly in

the ESFT, as superpartner contributions from JJ-operator to loop-operators can be shown to

trivially vanish. In the ESFT, the operator O� is embedded in a super-operator containing the

SSB-spurion |D↵⌘|2. This guarantees the absence of renormalization of loop-super-operators

as these latter contain the SSB-spurion ⌘†. Besides this direct contribution, there is an indirect

route by which O� could renormalize OFF : by generating OHF = i(DµH)†ta(D⌫H)F a
µ⌫ which,

via integration by parts, can give OFF . The operator OHF can come from the super-operator

ÕHF = D̄↵̇⌘†D̄↵̇H†eVHD↵H W↵ that in principle is not protected by a simple SSB-spurion

analysis from being generated by super-operators / |D↵⌘|2. Nevertheless, contributions to

ÕHF must come from Eq. (29) with derivatives acting on the two Higgs superfields external to

the loop, and due to the derivative contractions, this can only give D̄↵̇⌘†D↵⌘D̄↵̇H†D↵HD�W�;

by the use of the EOM of V , however, this gives a JJ-super-operator and not ÕHF .

In the SM case, the exceptional Oyy operators (than can in principle renormalize the dipole

operators) are (following the notation in [3])

Oyuyd = (Q̄r
LuR)✏rs(Q̄

s
LdR) ,

O(8)
yuyd

= (Q̄r
LTAuR)✏rs(Q̄

s
LTAdR) ,

Oyuye = (Q̄r
LuR)✏rs(L̄

s
LeR) ,

O0
yuye = (Q̄r ↵

L eR)✏rs(L̄
s
Lu↵

R) , (33)
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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(1 out of 36 !)



Pattern of operator mixing I+II

☛ suggests a possible explanation using supersymmetry:

Supersymmetry can be an useful tool even  
for non-supersymmetric theories

e.g. : QCD n-gluon scattering at tree-level:

Same as in Susy-QCD as gauginos appear at the loop-level !

☛ easy to prove:

➥ for an alternative approach, 
see Cheung-Shen 15 

using Spinor Helicity formalism

J.Elias-Miro, J.R.Espinosa, A.P. 15

as it was shown by long explicit calculations!
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Figure 1: A potential contribution from O�q to OD.

that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,

it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in

the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only

give operators containing the Lorentz structure f †f or qu that cannot be completed to give

a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of

O�f , the absence of renormalization of the dipole operator, as for example from diagrams

like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz

structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form

a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from

Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure

to generate OFF , while the second term gives an interaction with too many fields if we use

the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the

dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how

the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the

chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the

✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · . (16)

Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms

and are then supersymmetry-preserving:

�

�†eV��
� �

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
� �

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)

and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral

superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · . (18)

7

check what are the e↵ects of superpartner loops. From (see Appendix)

Z

d4✓⌘†(�†eV��)W↵W↵ + h.c. = �OFF +

✓

2i|�|2 ��µ@µ�
† � 1p

2
�⇤��µ⌫ Fµ⌫ + h.c.

◆

+ . . . ,

(11)

where �µ⌫ = i
2(�

µ�̄⌫ ��⌫ �̄µ), it is clear that a gaugino/Higgsino loop cannot give a contribu-

tion to Or: the second term of Eq. (11), after using the EOM for the gaugino, �µ@µ�† = g� †,

can only give a contribution proportional to |�|2�; while the contribution from the third term

must be proportional to �⇤Fµ⌫ . None of them have the right Lorentz structure to contribute to

Or. Therefore, we conclude that the loop-operator OFF can only renormalize at the one-loop

level the JJ-operators that break supersymmetry, like O6, and not those that can be embedded

in a D-term, like Or.

2.1 Including fermions

Let us extend the previous EFT to include two charged Weyl fermions, q and u, with U(1)-

charges Qq and Qu, such that Q� +Qq +Qu = 0. We have now extra terms in the Lagrangian

(respecting CP-invariance): 6

�L4 = iq†�̄µDµq + iu†�̄µDµu + yu (�qu + h.c.) ,

�L6 =
1

⇤2
[c�fO�f + c4fO4f + cyu (Oyu + h.c.) + cD (OD + h.c.)] , (12)

where f = q, u. The JJ-operators are

Oyu = |�|2�qu , O�f = i(�⇤f †)�̄µDµ(f�) , O4f = (f †�̄µf)(f †�̄µf) . (13)

Instead of O�f , we could have chosen the more common JJ-operator i(�⇤
$
Dµ�)(f †�̄µf) for

our basis. Both are related by

O�f =
i

2
(�⇤

$
Dµ�)(f †�̄µf) +

i

2
|�|2f †�̄µ

$
Dµf , (14)

where the last term could be eliminated by the use of the EOM. Our motivation for keeping

O�f in our basis is that, as we will see later, it is in one-to-one correspondence with a

supersymmetric D-term. The only additional loop-operator for a U(1) model with fermions

is the dipole operator

OD = �(q�µ⌫u)Fµ⌫ . (15)

Let us consider the operator mixing in this extended EFT. We will discuss all cases except

those for which no diagram exists at the one-loop level. As we said before, in principle, many

vanishing entries of the anomalous-dimensions can be simply understood from inspection of

the Lorentz structure of the di↵erent vertices. For example, it is relatively simple to check

6Similar remarks to those made in footnote 3 about anomalies apply to this extended model.
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Concerning loop-operators, we have the new operators O3F = fabcF a ⌫
µ F b ⇢

⌫ F c µ
⇢ and O3F̃ =

fabcF a ⌫
µ F b ⇢

⌫ F̃ c µ
⇢ , possible now for the non-Abelian groups SU(2)L and SU(3)c, which again

can only arise from a ✓2-term:

fabcD�Wa ↵Wb
�Wc

↵ = i✓2O3F+ + · · · , (31)

where we have defined O3F± = O3F ⌥ iO3F̃ . To contain O3F+ , Eq. (31) must then appear in

the ESFT multiplying the SSB-spurion ⌘†, as the rest of loop-operators.

For the loop-operators OFF = H†tatbHF a
µ⌫F

b µ⌫ and their CP-violating counterparts,

OFF̃ = H†tatbHF a
µ⌫F̃

b µ⌫ , we can proceed as above and embed them together in the super-

operators

(H†tatbeVHH)Wa ↵Wb
↵ = �1

2
✓2OFF+ + · · · . (32)

where OFF± = OFF ⌥ iOFF̃ .

3.1 One-loop operator Mixing

It is straightforward to extend the U(1) analysis of section 2 to the operators of Table 1 to show

that, with the exception of Oyy, the JJ-operators do not renormalize the loop-operators. The

only important di↵erences arise from the new type of JJ-operators, Oud
R and O�. Concerning

Oud
R , it is very simple to see that this operator cannot renormalize loop-operators (from a loop

of quarks one obtains operators with the Lorentz structure (iH̃†DµH); while the Higgs-loop

gives operators containing d̄R�µuR, and none of them can be loop-operators). Concerning

O�, we only need to worry about the renormalization of OFF . This can be studied directly in

the ESFT, as superpartner contributions from JJ-operator to loop-operators can be shown to

trivially vanish. In the ESFT, the operator O� is embedded in a super-operator containing the

SSB-spurion |D↵⌘|2. This guarantees the absence of renormalization of loop-super-operators

as these latter contain the SSB-spurion ⌘†. Besides this direct contribution, there is an indirect

route by which O� could renormalize OFF : by generating OHF = i(DµH)†ta(D⌫H)F a
µ⌫ which,

via integration by parts, can give OFF . The operator OHF can come from the super-operator

ÕHF = D̄↵̇⌘†D̄↵̇H†eVHD↵H W↵ that in principle is not protected by a simple SSB-spurion

analysis from being generated by super-operators / |D↵⌘|2. Nevertheless, contributions to

ÕHF must come from Eq. (29) with derivatives acting on the two Higgs superfields external to

the loop, and due to the derivative contractions, this can only give D̄↵̇⌘†D↵⌘D̄↵̇H†D↵HD�W�;

by the use of the EOM of V , however, this gives a JJ-super-operator and not ÕHF .

In the SM case, the exceptional Oyy operators (than can in principle renormalize the dipole

operators) are (following the notation in [3])

Oyuyd = (Q̄r
LuR)✏rs(Q̄

s
LdR) ,

O(8)
yuyd

= (Q̄r
LTAuR)✏rs(Q̄

s
LTAdR) ,

Oyuye = (Q̄r
LuR)✏rs(L̄

s
LeR) ,

O0
yuye = (Q̄r ↵

L eR)✏rs(L̄
s
Lu↵

R) , (33)

13

Concerning loop-operators, we have the new operators O3F = fabcF a ⌫
µ F b ⇢

⌫ F c µ
⇢ and O3F̃ =

fabcF a ⌫
µ F b ⇢

⌫ F̃ c µ
⇢ , possible now for the non-Abelian groups SU(2)L and SU(3)c, which again

can only arise from a ✓2-term:

fabcD�Wa ↵Wb
�Wc

↵ = i✓2O3F+ + · · · , (31)

where we have defined O3F± = O3F ⌥ iO3F̃ . To contain O3F+ , Eq. (31) must then appear in

the ESFT multiplying the SSB-spurion ⌘†, as the rest of loop-operators.

For the loop-operators OFF = H†tatbHF a
µ⌫F

b µ⌫ and their CP-violating counterparts,

OFF̃ = H†tatbHF a
µ⌫F̃

b µ⌫ , we can proceed as above and embed them together in the super-

operators

(H†tatbeVHH)Wa ↵Wb
↵ = �1

2
✓2OFF+ + · · · . (32)

where OFF± = OFF ⌥ iOFF̃ .

3.1 One-loop operator Mixing

It is straightforward to extend the U(1) analysis of section 2 to the operators of Table 1 to show

that, with the exception of Oyy, the JJ-operators do not renormalize the loop-operators. The

only important di↵erences arise from the new type of JJ-operators, Oud
R and O�. Concerning

Oud
R , it is very simple to see that this operator cannot renormalize loop-operators (from a loop

of quarks one obtains operators with the Lorentz structure (iH̃†DµH); while the Higgs-loop

gives operators containing d̄R�µuR, and none of them can be loop-operators). Concerning

O�, we only need to worry about the renormalization of OFF . This can be studied directly in

the ESFT, as superpartner contributions from JJ-operator to loop-operators can be shown to

trivially vanish. In the ESFT, the operator O� is embedded in a super-operator containing the

SSB-spurion |D↵⌘|2. This guarantees the absence of renormalization of loop-super-operators

as these latter contain the SSB-spurion ⌘†. Besides this direct contribution, there is an indirect

route by which O� could renormalize OFF : by generating OHF = i(DµH)†ta(D⌫H)F a
µ⌫ which,

via integration by parts, can give OFF . The operator OHF can come from the super-operator
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by the use of the EOM of V , however, this gives a JJ-super-operator and not ÕHF .
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Are there “tree” operators of the same class 
(Susy protected: arising from F-term of non-chiral operators) ?

the rest from susy-preserving term or with other spurion dependence 

check what are the e↵ects of superpartner loops. From (see Appendix)

Z

d4✓⌘†(�†eV��)W↵W↵ + h.c. = �OFF +

✓

2i|�|2 ��µ@µ�
† � 1p

2
�⇤��µ⌫ Fµ⌫ + h.c.

◆

+ . . . ,

(11)

where �µ⌫ = i
2(�

µ�̄⌫ ��⌫ �̄µ), it is clear that a gaugino/Higgsino loop cannot give a contribu-

tion to Or: the second term of Eq. (11), after using the EOM for the gaugino, �µ@µ�† = g� †,

can only give a contribution proportional to |�|2�; while the contribution from the third term

must be proportional to �⇤Fµ⌫ . None of them have the right Lorentz structure to contribute to

Or. Therefore, we conclude that the loop-operator OFF can only renormalize at the one-loop

level the JJ-operators that break supersymmetry, like O6, and not those that can be embedded

in a D-term, like Or.

2.1 Including fermions

Let us extend the previous EFT to include two charged Weyl fermions, q and u, with U(1)-

charges Qq and Qu, such that Q� +Qq +Qu = 0. We have now extra terms in the Lagrangian

(respecting CP-invariance): 6

�L4 = iq†�̄µDµq + iu†�̄µDµu + yu (�qu + h.c.) ,

�L6 =
1

⇤2
[c�fO�f + c4fO4f + cyu (Oyu + h.c.) + cD (OD + h.c.)] , (12)

where f = q, u. The JJ-operators are

Oyu = |�|2�qu , O�f = i(�⇤f †)�̄µDµ(f�) , O4f = (f †�̄µf)(f †�̄µf) . (13)

Instead of O�f , we could have chosen the more common JJ-operator i(�⇤
$
Dµ�)(f †�̄µf) for

our basis. Both are related by

O�f =
i

2
(�⇤

$
Dµ�)(f †�̄µf) +

i

2
|�|2f †�̄µ

$
Dµf , (14)

where the last term could be eliminated by the use of the EOM. Our motivation for keeping

O�f in our basis is that, as we will see later, it is in one-to-one correspondence with a

supersymmetric D-term. The only additional loop-operator for a U(1) model with fermions

is the dipole operator

OD = �(q�µ⌫u)Fµ⌫ . (15)

Let us consider the operator mixing in this extended EFT. We will discuss all cases except

those for which no diagram exists at the one-loop level. As we said before, in principle, many

vanishing entries of the anomalous-dimensions can be simply understood from inspection of

the Lorentz structure of the di↵erent vertices. For example, it is relatively simple to check

6Similar remarks to those made in footnote 3 about anomalies apply to this extended model.
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Figure 1: A potential contribution from O�q to OD.

that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,

it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in

the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only

give operators containing the Lorentz structure f †f or qu that cannot be completed to give

a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of

O�f , the absence of renormalization of the dipole operator, as for example from diagrams

like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz

structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form

a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from

Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure

to generate OFF , while the second term gives an interaction with too many fields if we use

the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the

dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how

the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the

chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the

✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · . (16)

Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms

and are then supersymmetry-preserving:

�

�†eV��
� �

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
� �

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)

and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral

superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · . (18)

7

cannot generate the JJ-super-operator (�†eV��)2. The same arguments apply straightfor-

wardly to (F †eVF F )(�†eV��). For the case of the dipole super-operator, ⌘†�(Q
$
D↵U)W↵, we

have a potential contribution to
�

Q†eVQQ
� �

U †eVUU
�

coming from a �/V loop. Nevertheless,

as the factor ⌘†Q
$
D↵U remains in the external legs, it is clear that such contribution can only

lead to operators containing ⌘†D2, which are not JJ-super-operators. Similarly, contributions

to
�

�†eV��
� �

Q†eVQQ
�

could arise from a U/V loop, but one can always arrange it to leave

either ⌘†D↵� or ⌘†D↵Q in the external legs 7, which again does not have the structure of a

JJ-super-operator (the same applies for Q $ U). Finally we must check whether redundant

JJ-super-operators, as the one in Eq. (10), can be generated by the dipole. Similar argu-

ments as those below Eq. (10) can be used to prove that this is not the case. Notice, however,

that we cannot guarantee the absence of renormalization by loop-super-operators neither of

⌘†(�†eV��)�QU nor of ⌘⌘†(�†eV��)3. We then conclude that only the JJ-super-operators

that preserve supersymmetry (with no SSB-spurions) are safe at the one-loop level from the

renormalization by loop-super-operators.

It remains to show that this result extends also to non-supersymmetric EFT. From Eq. (41)

of the Appendix, we have, after using the gaugino EOM and eliminating the auxiliary fields

Fi, that loops from superpartners can only give contributions proportional to �ff , |�|2f , ff

or Fµ⌫f (for f = q, u). None of these terms can lead to the Lorentz structure of Or, O4f

nor O�f . These are exactly the same JJ-operators that could not be generated (at one loop)

from loop-operators in the ESFT.

2.1.1 An exceptional JJ-operator

Let us finally extend the EFT to include an extra fermion, a ”down-quark” d of charge Qd,

such that Q� = Qq + Qd. The following extra terms are allowed in the Lagrangian:

�L4 = id†�̄µDµd + yd (�⇤qd + h.c.) ,

�L6 =
1

⇤2
[cydOyd + cyuydOyuyd + h.c.] , (21)

where we have the additional JJ-operators

Oyd = |�|2�⇤qd , Oyuyd = quqd , (22)

apart from operators similar to the ones in Eq. (12) with f including also the d.

Following the ESFT approach, we embed the d-quark in a chiral supermultiplet D and

the operators of Eq. (21) into the super-operators:

�†eV�QD = ✓2�⇤qd + · · · ,
�

�†eV��
�

�†eV�QD = ✓2Oyd + · · · ,

(QU) D2 (QD) = �4✓2Oyuyd + · · · . (23)

7 Using integration by parts and the EOM of V , we can write the dipole super-operator as
R

d4✓⌘†�(Q
$
D↵U) W↵ = � R

d4✓⌘†[(D↵�)QUW↵ + 2�(D↵Q)UW↵ + O(�5
i )] where �i = �, Q, U .
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p
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or
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µ⌫ H(Fta
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D↵F ) Wa ↵

OFF+ = H†tatbHF a
µ⌫(F

b µ⌫ � iF̃ b µ⌫) (H†tatbeVHH)Wa ↵Wb
↵

O3F+ = fabcF a ⌫
µ F b ⇢

⌫ (F c µ
⇢ � iF̃ c µ

⇢ ) fabcD�Wa ↵Wb
�Wc

↵

Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators.

We also distinguish those that can arise from a supersymmetric D-term (⌘0
) from those that break

supersymmetry either by an spurion D̄↵̇⌘†
, ⌘†

, |D̄↵̇⌘†|2 or |⌘|2. We denote by F a
µ⌫ (F̃ a

µ⌫) any SM gauge

(dual) field-strength. The ta matrices include the U(1)Y , SU(2)L and SU(3)c generators, depending

on the quantum numbers of the fields involved. Fermion operators are written schematically with

f = {QL, uR, dR, LL, eR}. Right: For each operator in the left column, we provide the super-operator

at which it is embedded.

then classify them according to their embedding into a supersymmetric model, depending

on whether they can arise from a super-operator with no SSB spurion (⌘0), which therefore

preserves supersymmetry, or whether they need SSB spurions, either D̄↵̇⌘†, ⌘†, |D̄↵̇⌘†|2 or ⌘⌘†

(that selects the ✓̄✓2, ✓2, ✓̄✓ and ✓̄0✓0 component of the super-operator, respectively), or their

Hermitian-conjugates. The supersymmetric embedding naturally selects a SM basis that we

present in Table 1. In this basis, the non-renormalization results between the di↵erent classes

of operators discussed in the previous section will also hold.

The operator basis of Table 1 is close to the basis defined in Ref. [11]. One significant

di↵erence is our choice of the only-Higgs JJ-operators, that we take to be O± and O6, and

of the Higgs-fermion JJ-operator OHf . As in the U(1) case, this choice is motivated by the

embedding of operators into super-field operators, as we have just mentioned (see more details

below). Concerning the classification of 4-fermion operators, our O4f operators correspond

11
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Concerning loop-operators, we have the new operators O3F = fabcF a ⌫
µ F b ⇢

⌫ F c µ
⇢ and O3F̃ =

fabcF a ⌫
µ F b ⇢

⌫ F̃ c µ
⇢ , possible now for the non-Abelian groups SU(2)L and SU(3)c, which again

can only arise from a ✓2-term:

fabcD�Wa ↵Wb
�Wc

↵ = i✓2O3F+ + · · · , (31)

where we have defined O3F± = O3F ⌥ iO3F̃ . To contain O3F+ , Eq. (31) must then appear in

the ESFT multiplying the SSB-spurion ⌘†, as the rest of loop-operators.

For the loop-operators OFF = H†tatbHF a
µ⌫F

b µ⌫ and their CP-violating counterparts,

OFF̃ = H†tatbHF a
µ⌫F̃

b µ⌫ , we can proceed as above and embed them together in the super-

operators

(H†tatbeVHH)Wa ↵Wb
↵ = �1

2
✓2OFF+ + · · · . (32)

where OFF± = OFF ⌥ iOFF̃ .

3.1 One-loop operator Mixing

It is straightforward to extend the U(1) analysis of section 2 to the operators of Table 1 to show

that, with the exception of Oyy, the JJ-operators do not renormalize the loop-operators. The

only important di↵erences arise from the new type of JJ-operators, Oud
R and O�. Concerning

Oud
R , it is very simple to see that this operator cannot renormalize loop-operators (from a loop

of quarks one obtains operators with the Lorentz structure (iH̃†DµH); while the Higgs-loop

gives operators containing d̄R�µuR, and none of them can be loop-operators). Concerning

O�, we only need to worry about the renormalization of OFF . This can be studied directly in

the ESFT, as superpartner contributions from JJ-operator to loop-operators can be shown to

trivially vanish. In the ESFT, the operator O� is embedded in a super-operator containing the

SSB-spurion |D↵⌘|2. This guarantees the absence of renormalization of loop-super-operators

as these latter contain the SSB-spurion ⌘†. Besides this direct contribution, there is an indirect

route by which O� could renormalize OFF : by generating OHF = i(DµH)†ta(D⌫H)F a
µ⌫ which,

via integration by parts, can give OFF . The operator OHF can come from the super-operator

ÕHF = D̄↵̇⌘†D̄↵̇H†eVHD↵H W↵ that in principle is not protected by a simple SSB-spurion

analysis from being generated by super-operators / |D↵⌘|2. Nevertheless, contributions to

ÕHF must come from Eq. (29) with derivatives acting on the two Higgs superfields external to

the loop, and due to the derivative contractions, this can only give D̄↵̇⌘†D↵⌘D̄↵̇H†D↵HD�W�;

by the use of the EOM of V , however, this gives a JJ-super-operator and not ÕHF .

In the SM case, the exceptional Oyy operators (than can in principle renormalize the dipole

operators) are (following the notation in [3])

Oyuyd = (Q̄r
LuR)✏rs(Q̄

s
LdR) ,

O(8)
yuyd

= (Q̄r
LTAuR)✏rs(Q̄

s
LTAdR) ,

Oyuye = (Q̄r
LuR)✏rs(L̄

s
LeR) ,

O0
yuye = (Q̄r ↵

L eR)✏rs(L̄
s
Lu↵

R) , (33)
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3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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When in the susy limit we have zero mixing,
one can just look at loops with 

either SM fields or super-partners:  take the easiest!

non-supersymmetric EFTs as well. In other words, we will show that in many cases super-

symmetry allows to relate a non-trivial calculation to a trivial one (that of the superpartner

loops). This also provides a way to understand the few exceptions to the ubiquitous rule that

JJ-operators do not renormalize loop-operators at the one-loop level.

The paper is organized as follows. In Sec. 2 we start with a simple theory, the EFT

of scalar quantum electrodynamics, to illustrate our approach for obtaining one-loop non-

renormalization results. In later subsections, we enlarge the theory including fermions, and

present an exceptional type of JJ-operator that renormalizes loop-operators. In Sec. 3 we

show how to generalize our approach to derive analogous results in the SM EFT and we

also discuss the holomorphic properties of the anomalous dimensions. In Sec. 4 we show the

implications of our approach for the QCD Chiral Lagrangian. We conclude in Sec. 5.

2 Non-renormalization results in a U(1) EFT

Let us start with the simple case of a massless scalar coupled to a U(1)-gauge boson with

charge Q�, assuming for simplicity CP-conservation. The corresponding EFT is defined as an

expansion in derivatives and fields over a heavy new-physics scale ⇤: LEFT =
P

d Ld, where

Ld denotes the terms in the expansion made of local operators of dimension d. The leading

terms (d  6) in the EFT are given by

L4 = �|Dµ�|2 � ��|�|4 � 1

4g2
F 2

µ⌫ , L6 =
1

⇤2
[crOr + c6O6 + cFF OFF ] , (1)

where the dimension-six operators are

Or = |�|2|Dµ�|2 , O6 = |�|6 , OFF = |�|2Fµ⌫F
µ⌫ . (2)

We can use di↵erent bases for the dimension-six operators although, when looking at operator

mixing, it is convenient to work in a basis that separates JJ-operators from loop-operators, as

we defined them in the introduction. Using field redefinitions (or, equivalently, the equation

of motion (EOM) of �) we can reduce the number of JJ-operators to only two: for instance,

OT = 1
2J

µJµ and O6 = J⇤J , where Jµ = �⇤
$
Dµ� and J = |�|2�. It is convenient, however, to

set a one-to-one correspondence between operators and supersymmetric D-terms, as we will

show below. For this reason, we choose for our basis O6 and Or. 2 The only loop-operator,

after requiring CP-invariance, is OFF .

Many of the one-loop non-renormalization results that we discuss can be understood from

arguments based on the Lorentz structure of the vertices involved. Take for instance the non-

renormalization of OFF by Or. Integrating by parts and using the EOM, we can eliminate

Or in favor of O0
r = (�Dµ�⇤)2 + h.c.. Now, it is apparent that O0

r cannot renormalize

OFF because either �Dµ�⇤ or �⇤Dµ� is external in all one-loop diagrams, and these Lorentz

2In the U(1) case we are considering, Or = 1
2 (OH � OT ) where OH = 1

2 (@µ|�|2)2.
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and then must be zero in a supersymmetry-preserving theory at any loop order.

We can now embed Eq. (1) in a ESFT. We use a supersymmetry-breaking (SSB) spurion

superfield ⌘ ⌘ ✓2 (of dimension [⌘] = �1) to incorporate the couplings of Eq. (1) that break

supersymmetry. We have 3

L4 ⇢
Z

d4✓
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n
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c̃FF ⌘
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⇤

o

. (6)

It is very easy to study the one-loop mixing of the dimension-six operators in the above ESFT

using a simple ⌘-spurion analysis. For example, it is clear that there cannot be renormalization

from terms with no SSB spurions, such as c̃r, to terms with SSB spurions, such as c̃FF . Also,

corrections from c̃r to c̃6 are only possible through the insertion of ��, that carries a ⌘⌘†.

Similarly, terms with a SSB spurion ⌘† cannot renormalize terms with two SSB spurions ⌘†⌘,

unless they are proportional to ��. This means that c̃FF can only renormalize c̃6 with the

insertion of a ��. The inverse is however not guaranteed: terms with more SSB spurions can

in principle renormalize terms with less spurions. For example, c̃FF , that carries a spurion

⌘†, could generate at the loop level the operator
Z

d4✓⌘†D̄2Õr =

Z

d4✓(D̄2⌘†)Õr =

Z

d4✓Õr , (7)

where Õr =
�

�†eV��
�2

and we have defined D2 ⌘ D↵D↵, with D↵� = e�V�D↵(eV��) being

the gauge-covariant derivative in superspace. Therefore one has to check it case by case. For

example, c̃6 could in principle renormalize c̃FF , but it is not possible to write the relevant dia-

gram since it involves a vertex with too many �’s. This implies that c̃FF is only renormalized

by itself at the one-loop level.

This simple renormalization structure is the starting point from which, by examining

more closely the loops involved at the field-component level, we will derive the following

non-renormalization results in the non-supersymmetric EFT of Eq. (1):

Non-renormalization of OFF by Or: The di↵erences between our original EFT in

Eq. (1) and its supersymmetric version, Eq. (6), are the presence of the fermion superpartners

for the gauge and scalar: the gaugino, �, and ”Higgsino”,  . We will show, however, that the

contributions from superpartners trivially vanish in the mixing of JJ- and loop-operators. In

Z

d4✓
�

�†eV��
�2

= �4Or + 2(i�⇤
$
Dµ�) †�̄µ + 2|�|2(i †�̄µ

$
Dµ ) + · · · , (8)

3Anomaly cancelation requires the inclusion of additional fields that do not play any role in our discussion.
We ignore them in what follows.
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�

�†eV��
�2

and we have defined D2 ⌘ D↵D↵, with D↵� = e�V�D↵(eV��) being

the gauge-covariant derivative in superspace. Therefore one has to check it case by case. For

example, c̃6 could in principle renormalize c̃FF , but it is not possible to write the relevant dia-

gram since it involves a vertex with too many �’s. This implies that c̃FF is only renormalized

by itself at the one-loop level.

This simple renormalization structure is the starting point from which, by examining

more closely the loops involved at the field-component level, we will derive the following

non-renormalization results in the non-supersymmetric EFT of Eq. (1):

Non-renormalization of OFF by Or: The di↵erences between our original EFT in

Eq. (1) and its supersymmetric version, Eq. (6), are the presence of the fermion superpartners

for the gauge and scalar: the gaugino, �, and ”Higgsino”,  . We will show, however, that the

contributions from superpartners trivially vanish in the mixing of JJ- and loop-operators. In

Z

d4✓
�

�†eV��
�2

= �4Or + 2(i�⇤
$
Dµ�) †�̄µ + 2|�|2(i †�̄µ

$
Dµ ) + · · · , (8)

3Anomaly cancelation requires the inclusion of additional fields that do not play any role in our discussion.
We ignore them in what follows.

4

Not possible to give |�|2F 2
µ⌫

Similarly for the other cases

Are superpartners playing a crucial role in the zeros?

When in the susy limit we have zero mixing,
one can just look at loops with 

either SM fields or super-partners:  take the easiest!

e.g.

But the SM is not supersymmetric…



Holomorphy:

Again, we can either look at SM field loop or super-partner loop: 
The simplest: the diagrams with fermions, as you can follow 

the fermion-line to see if it changes direction. 
No contribution is found!

☛  Holomorphy is preserved beyond SUSY
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Figure 2: Blue-shaded entries vanish and are understood by means of ESFT.
Red-shaded area satisfies holomorphicity and is understood as consequence
of Lorentz symmetry.
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This analysis can lead to prove:
not only to types (L̄L)(L̄L), (R̄R)(R̄R) and (L̄L)(R̄R) of Ref. [11], but also to the operator

Qledq = (L̄LeR)(d̄RQL) classified as (L̄R)(R̄L) in [11], since this latter can be written as a O4f

by Fierz rearrangement. Finally, our Oyy operators correspond to the four operators of type

(L̄R)(L̄R) in [11].

To embed the SM fields in supermultiplets we follow the common practice of working with

left-handed fermion fields so that QL, uc
R and dc

R are embedded into the chiral supermultiplets

Q, U and D (generically denoted by F ). With an abuse of notation, we use H for the SM

Higgs doublet as well as for the chiral supermultiplet into which it is embedded. Finally, gauge

bosons are embedded in vector superfields, V a, and we use the notation V� ⌘ 2taV a where ta

include the generators of the SM gauge-group in the representation of the chiral-superfield �.

Concerning the embedding of operators into super-operators, there are a few di↵erences

with respect to the U(1) model discussed in the previous section, as we discuss below. Starting

with the JJ-operators, we have a new type of operator not present in the U(1) case, Oud
R =

(iH†
$
DµH̃)(d̄R�µuR), where H̃ ⌘ i�2H⇤. This operator cannot be embedded as the others in

a D-term due to H̃†H = 0 and must be embedded as a ✓2✓̄ term of a spinor super-operator:
Z

d4✓ D̄↵̇⌘†(H†D̄↵̇H̃)U †eVDD = Oud
R + · · · . (25)

For the JJ-operators involving only the Higgs field, there is also an important di↵erence with

respect to the U(1) case. We have now two independent operators, 8 but only one can arise

from a supersymmetric D-term: 9

(H†eVHH)2 = �✓̄2✓2O+ + · · · , (26)

where

O+ = [2Or + OH � OT ] = Dµ(H†
i H

†
j )D

µ(H iHj) , (27)

with Or, OH and OT being the SM analogues of the U(1) operators, obtained simply by

replacing � by H. The other independent only-Higgs operator must arise from a SSB term.

We find that this can be the ✓✓̄-component of the superfield

D̄↵̇(H†eVHH)D↵(H†eVHH) = �4(�̄µ✓)↵̇(�⌫ ✓̄)↵

�

DµH
†H

� �

H†D⌫H
�

+ · · · . (28)

We can write this operator in a superfield Lagrangian by using the spurion |D̄↵̇⌘†|2:
Z

d4✓ D̄↵̇⌘†D↵⌘ D̄↵̇(H†eVHH)D↵(H†eVHH) = �16 O� + · · · , (29)

where

O� =
1

2
[OH � OT ] = |H†DµH|2 . (30)

8The U(1)-case identity Or = (OH � OT )/2 does not hold in the SM due to the fact that H is a doublet.
9The operator (H†�aeVHH)2 can be reduced to (H†eVHH)2 by using �a

ij�
a
kl = 2�il�kj � �ij�kl.
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Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators.

We also distinguish those that can arise from a supersymmetric D-term (⌘0
) from those that break

supersymmetry either by an spurion D̄↵̇⌘†
, ⌘†

, |D̄↵̇⌘†|2 or |⌘|2. We denote by F a
µ⌫ (F̃ a

µ⌫) any SM gauge

(dual) field-strength. The ta matrices include the U(1)Y , SU(2)L and SU(3)c generators, depending

on the quantum numbers of the fields involved. Fermion operators are written schematically with

f = {QL, uR, dR, LL, eR}. Right: For each operator in the left column, we provide the super-operator

at which it is embedded.

then classify them according to their embedding into a supersymmetric model, depending

on whether they can arise from a super-operator with no SSB spurion (⌘0), which therefore

preserves supersymmetry, or whether they need SSB spurions, either D̄↵̇⌘†, ⌘†, |D̄↵̇⌘†|2 or ⌘⌘†

(that selects the ✓̄✓2, ✓2, ✓̄✓ and ✓̄0✓0 component of the super-operator, respectively), or their

Hermitian-conjugates. The supersymmetric embedding naturally selects a SM basis that we

present in Table 1. In this basis, the non-renormalization results between the di↵erent classes

of operators discussed in the previous section will also hold.

The operator basis of Table 1 is close to the basis defined in Ref. [11]. One significant

di↵erence is our choice of the only-Higgs JJ-operators, that we take to be O± and O6, and

of the Higgs-fermion JJ-operator OHf . As in the U(1) case, this choice is motivated by the

embedding of operators into super-field operators, as we have just mentioned (see more details

below). Concerning the classification of 4-fermion operators, our O4f operators correspond
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Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators.

We also distinguish those that can arise from a supersymmetric D-term (⌘0
) from those that break

supersymmetry either by an spurion D̄↵̇⌘†
, ⌘†

, |D̄↵̇⌘†|2 or |⌘|2. We denote by F a
µ⌫ (F̃ a

µ⌫) any SM gauge

(dual) field-strength. The ta matrices include the U(1)Y , SU(2)L and SU(3)c generators, depending

on the quantum numbers of the fields involved. Fermion operators are written schematically with

f = {QL, uR, dR, LL, eR}. Right: For each operator in the left column, we provide the super-operator

at which it is embedded.

then classify them according to their embedding into a supersymmetric model, depending

on whether they can arise from a super-operator with no SSB spurion (⌘0), which therefore

preserves supersymmetry, or whether they need SSB spurions, either D̄↵̇⌘†, ⌘†, |D̄↵̇⌘†|2 or ⌘⌘†

(that selects the ✓̄✓2, ✓2, ✓̄✓ and ✓̄0✓0 component of the super-operator, respectively), or their

Hermitian-conjugates. The supersymmetric embedding naturally selects a SM basis that we

present in Table 1. In this basis, the non-renormalization results between the di↵erent classes

of operators discussed in the previous section will also hold.

The operator basis of Table 1 is close to the basis defined in Ref. [11]. One significant

di↵erence is our choice of the only-Higgs JJ-operators, that we take to be O± and O6, and

of the Higgs-fermion JJ-operator OHf . As in the U(1) case, this choice is motivated by the

embedding of operators into super-field operators, as we have just mentioned (see more details

below). Concerning the classification of 4-fermion operators, our O4f operators correspond
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SUSY embedding defines the EFT basis  
where the mixing of operators is the most minimal

Hawigara’s basis  ➠  SILH basis  ➠  Warsaw’s basis  ➠  “Susy” basis

From less to more “diagonal” basis at the one-loop:

K.Hagiwara, S.Ishihara, 

R.Szalapski, D.Zeppenfeld  92

B.Grzadkowski, M.Iskrzynski,

M.Misiak, J.Rosiek  10

G.Giudice, C.Grojean, 

A.Pomarol, R.Rattazzi  07



Best basis for the QCD Chiral lagrangian

Ordinary basis:

Chiral Perturbation Theory 11

1. The most general effective chiral Lagrangian of O(p4), L4, to be considered at tree

level.

2. One-loop graphs associated with the lowest-order Lagrangian L2.

3. The Wess–Zumino (1971)–Witten (1983) functional to account for the chiral

anomaly.

4.1. O(p4) Lagrangian

At O(p4), the most general§ Lagrangian, invariant under parity, charge conjugation
and the local chiral transformations (3.14), is given by (Gasser and Leutwyler 1985)

L4 =L1 ⟨DµU †DµU⟩2 + L2 ⟨DµU †DνU⟩ ⟨DµU †DνU⟩

+ L3 ⟨DµU
†DµUDνU

†DνU⟩ + L4 ⟨DµU †DµU⟩ ⟨U †χ + χ†U⟩

+ L5 ⟨DµU †DµU
(
U †χ + χ†U

)
⟩ + L6 ⟨U †χ + χ†U⟩2

+ L7 ⟨U †χ − χ†U⟩2 + L8 ⟨χ†Uχ†U + U †χU †χ⟩

− iL9 ⟨F µν
R DµUDνU

† + F µν
L DµU †DνU⟩ + L10 ⟨U †F µν

R UFLµν⟩

+ H1 ⟨FRµνF
µν
R + FLµνF

µν
L ⟩ + H2 ⟨χ†χ⟩ .

(4.1)

The terms proportional to H1 and H2 do not contain the pseudoscalar fields

and are therefore not directly measurable. Thus, at O(p4) we need ten additional
coupling constants Li to determine the low-energy behaviour of the Green functions.

These constants parametrize our ignorance about the details of the underlying QCD

dynamics. In principle, all the chiral couplings are calculable functions of ΛQCD and

the heavy-quark masses. At the present time, however, our main source of information

about these couplings is low-energy phenomenology.

4.2. Chiral loops

ChPT is a quantum field theory, perfectly defined through equation (3.19). As

such, we must take into account quantum loops with Goldstone-boson propagators
in the internal lines. The chiral loops generate non-polynomial contributions, with

logarithms and threshold factors, as required by unitarity.

The loop integrals are homogeneous functions of the external momenta and the
pseudoscalar masses occurring in the propagators. A simple dimensional counting

shows that, for a general connected diagram with Nd vertices of O(pd) (d = 2, 4, . . .)

and L loops, the overall chiral dimension is given by (Weinberg 1979)

D = 2L + 2 +
∑

d

Nd (d − 2) . (4.2)

§ Since we will only need L4 at tree level, the general expression of this Lagrangian has been simplified,
using the O(p2) equations of motion obeyed by U . Moreover, a 3 × 3 matrix relation has been used
to reduce the number of independent terms. For the two-flavour case, not all of these terms are
independent (Gasser and Leutwyler 1984, 1985).
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4
hDµUDµUi+ · · ·
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“loop” operator:

Better basis:

h(U† $
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µ⌫
L + (U
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D⌫U

†)DµF
µ⌫
R i

Not renormalized by loop of pions:

�
loop

/ �
9

+ �
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=
1

64⇡2

� 1

64⇡2

= 0
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that possible breakings of holomorphy, at the field-component level, must be the same in the

ordinary SM loop and in its corresponding superpartner loop, as the total breaking must cancel

in their sum. Therefore we can look at either one or the other loop to check holomorphy. In

this way, we can always relate holomorphy to fermion chirality. For example, the breaking of

holomorphy in the renormalization of Oy from O†
FF+ [10], mentioned before, can be easily seen

to arise from the diagram of Fig. 3. It corresponds to the superpartner one-loop contribution

to Oy arising from the vertex |H|2�†�̄µ@µ� ⇠ |H|2H�† †
H of Eq. (11), where we have used

the EOM of � (and replaced the U(1) � and  by the SM Higgs and Higgsino).

4 Implications for the QCD Chiral Lagrangian

We can extend the above analysis also to the QCD Chiral Lagrangian [6]. At O(p2), we have

L2 =
f 2

⇡

4
hDµU

†DµUi . (36)

This is an operator that can be embedded in a D-term as
R

d4✓ hU †Ui, where U and its

superpartners are contained in U ⌘ ei�, with � being a chiral superfield. At O(p4), the QCD

Chiral Lagrangian is usually parametrized by the Li coe�cients [6] in a basis with operators

that are linear combinations of JJ-operators and loop-operators. These are

L4 = �iL9hF µ⌫
R DµUD⌫U

† + F µ⌫
L DµU

†D⌫Ui + L10hU †F µ⌫
R UFLµ⌫i + · · · . (37)

A more convenient basis is however

L4 = iLJJhDµF
µ⌫
L (U †

$
D⌫U) + (U

$
D⌫U

†)DµF
µ⌫
R i + LloophU †F µ⌫

R UFLµ⌫i + · · · , (38)

where LJJ = L9/2 and Lloop = L9 + L10. It is easy to see that the first operator of Eq. (38)

is a JJ-operator, while the second is a loop-operator. This latter can only be embedded in

a ✓2-term of a super-operator (i.e., hU †W↵
R U W↵Li), and therefore it cannot be renormalized

by the operator in Eq. (36) in the supersymmetric limit. As contributions from superpartner

loops can be easily shown to vanish, we can deduce that Eq. (36) cannot renormalize Lloop

at the one-loop level. This is indeed what one finds from the explicit calculation [6]: �Lloop
=

�L9 + �L10 = 1/4 � 1/4 = 0.

5 Conclusions

In EFTs with higher-dimensional operators the one-loop anomalous dimension matrix has

plenty of vanishing entries apparently not forbidden by the symmetries of the theory. In this

paper we have shown that the reason behind these zeros is the di↵erent Lorentz structure of

the operators that does not allow them to mix at the one-loop level. We have proposed a

way to understand the pattern underlying these zeros based on classifying the dimension-six

operators in JJ- and loop-operators and also according to their embedding in super-operators
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Conclusions

• Dim-6 operator mixing is crucial to understand 
the impact of BSM on the SM

• Open questions:  Beyond one-loop, relation with 
Spinor Helicity formalism (Cheung-Shen 15), … 

• Supersymmetry helps to group the operators that mainly 
mix among themselves 

• Exercise: From the measurement B→μμ,  B→Xγ,
      which deviations on TGC constrains each experiment?
      Can top anomalous-couplings affect S?
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Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators.
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) from those that break
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, |D̄↵̇⌘†|2 or |⌘|2. We denote by F a
µ⌫ (F̃ a

µ⌫) any SM gauge

(dual) field-strength. The ta matrices include the U(1)Y , SU(2)L and SU(3)c generators, depending

on the quantum numbers of the fields involved. Fermion operators are written schematically with

f = {QL, uR, dR, LL, eR}. Right: For each operator in the left column, we provide the super-operator

at which it is embedded.

then classify them according to their embedding into a supersymmetric model, depending

on whether they can arise from a super-operator with no SSB spurion (⌘0), which therefore

preserves supersymmetry, or whether they need SSB spurions, either D̄↵̇⌘†, ⌘†, |D̄↵̇⌘†|2 or ⌘⌘†
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Hermitian-conjugates. The supersymmetric embedding naturally selects a SM basis that we

present in Table 1. In this basis, the non-renormalization results between the di↵erent classes

of operators discussed in the previous section will also hold.

The operator basis of Table 1 is close to the basis defined in Ref. [11]. One significant

di↵erence is our choice of the only-Higgs JJ-operators, that we take to be O± and O6, and

of the Higgs-fermion JJ-operator OHf . As in the U(1) case, this choice is motivated by the

embedding of operators into super-field operators, as we have just mentioned (see more details

below). Concerning the classification of 4-fermion operators, our O4f operators correspond
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with ba,b being respectively the beta-function of the gauge coupling above and below M(h),

the mass of the heavy state in the Higgs background. From Eq. (17) and Eq. (18) we have

��� =
⇤2

16⇡2

d

d log µ


(bb � ba)

4vM(h)

@M(h)

@h

�����
h=v

= 0 , (19)

due to the fact that ba,b are independent of µ at the one-loop level. Simply put, a heavy

charged particle with mass M contributes to the running of the photon two-point function

through a loop which only contains that particle itself, and therefore no log-terms involving

the light-state masses are possible.

4 The importance of the choice of basis

The relevance of the possible contributions from tree-level operators to the one-loop RGE

of �� and �Z has been highlighted recently in ref. [2]. In fact, that analysis claims that

such important e↵ect could actually occur, in contradiction with the results presented in the

previous section. In this section we show how this contradiction is resolved.

The analysis in ref. [2], GJMT in what follows, focuses on a subset of dimension-six

operators, chosen to be OBB and the two operators

OWB = gg0(H†�aH)W a
µ⌫B

µ⌫ , OWW = g2|H|2W a
µ⌫W

aµ⌫ , (20)

which are not included in the basis we have used. The relation to our basis follows from the

two operator identities:

OB = OHB +
1

4
OWB +

1

4
OBB , (21)

OW = OHW +
1

4
OWW +

1

4
OWB , (22)

which allow us to removeOWW andOWB in favor ofOB andOW . The two operatorsOHW and

OHB were also mentioned in ref. [2], although their e↵ect was not included in the analysis. To

understand the issues involved it will be su�cient to limit the operator basis to five operators,

with the two bases used being

B1 = {OBB,OB,OW ,OHW ,OHB} , (this work) (23)

B2 = {OBB,OWW ,OWB,OHW ,OHB} , (GJMT). (24)

In relating both bases we will use primed Wilson coe�cients for the GJMT basis

L6 =
X

i

c0i
⇤2

Oi , (25)

7

OW , OB ! OWW , OWB

Different Basis

From SILH by using:  

Grzadkowski et al. basis:

Hawigara et al. basis:

Using also EoM:

where Y f
L,R are the fermion hypercharges. In particular, we could trade OW and OB with

other operators:

cWOW $ cW
g2

g2⇤

"

�3

2
OH + 2O6 +

1

2
Oy +

1

4

X

f

O(3) f
L

#

,

cBOB $ cB
g0 2

g2⇤

"

�1

2
OT +

1

2

X

f

⇣

Y f
LOf

L + Y f
ROf

R

⌘

#

, (22)

Also the operator Or can be eliminated by field redefinitions. In this case

crOr $ cr



1

2
(Oyu +Oyd +Oyl)�OH + 2O6

�

. (23)

For one family of fermions, our basis will be defined in the following way. We keep all

operators of Eqs. (4)-(13), since they are the relevant ones for a well-motivated class of BSM

such as universal theories, with the exception of Or that we eliminate of our basis using

Eq. (23). We also include the operators of Eq. (16) and Eq. (17) (for the up-type quark, and

the equivalents for the down-type quark and leptons), with the exception of the 5 combinations

that can be eliminated, using Eq. (21), in favor of Eq. (7). The basis is completed also with

the operators of Eq. (19), Eq. (20) and Eq. (18). The final set of operators is given in table 2

and 2.

OH = 1
2(@

µ|H|2)2
OT = 1

2
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$
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aµ⌫
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µ⌫
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O3W = g✏abcW a ⌫
µ W b

⌫⇢W
c ⇢µ

O3G = gsfabcGa ⌫
µ Gb

⌫⇢G
c ⇢µ

Table 1: Operators made of SM bosons.

Extending it to 3 families increases considerably the number of operators. We can reduce

it by imposing flavour symmetries that are also needed to avoid important constraints from

5

OW , OB , OHW , OHB ! OWW , OWB , O(3)
L , OL



Affecting well-measured quantities 
by operator mixing under the RG flow:

above. We find:

16⇡2�cT = (4Ncy
2
t � 9g2 � 3g02)cT +

3

2
g02cH + 4Ncy

2
t (cR � cL) , (65)
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16⇡2�cW =
1

3
g2H

h

�(cH + cT ) + 16Ncc
(3)
L

i

, (69)

16⇡2�cB =
1

3
g2H



�(cH + 5cT ) +
8

3
Nc (2cR + cL)

�

. (70)

Integrating these RGEs in one-loop leading-log order, as above, between the cuto↵ scale ⇤ = 2

TeV and the electroweak scale, Mt, one gets the following numerical bounds:

�cT = �0.0030 cH + 0.16 (cL � cR) . 0.002/⇠ ,

�(cB + cW ) = 0.010 cH � 0.083 cR � 0.041 cL � 0.25 c(3)L . 0.003⇤2/M2
w ,

�[cL + c(3)L ] = 0.014 cR � 0.031 cL + 0.057 c(3)L � 0.17 cLL � 0.0064 c(8)LL + 0.081 cLR . 0.002/⇠ .

(71)

where �ci ⌘ ci(Mt) � ci(2 TeV) and the numerical limits on the right-hand side come from

the experimental precision measurements, as indicated. Obviously, the limits above hold

under the assumption that there is no cancellation between the initial value of the Wilson

coe�cients at the scale ⇤ and the radiative e↵ects ⇠ �ci log(⇤/Mt). In other words, these

limits can be used to estimate the upper bounds on the natural values of the Wilson coe�cients

(or combination of coe�cients) involved, barring fine-tuning.

Nothing from W and Y and ✏2 at order y2t . We neglect corrections from cB, cW .

6 RGE impact and models

We will study the impact of this running in three scenarios: two Higgs doublet models

(2HDM), universal theories, and scenarios with sizeable cL,R such as composite top mod-

els.

15

above. We find:

16⇡2�cT = (4Ncy
2
t � 9g2 � 3g02)cT +

3

2
g02cH + 4Ncy

2
t (cR � cL) , (65)

16⇡2�cR =



2(4 +Nc)y
2
t � 9g2 � 8

3
g02

�

cR +
8

9
g02 [(Nc + 1)cRR +NccLR]

+2y2t



1

4
cH � cL +NccLR � 2(Nc + 1)cRR

�

, (66)

16⇡2�cL =



2(2 +Nc)y
2
t � 9g2 � 8

3
g02

�

cL +
2

9
g02



(2Nc + 1)cLL + CF c
(8)
LL +

Nc

2
cLR

�

+y2t

⇢

�1

4
cH � cR � 9c(3)L � 2NccLR + 4NccLL + 2

h

cLL + CF c(8)LL

i

�

, (67)

16⇡2�
c
(3)
L

=



2(1 +Nc)y
2
t �

17

3
g2 � 3g02

�

c(3)L +
2

3
g2

h

cLL + CF c(8)LL

i

+y2t

⇢

1

4
cH � 3cL � 2

h

cLL + CF c(8)LL

i

�

, (68)

16⇡2�cW =
1

3
g2H

h

�(cH + cT ) + 16Ncc
(3)
L

i

, (69)

16⇡2�cB =
1

3
g2H



�(cH + 5cT ) +
8

3
Nc (2cR + cL)

�

. (70)

Integrating these RGEs in one-loop leading-log order, as above, between the cuto↵ scale ⇤ = 2

TeV and the electroweak scale, Mt, one gets the following numerical bounds:

�cT = �0.0030 cH + 0.16 (cL � cR) . 0.002/⇠ ,

�(cB + cW ) = 0.010 cH � 0.083 cR � 0.041 cL � 0.25 c(3)L . 0.003⇤2/M2
w ,

�[cL + c(3)L ] = 0.014 cR � 0.031 cL + 0.057 c(3)L � 0.17 cLL � 0.0064 c(8)LL + 0.081 cLR . 0.002/⇠ .

(71)

where �ci ⌘ ci(Mt) � ci(2 TeV) and the numerical limits on the right-hand side come from

the experimental precision measurements, as indicated. Obviously, the limits above hold

under the assumption that there is no cancellation between the initial value of the Wilson

coe�cients at the scale ⇤ and the radiative e↵ects ⇠ �ci log(⇤/Mt). In other words, these
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The b0i,j is a 5⇥5 anomalous-dimension matrix of which the 3⇥3 submatrix corresponding to

i, j = 1� 3 (that is, c0BB, c
0
WW , c0WB) was calculated in [2], while the rest is unknown. From

�� =
P5

i=1 ⇣ic
0
i where ⇣i = (1, 1,�1, 0, 0), we have

16⇡2��� =
5X

i,j=1

⇣ib
0
i,jc

0
j . (35)

Using Eq. (28), we can translate this anomalous dimension to our basis. We get

16⇡2��� =
5X

i=1

⇣i(b
0
i,BBBB + b0i,HWHW + b0i,HBHB) (36)

+
1

4
cB

5X

i=1

⇣i(b
0
i,WB + b0i,BB + 4b0i,HB) +

1

4
cW

5X

i=1

⇣i(b
0
i,WW + b0i,WB + 4b0i,HW ) .

From our discussion in Section 2, we know that the tree-level coe�cients cB and cW do not

appear in this RGE. This means that the two last terms of Eq. (36) must be zero, allowing

us to extract the sum of the unknown coe�cients b0i,HB and b0i,HW in terms of coe�cients

calculated in ref. [2]:

5X

i=1

⇣ib
0
i,HB = �1

4

5X

i=1

⇣i(b
0
i,WB + b0i,BB) ,

5X

i=1

⇣ib
0
i,HW = �1

4

5X

i=1

⇣i(b
0
i,WW + b0i,WB) . (37)

Notice that ⇣4 = ⇣5 = 0 is crucial to allow us to restrict the sums in the right-hand-side to

terms that were already calculated in [2]. Plugging the terms (37) back in (36), one gets

16⇡2��� =
5X

i=1

⇣i


b0i,BBBB � 1

4
(b0i,WB + b0i,WW )HW � 1

4
(b0i,BB + b0i,WB)HB

�
. (38)

Using the coe�cients b0i,WW , b0i,WB and b0i,BB from [2], one arrives at

16⇡2��� =


6y2t �

3

2
(3g2 + g02) + 12�

�
BB +


3

2
g2 � 2�

�
(HW + HB) . (39)

This expression gives the one-loop leading-log correction to ��(mh). For the resummation of

the log terms we would need the full anomalous-dimension matrix. Nevertheless, this is not

needed for ⇤ ⇠ TeV since the log-terms are not very large.

The size of the contributions of Eq. (39) to ��(mh) is expected to be of two-loop order in

minimally-coupled theories. Therefore, we have to keep in mind that the tree-level operators

of Eq. (4), possibly entering in the RGE of �� at the two-loop level, could give corrections

of the same order. For strongly-coupled theories in which gH ⇠ 4⇡, we could have i ⇠
O(1), and the corrections from Eq. (39) to h ! �� could be of one-loop size. Of course, in

principle, the initial values i(⇤) will give, as Eq. (14) shows, the dominant contribution to

h ! ��, �Z and not Eq. (39). Nevertheless, it could well be the case that |BB(⇤)| ⌧ 1 and

10

mass, at which they are measured in Higgs decays. Let us focus for simplicity on ��, as

similar considerations will be applicable to �e�,�Z ,� eZ . At one-loop leading-log order one

has, running from ⇤ to the Higgs mass mh:

��(mh) = ��(⇤)� ��� log
⇤

mh

. (15)

Here, ��� = d��/d log µ, with µ the energy scale, is the one-loop anomalous dimension for

��. In principle, ��� can depend on the Wilson coe�cients of any dimension-six operator

in Eq. (2). A particularly interesting case would be if the RGEs were to mix the tree-

level operators into the RG evolution of one-loop suppressed operators, such as OBB. In

that case we would expect ��� ⇠ g2H/(16⇡
2) from mixings with the operators of Eq. (4), or

��� ⇠ g2/(16⇡2) from mixings with (6). Such loop e↵ect could give a sizeable contribution to

��(mh), logarithmically enhanced by a factor log⇤/mh. The initial value ��(⇤), expected

to be one-loop suppressed, would then be subleading.

Remarkably, and this is our main result, there is no mixing from tree-level operators

(4)-(6) to one-loop suppressed operators (7)-(12), at least at the one-loop level. This can

be easily shown for the renormalization of ��. The argument goes as follows. Let us first

consider the e↵ects of the first-class operators, Eq. (4). Since these operators have four or

more H, their contribution to the renormalization of �� can only arise from a loop of the

electrically-charged G± with at least one photon attached to the loop. However,

• O6 has too many Higgs legs to contribute.

• OH is simply @µ(h2+G2
0+2G+G�)@µ(h2+G2

0+2G+G�)/8 and this momentum structure

implies that a G± loop can only give a contribution / @µh2, which is not the Higgs

momentum structure of Eq. (13).

• OT does not contain a vertex h2G+G�.

• Or can be traded with Oy, which clearly can only give one-loop contributions to oper-

ators / |H|2H, so it only contributes to the RGE of itself and O6.

We conclude that there is no contribution from these operators to the RGE of ��. To

generalise the proof that no operator in (4) contributes to the one-loop anomalous-dimension

of any operator in (7)-(9) 3, we have calculated explicitly the one-loop operator-mixing. We

find that the only operators involving two Higgs and gauge bosons that can be a↵ected by

(4) are the tree-level operators (6). The result is given in Section 4.

For the operators of Eq. (6), proving the absence of one-loop contributions to the anoma-

lous dimension of (7)-(9) is even simpler. By means of field redefinitions, as those given in the

3Obviously, their contribution to the CP-odd operators (10)-(12) is zero as the SM gauge-boson couplings
conserve CP.

5

hγγ:

e.g. H as PGB: • H→H+c implies κBB = 0 
                  • Left-right symmetry implies κHW=κHB

hγZ:

cV V �

g
cV V �

g, g0

Figure 1: The only two diagrams that could give a contribution (at one loop)

from OWW , OBB and OWB (with coe�cient generically denoted as cV V 0 in the

figure) to the renormalization of OHW and OHB (or to OW and OB).

of the two gauge boson legs is attached to the other gauge boson leg or to one of the Higgs

legs (see figure 1). In the first case (fig. 1, left diagram) it is clear that the resulting Higgs

structure for the operator generated is either |H|2 or H†�aH and not that in (42) (in fact,

the diagram is zero). In the second case (fig. 1, right diagram) the only structures that result

are either @µH†@⌫(HBµ⌫) or @µH†�a@⌫(HW a
µ⌫), which give zero after integrating by parts.

We can therefore extract ��Z following the same procedure used for ��� in the previous

section, and we obtain

16⇡2��Z = �Z


6y2t + 12�� 7

2
g2 � 1

2
g02
�
+ (HW + HB)

⇥
2g2 � 3e2 � 2� cos(2✓w)

⇤
, (43)

and a similar expression for �� eZ with the corresponding CP-odd operator coe�cients instead

of the CP-even ones.

The arguments we have used to prove that OWW ,OBB and OWB do not enter into the

anomalous dimensions of OHW and OHB can be applied in exactly the same way to prove

that they do not generate radiatively the operators OW and OB which have exactly the same

trilinear structures displayed in Eq. (42) for OHW and OHB. This immediately implies that

the 5⇥ 5 matrix of anomalous dimensions will be block diagonal if instead of using the bases

in (23) and (24), we use instead the basis

B3 = {OBB,OWW ,OWB,OW ,OB} . (44)

Calling ĉi, ̂i the operator coe�cients in this basis, we have

d

d log µ

0

BBBBB@

̂BB

̂WW

̂WB

ĉW
ĉB

1

CCCCCA
=

 
�̂ 03⇥2

02⇥3 X̂

!

0

BBBBB@

̂BB

̂WW

̂WB

ĉW
ĉB

1

CCCCCA
. (45)

Taking the anomalous-dimension matrix in the simple form (45) as starting point, it is a
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• Separation of operators depending on Tree-level vs Loop origin 

• Renormalizable (weakly-coupled) theories = SUSY, ...

SU(n)SU(n)SU(n)

in • Holographic models = Strongly-coupled in the 
                                    large N, large g²N limit

• Little Higgs =

{
“tree-level” operators (or “current-current”):

f

f

f

fZ’

can arise from integrating out massive states spin=0,1/2,1

f

f Z’

H

H

1

⇤2
Jµ
f Jf µ

1

⇤2
Jµ
f JH µ



Other interesting one-loop effects:

Breaking of universality:

MSSM:
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Figure 1: Modification of the coupling ghff , Eq. (27). Left plot: ct⇠ as a

function of tan �. Right plot: cb⇠ and c⌧⇠ as a function of tan �. Recall that

⇠ ⌘ v2g⇤
⇤2 .

that for the MSSM, where �0 = 1
8G

2 sin 4� at tree-level, one obtains corrections of order ⇠ ...%

as shown in Fig. 1. Notice that cH , which is not generated in the MSSM at the tree-level

since there is no heavy singlet states, is not a↵ected by the RGE evolution and therefore is

also zero at the leading-log approximation.

Universal theories: In universal theories the contributions to Higgs couplings are mainly

encoded in 3 parameters: cH , cy ⌘ cyu = cyd and c6. The loop e↵ects studied here give a

modification of these parameters at low-energy. In particular we find a 20% reduction of cH
and cy and more importantly a breaking of universality due to the top Yukawa coupling. This

gives

cyt(mh) = cyb(mh)

✓

1� 8y2t
16⇡2

log
⇤

mh

◆

� 3y2t cH
16⇡2

log
⇤

mh

' 0.88cyb(mh)� 0.05cH ,

cyb(mh) = cy⌧ (mh)

✓

1� y2t
16⇡2

log
⇤

mh

◆

' 0.98cy⌧ (mh) ,

(78)

for ⇤ = 2 TeV. This is a sizeable departure from universality for cyt that has to be taken into

account when fitting these models to data. Also it is worth noticing that in models in which

only cH is generated (models with only heavy singlets) the value of cyf is also very small at

low-energies, cyf (mh) ' 0.

Models with a non-SM top: The top is the only quark whose properties are not

yet measured at high precision, allowing then sizeable deviations from their SM predictions.

There are also theoretical motivations to expect the top to be the quark with the largest

deviations from the SM predictions, as it is the quark with the largest coupling to the Higgs.

This is specially true in composite Higgs models where one expects the top to show also

certain degree of compositeness. In these examples we can expect order-one coe�cients for

cR, c
(3)
L , cL and cLR that can e↵ect, at the one loop-level, the Higgs coe�cients cH and cyf . As

it is clear from Eq. (64) the e↵ects of cR on the RGE evolution of cH and cyf are very small.
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Figure 1: Relative modification of the Higgs coupling to fermions, �ghff/ghff = �cyf ⇠,

Eq. (26), at tree-level (dashed line) and after including RGE e↵ects from ⇤ to the electroweak

scale (solid lines) as a function of tan � in an MSSM scenario with ⇤ = MH0 = 600 GeV and

unmixed stops heavy enough to reproduce mh = 125 GeV. Left plot: top coupling. Right plot:

bottom (lower solid line) and tau (upper solid line) couplings.

large enough to get mh ' 125 GeV through the well-known loop corrections to the Higgs

quartic coupling, which at one-loop and zero stop mixing read:

�(mh) =
1

8
(g2 + g02) cos2 2� +

3y4t
16⇡2

log
M2

˜t

M2

t

, (75)

which is precise enough for our illustrative purposes. For consistency we must also include

similar radiative corrections to �0, which read at one-loop:

�0(MH0) =
1

8
(g2 + g02) sin 4� � 3y4t

8⇡2t�
log

M2

˜t

M2

H0
. (76)

This gives the value of �0 that we can then plug in Eq. (74) to obtain the RG-improved

corrections for ghff induced by integrating out the heavy Higgses. The result is shown as

a function of t� in Fig. 1, which compares the tree-level result (dashed lines) and the one-

loop result (solid lines) which takes into account the running from ⇤ = MH0 down to the

electroweak scale mh. One sees that the e↵ect of the running can be quite significant, easily

⇠ 50% or more. The importance of this e↵ect can be further appreciated in Fig. 2, which

shows the lower bound one could set on MH0 from an upper bound on �ghbb/ghbb, the deviation

of ghbb from its SM value. By comparing the tree-level bound (dashed line) and the one-loop

bound (solid line) one sees that the bound is shifted significantly by the inclusion of the RG

corrections from MH0 to mh.

Finally, notice that cH , which is not generated in the MSSM at tree-level since there are

no heavy R-even singlet states, is not generated by the RGE evolution and therefore is also
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Figure 2: Lower bound on MH0 as a function of the upper bound on the relative deviation

�ghbb/ghbb, in an MSSM scenario with tan � = 5 and unmixed stops heavy enough to reproduce

mh = 125 GeV. The dashed line corresponds to a tree-level analysis (parameters calculated at

the scale MH0), while the solid line includes the RG running from MH0 down to mh.

zero in the leading-log approximation.

Universal theories and composite Higgs models: Universal theories predict cyu = cyd =

cye . This prediction is modified by the evolution of these coe�cients from the scale ⇤, where

they are generated, down to the electroweak scale. In particular, for ⇤ = 2 TeV, we find that

the breaking of universality due to the top Yukawa coupling gives

cyt(mh) = cyb(mh)

✓

1 � 8y2t
16⇡2

log
⇤

mh

◆

� 3y2t cH
16⇡2

log
⇤

mh

' 0.88cyb(mh) � 0.05cH ,

cyb(mh) = cy⌧ (mh)

✓

1 � y2t
16⇡2

log
⇤

mh

◆

' 0.98cy⌧ (mh) .

(77)

This is a sizeable departure from universality for cyt that will have to be taken into account

when fitting these models to data. Also it is worth noticing that in models in which only cH
is generated (models with only heavy singlets) and cyf (⇤) = 0, the value of cyf is also very

small at low-energies, cyf (mh) ' 0. In the minimal composite Higgs model, we also have the

prediction cH = 1 at ⇤ ⇠ 2 TeV [4]. We find that the RG e↵ects give a ⇠ 20% reduction of

this prediction.

Models with a non-SM top: The top is the only quark whose properties are not yet

measured at high precision, allowing then sizeable deviations from their SM predictions.

There are also theoretical motivations to expect the top to be the quark with the largest
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since there is no heavy singlet states, is not a↵ected by the RGE evolution and therefore is

also zero at the leading-log approximation.
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account when fitting these models to data. Also it is worth noticing that in models in which

only cH is generated (models with only heavy singlets) the value of cyf is also very small at

low-energies, cyf (mh) ' 0.

Models with a non-SM top: The top is the only quark whose properties are not

yet measured at high precision, allowing then sizeable deviations from their SM predictions.

There are also theoretical motivations to expect the top to be the quark with the largest

deviations from the SM predictions, as it is the quark with the largest coupling to the Higgs.

This is specially true in composite Higgs models where one expects the top to show also

certain degree of compositeness. In these examples we can expect order-one coe�cients for
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L , cL and cLR that can e↵ect, at the one loop-level, the Higgs coe�cients cH and cyf . As

it is clear from Eq. (64) the e↵ects of cR on the RGE evolution of cH and cyf are very small.
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�ghbb/ghbb, in an MSSM scenario with tan � = 5 and unmixed stops heavy enough to reproduce

mh = 125 GeV. The dashed line corresponds to a tree-level analysis (parameters calculated at

the scale MH0), while the solid line includes the RG running from MH0 down to mh.

zero in the leading-log approximation.

Universal theories and composite Higgs models: Universal theories predict cyu = cyd =

cye . This prediction is modified by the evolution of these coe�cients from the scale ⇤, where

they are generated, down to the electroweak scale. In particular, for ⇤ = 2 TeV, we find that

the breaking of universality due to the top Yukawa coupling gives

cyt(mh) = cyb(mh)
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This is a sizeable departure from universality for cyt that will have to be taken into account

when fitting these models to data. Also it is worth noticing that in models in which only cH
is generated (models with only heavy singlets) and cyf (⇤) = 0, the value of cyf is also very

small at low-energies, cyf (mh) ' 0. In the minimal composite Higgs model, we also have the

prediction cH = 1 at ⇤ ⇠ 2 TeV [4]. We find that the RG e↵ects give a ⇠ 20% reduction of

this prediction.

Models with a non-SM top: The top is the only quark whose properties are not yet

measured at high precision, allowing then sizeable deviations from their SM predictions.

There are also theoretical motivations to expect the top to be the quark with the largest
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