On the quantum structure of indirect BSM effects

Alex Pomarol, CERN & UAB (Barcelona)

Little story about <u>zeros</u>...

Little story about <u>zeros</u>...

...on certain one-loop quantum corrections in EFT's that explicit calculations show that cancel for no "reason"

Little story about <u>zeros</u>...

...on certain one-loop quantum corrections in EFT's that explicit calculations show that cancel for no "reason" Interest?

Little story about <u>zeros</u>...

...on certain one-loop quantum corrections in EFT's that explicit calculations show that cancel for no "reason"

Interest?

The SM is an EFT with higher-dim operators (what we call BSM!) At the quantum-level <u>operator mix</u>:

 To understand these mixings is crucial in order to see how restrictions can arise from well-measured quantities: S, T, hγγ, ...

. .

• Effects can be important in the future to unravel the UV model

Little story about <u>zeros</u>...

...on certain one-loop quantum corrections in EFT's that explicit calculations show that cancel for no "reason"

Interest?

The SM is an EFT with higher-dim operators (what we call BSM!) At the quantum-level <u>operator mix</u>:

 To understand these mixings is crucial in order to see how restrictions can arise from well-measured quantities: S, T, hγγ, ...

. .

• Effects can be important in the future to unravel the UV model

We will see that an interesting set of <u>one-loop non-renormalization</u> <u>results</u> can be derived (the choice of the correct basis is crucial)

EFT captures the (indirect) impact of BSMs

Under the assumption that the new-physics scale Λ is heavier than M_w, we can perform an expansion in derivatives and SM fields (assuming lepton & baryon number)

$$\mathcal{L}_{\text{eff}} = \frac{\Lambda^4}{g_*^2} \mathcal{L} \left(\frac{D_{\mu}}{\Lambda} , \frac{g_H H}{\Lambda} , \frac{g_{f_{L,R}} f_{L,R}}{\Lambda^{3/2}} , \frac{g F_{\mu\nu}}{\Lambda^2} \right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$

$$Ieading$$

$$Ieading$$

$$deviations$$
from the SM

One-loop mixing of dim-6 operators

Interesting situations could arise from mixing:

Tree-level One-loop induced

 \mathcal{O}_{tree}

 \mathcal{O}_{loop}

at Λ

Due to the log, dominant effect from running!!

 \blacktriangleright log $(3 \text{ TeV}/m_W)^2 \sim 7$

One-loop mixing of dim-6 operators Example I: SM after integrating out W/Z: **Tree-level One-loop induced**

 $\mathcal{O}_{tree} = (\bar{c}_L \gamma^\mu b_L) (\bar{s}_L \gamma^\mu c_L) \qquad \qquad \mathcal{O}_{loop} = \bar{s}_L \sigma^{\mu\mu} b_R F_{\mu\nu}$

B.Grinstein, R..Springer and M.Wise 90

no explanation of the reason of why this happens!

One-loop mixing of dim-6 operators Example 2: Hyy from BSMs (SUSY/SILH) Tree-level One-loop induced $\mathcal{O}_{tree} = (\partial_{\mu}|H|^2)^2$ $\mathcal{O}_{loop} = |H|^2 B^{\mu\nu} B_{\mu\nu}$ \hookrightarrow affects hVV \hookrightarrow affects hyy

Otherwise the analysis of Higgs couplings from ATLAS/CMS (the (in)famous "kappas") would have had a very different interpretation in BSMs!

"Loop" operators

<u>defined</u> as arising from renormalizable BSMs

 $H^{\dagger} \bar{f}_{R} \sigma^{\mu\nu} t^{a} f_{L} F^{a}_{\mu\nu} \longrightarrow \text{ fermion dipoles}$ $H^{\dagger} t^{a} t^{b} H F^{a}_{\mu\nu} F^{b \, \mu\nu} \longrightarrow \text{ hyy, hZy,hGG}$ $f^{abc} F^{a \, \nu}_{\mu} F^{b \, \rho}_{\nu} F^{c \, \mu}_{\rho} \longrightarrow \text{ TGC}$

+ CP-violating

"Loop" operators

<u>defined</u> as arising from renormalizable BSMs

"Current-current"

operators

$$J_i \cdot J_j$$

$$J_{H}^{a\,\mu} = H^{\dagger} t^{a} D^{\mu} H$$
$$J_{f}^{a\,\mu} = \bar{f} t^{a} \gamma^{\mu} f$$

, ...

 $\begin{aligned} H^{\dagger} \bar{f}_{R} \sigma^{\mu\nu} t^{a} f_{L} F^{a}_{\mu\nu} \\ H^{\dagger} t^{a} t^{b} H F^{a}_{\mu\nu} F^{b\,\mu\nu} \\ f^{abc} F^{a\,\nu}_{\mu} F^{b\,\rho}_{\nu} F^{c\,\mu}_{\rho} \\ + \text{CP-violating} \end{aligned}$

"Loop" operators

<u>defined</u> as arising from renormalizable BSMs

 $H^{\dagger} \bar{f}_{R} \sigma^{\mu\nu} t^{a} f_{L} F^{a}_{\mu\nu}$ $H^{\dagger} t^{a} t^{b} H F^{a}_{\mu\nu} F^{b\,\mu\nu}$ $f^{abc} F^{a\,\nu}_{\mu} F^{b\,\rho}_{\nu} F^{c\,\mu}_{\rho}$

+ CP-violating

explicit calculations show no mixing <u>"Current-current"</u>

operators

 $J_i \cdot J_j$

 $J_{H}^{a\,\mu} = H^{\dagger} t^{a} D^{\mu} H$ $J_{f}^{a\,\mu} = \bar{f} t^{a} \gamma^{\mu} f$

, ...

J. Elias-Miro, J.R. Espinosa, E. Masso, A.P. 13; Jenkins, Manohar, Trott 13

One exception to this rule:

$$\mathcal{O}_{yy} = \left(ar{f}_R t^a f_L
ight) \left(ar{f}_R t^a f_L
ight) \, igaslambda \, \psi^4$$
 in weyl notation

Holomorphy:

In the basis:
$$\mathcal{O}_{3F_{\pm}} = \mathcal{O}_{3F} \mp i\mathcal{O}_{3\tilde{F}}$$

 $\mathcal{O}_{FF_{\pm}} = \mathcal{O}_{FF} \mp i\mathcal{O}_{F\tilde{F}}$ $\left\{ \begin{array}{l} \mathcal{O}_{3F} = f^{abc}F^{a\,\nu}_{\mu\nu}F^{b\,\rho}F^{c\,\mu}_{\rho}\\ \mathcal{O}_{FF} = H^{\dagger}t^{a}t^{b}HF^{a}_{\mu\nu}F^{b\,\mu\nu} \end{array} \right.$

The one-loop anomalous dimensions of the complex Wilson-coefficients do not depend on their complex-conjugates:

J.Elias-Miro, J.R.Espinosa, A.P. 15

$$c_i = \{c_{3F_+}, c_{FF_+}, c_D, c_y, c_{yy}, c_R^{ud}\}$$

Only one exception to this rule was found <u>from explicit calculations</u> (I out of 36 !)

w suggests a possible explanation using <u>supersymmetry</u>:

J.Elias-Miro, J.R.Espinosa, A.P. 15

Supersymmetry can be an useful tool even for <u>non</u>-supersymmetric theories

for an alternative approach, see Cheung-Shen 15 using Spinor Helicity formalism

e.g.: QCD n-gluon scattering at tree-level:

Same as in Susy-QCD as gauginos appear at the loop-level !

• easy to prove: $A_n^{tree}[g^-g^+g^+\cdots g^+] = A_n^{tree}[g^+g^+\cdots g^+] = 0$

as it was shown by long explicit calculations!

Dim-4 operators:

SM — MSSM (with one Higgs)

if both y_u & y_d are simultaneously present, a source of susy-breaking is needed

$$\int d^2\theta y_u H Q U + \int d^4\theta y_d H^{\dagger} Q D \eta^{\dagger} \qquad \eta \stackrel{\bigstar}{\equiv} \theta^2$$

Dim-4 operators:

SM — MSSM (with one Higgs)

if both y_u & y_d are simultaneously present, a source of susy-breaking is needed

$$\int d^2\theta y_u HQU + \int d^4\theta y_d H^{\dagger}QD\eta^{\dagger} \qquad \eta \stackrel{\bigstar}{\equiv} \theta^2$$

Dim-6 operators:

Loop operators — F-term of non-chiral operators

e.g. $\mathcal{O}_{FF} = |\phi|^2 F_{\mu\nu} F^{\mu\nu}$ $\longrightarrow \Phi^{\dagger} e^{V_{\Phi}} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} = -\frac{1}{2} \theta^2 \mathcal{O}_{FF} + \cdots$

Dim-4 operators: SM — MSSM (with one Higgs) if **both** y_u & y_d are simultaneously present, a source of susy-breaking is needed $\int d^2\theta y_u HQU + \int d^4\theta y_d H^{\dagger}QD\eta^{\dagger} \qquad \eta \stackrel{\bigstar}{\equiv} \theta^2$ **Dim-6 operators:** Loop operators F-term of non-chiral operators e.g. $\mathcal{O}_{FF} = |\phi|^2 F_{\mu\nu} F^{\mu\nu}$ $\longrightarrow \Phi^{\dagger} e^{V_{\Phi}} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} = -\frac{1}{2} \theta^2 \mathcal{O}_{FF} + \cdots$ Break susy! $\int d^4\theta \Phi^{\dagger} e_{\Phi}^V \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} \eta^{\dagger}$

Dim-4 operators: SM — MSSM (with one Higgs) if **both** y_u & y_d are simultaneously present, a source of susy-breaking is needed $\int d^2\theta y_u HQU + \int d^4\theta y_d H^{\dagger}QD\eta^{\dagger} \quad \eta \equiv \theta^2$ **Dim-6 operators: Loop operators** \longrightarrow F-term of non-chiral operators e.g. $\mathcal{O}_{FF} = |\phi|^2 F_{\mu\nu} F^{\mu\nu}$ $\longrightarrow \Phi^{\dagger} e^{V_{\Phi}} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} = -\frac{1}{2} \theta^2 \mathcal{O}_{FF} + \cdots$ Break susy! $\int d^4\theta \Phi^{\dagger} e_{\Phi}^V \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} \eta^{\dagger}$

same for fermion dipoles (ffF) & vector dipoles (F³)

Loop operators — F-term of non-chiral operators

$$\mathcal{O}_{FF} = |\phi|^2 F_{\mu\nu} F^{\mu\nu} \longrightarrow \Phi^{\dagger} e^{V_{\Phi}} \Phi \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} = -\frac{1}{2} \theta^2 \mathcal{O}_{FF} + \cdots$$

$$\mathcal{O}_D = \phi(q\sigma^{\mu\nu}u)F_{\mu\nu} \qquad \longrightarrow \quad \Phi\left(Q\overset{\leftrightarrow}{\mathcal{D}}_{\alpha}U\right)\mathcal{W}^{\alpha} = -\theta^2\mathcal{O}_D + \cdots$$

 $\mathcal{O}_{3F} = f^{abc} F^{a\,\nu}_{\mu} F^{b\,\rho}_{\nu} F^{c\,\mu}_{\rho} \longrightarrow f^{abc} \mathcal{D}^{\beta} \mathcal{W}^{a\,\alpha} \mathcal{W}^{b}_{\beta} \mathcal{W}^{c}_{\alpha} = i\theta^2 \mathcal{O}_{3F} + \cdots$

Are there "tree" operators of the same class (<u>Susy protected</u>: arising from F-term of non-chiral operators)?

$$\mathcal{O}_{y_u} = |\phi|^2 \phi q u \longrightarrow (\Phi^{\dagger} e^{V_{\Phi}} \Phi) \Phi Q U = \theta^2 \mathcal{O}_{y_u} + \cdots$$
$$\mathcal{O}_{y_u y_d} = q u q d \longrightarrow (Q U) \mathcal{D}^2 (Q D) = -4\theta^2 \mathcal{O}_{y_u y_d} + \cdots$$

the rest from susy-preserving term or with other spurion dependence

The SM EFT O_{yy} operators:

$$\mathcal{O}_{y_u y_d} = (\bar{Q}_L^r u_R) \epsilon_{rs} (\bar{Q}_L^s d_R),$$

$$\mathcal{O}_{y_u y_d}^{(8)} = (\bar{Q}_L^r T^A u_R) \epsilon_{rs} (\bar{Q}_L^s T^A d_R),$$

$$\mathcal{O}_{y_u y_e} = (\bar{Q}_L^r u_R) \epsilon_{rs} (\bar{L}_L^s e_R),$$

$$\mathcal{O}_{y_u y_e}' = (\bar{Q}_L^r \alpha e_R) \epsilon_{rs} (\bar{L}_L^s u_R^\alpha),$$

c) Leptoquark (3,2)-7/6

Holomorphy:

J.Elias-Miro, J.R.Espinosa, A.P. 16

Holomorphy:

Operators with η^{\dagger} cannot generate those with η

Exception: Extra spurions from (susy-breaking) dim-4 operators (must be $\propto y_u y_d$):

 $\mathcal{O}_{y_u} \leftrightarrow \mathcal{O}_{y_d}$

as explicit calculations show

Simple spurion analysis with supersymmetry explains the one-loop mixing pattern observed in the SM EFT

But the SM is not supersymmetric...

Are superpartners playing a crucial role in the zeros?

When in the susy limit we have zero mixing, one can just look at loops with

either SM fields or super-partners: take the easiest!

But the SM is not supersymmetric... Are superpartners playing a crucial role in the zeros?

When in the susy limit we have zero mixing, one can just look at loops with

either SM fields or super-partners: take the easiest!

Holomorphy:

Again, we can either look at **SM field** loop or **super-partner** loop: The simplest: the diagrams with fermions, as you can follow the fermion-line to see if it changes direction. No contribution is found!

Holomorphy is preserved beyond SUSY

This analysis can lead to prove:

$$\mathcal{O}_{+} = [2\mathcal{O}_{r} + \mathcal{O}_{H} - \mathcal{O}_{T}] = D_{\mu}(H_{i}^{\dagger}H_{j}^{\dagger})D^{\mu}(H^{i}H^{j}) \qquad \mathcal{O}_{4f} = \left(\bar{f}\gamma^{\mu}t^{a}f\right)\left(\bar{f}\gamma_{\mu}t^{a}f\right)$$
$$\mathcal{O}_{-} = \frac{1}{2}\left[\mathcal{O}_{H} - \mathcal{O}_{T}\right] = |H^{\dagger}D_{\mu}H|^{2} \qquad \mathcal{O}_{Hf} = i(H^{\dagger}t^{a})_{i}(\bar{f}t^{a})_{j}\gamma^{\mu}D_{\mu}(H^{i}f^{j})$$

SUSY embedding defines the EFT basis where the mixing of operators is the most minimal

From less to more "diagonal" basis at the one-loop:

Best basis for the QCD Chiral lagrangian

Ordinary basis:

$$\mathcal{L}_{\chi} = \frac{f^2}{4} \langle D^{\mu}UD_{\mu}U \rangle + \cdots - iL_9 \langle F_R^{\mu\nu}D_{\mu}UD_{\nu}U^{\dagger} + F_L^{\mu\nu}D_{\mu}U^{\dagger}D_{\nu}U \rangle + L_{10} \langle U^{\dagger}F_R^{\mu\nu}UF_{L\mu\nu} \rangle$$

Better basis:

Conclusions

- Dim-6 operator mixing is crucial to understand the impact of BSM on the SM
- Supersymmetry helps to group the operators that mainly mix among themselves
- Exercise: From the measurement B→µµ, B→Xγ, which deviations on TGC constrains each experiment?
 Can top anomalous-couplings affect S?
- Open questions: Beyond one-loop, relation with Spinor Helicity formalism (Cheung-Shen 15), ...

Operators		SSB spurion	Super-operators
JJ-operators	$\mathcal{O}_{+} = D_{\mu}(H_{i}^{\dagger}H_{j}^{\dagger})D^{\mu}(H^{i}H^{j})$		$(H^{\dagger}e^{V_H}H)^2$
	$\mathcal{O}_{4f} = \left(\bar{f}\gamma^{\mu}t^{a}f\right)\left(\bar{f}\gamma_{\mu}t^{a}f\right)$	η^0	$(F^{\dagger}t^{a}e^{V_{F}}F)(F^{\dagger}t^{a}e^{V_{F}}F)$
	$\mathcal{O}_{Hf} = i(H^{\dagger}t^{a})_{i}(\bar{f}t^{a})_{j}\gamma^{\mu}D_{\mu}(H^{i}f^{j})$		$\left[(H^{\dagger}t^{a}e^{V_{H}}H)(F^{\dagger}t^{a}e^{V_{F}}F) \right]$
	$\mathcal{O}_R^{ud} = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tilde{H})(\bar{d}_R \gamma^{\mu} u_R)$	$ar{\mathcal{D}}_{\dotlpha}\eta^\dagger$	$\begin{bmatrix} H^{\dagger}\bar{\mathcal{D}}^{\dot{\alpha}}\tilde{H}U^{\dagger}e^{V_{D}}D \end{bmatrix}$
	$\mathcal{O}_{-} = H^{\dagger}D_{\mu}H ^{2}$	$ ar{\mathcal{D}}_{\dotlpha}\eta^\dagger ^2$	$ H^{\dagger}e^{V_{H}}\mathcal{D}_{lpha}H ^{2}$
	$\mathcal{O}_6 = H ^6$	$ \eta ^2$	$(H^{\dagger}e^{V_H}H)^3$
	$\mathcal{O}_y = H ^2 H \bar{f}_R f_L$		$(H^{\dagger}e^{V_{H}}H)HFF$
	$\mathcal{O}_{yy} = \left(\bar{f}_R t^a f_L\right) \left(\bar{f}_R t^a f_L\right)$		$(Ft^aF)\mathcal{D}^2(Ft^aF)$
Loop-operators	$\mathcal{O}_D = H^\dagger \bar{f}_R \sigma^{\mu\nu} t^a f_L F^a_{\mu\nu}$	η^{\dagger}	$ \begin{array}{c} & \overset{\leftarrow}{} & \overset{\leftarrow}{\mathcal{D}}_{\alpha}F) \mathcal{W}^{a\alpha} \\ & H(Ft^a \mathcal{D}_{\alpha}F) \mathcal{W}^{a\alpha} \end{array} \end{array} $
	$\mathcal{O}_{FF_+} = H^{\dagger} t^a t^b H F^a_{\mu\nu} (F^{b\mu\nu} - i\tilde{F}^{b\mu\nu})$		$(H^{\dagger}t^{a}t^{b}e^{V_{H}}H)\mathcal{W}^{a\alpha}\mathcal{W}^{b}_{\alpha}$
	$\mathcal{O}_{3F_{+}} = f^{abc} F^{a\nu}_{\mu} F^{b\rho}_{\nu} (F^{c\mu}_{\rho} - i\tilde{F}^{c\mu}_{\rho})$		$f^{abc}\mathcal{D}^{eta}\mathcal{W}^{alpha}\mathcal{W}^{b}_{eta}\mathcal{W}^{c}_{lpha}$

Table 1: Left: Basis of dimension-six SM operators classified as JJ-operators and loop-operators. We also distinguish those that can arise from a supersymmetric D-term (η^0) from those that break supersymmetry either by an spurion $\overline{\mathcal{D}}_{\dot{\alpha}}\eta^{\dagger}$, η^{\dagger} , $|\overline{\mathcal{D}}_{\dot{\alpha}}\eta^{\dagger}|^2$ or $|\eta|^2$. We denote by $F^a_{\mu\nu}$ ($\widetilde{F}^a_{\mu\nu}$) any SM gauge (dual) field-strength. The t^a matrices include the $U(1)_Y$, $SU(2)_L$ and $SU(3)_c$ generators, depending on the quantum numbers of the fields involved. Fermion operators are written schematically with $f = \{Q_L, u_R, d_R, L_L, e_R\}$. Right: For each operator in the left column, we provide the super-operator at which it is embedded.

Different Basis

From SILH by using:

Using also EoM:

$$\mathcal{O}_B = \mathcal{O}_{HB} + \frac{1}{4}\mathcal{O}_{WB} + \frac{1}{4}\mathcal{O}_{BB} ,$$

$$\mathcal{O}_W = \mathcal{O}_{HW} + \frac{1}{4}\mathcal{O}_{WW} + \frac{1}{4}\mathcal{O}_{WB}$$

Hawigara et al. basis: $\mathcal{O}_W, \mathcal{O}_B \to \mathcal{O}_{WW}, \mathcal{O}_{WB}$

Grzadkowski etal. basis: $\mathcal{O}_W, \mathcal{O}_B, \mathcal{O}_{HW}, \mathcal{O}_{HB} \rightarrow \mathcal{O}_{WW}, \mathcal{O}_{WB}, \mathcal{O}_L^{(3)}, \mathcal{O}_L$

$$c_W \mathcal{O}_W \quad \leftrightarrow \quad c_W \frac{g^2}{g_*^2} \left[-\frac{3}{2} \mathcal{O}_H + 2\mathcal{O}_6 + \frac{1}{2} \mathcal{O}_y + \frac{1}{4} \sum_f \mathcal{O}_L^{(3)f} \right] ,$$

$$c_B \mathcal{O}_B \quad \leftrightarrow \quad c_B \frac{g'^2}{g_*^2} \left[-\frac{1}{2} \mathcal{O}_T + \frac{1}{2} \sum_f \left(Y_L^f \mathcal{O}_L^f + Y_R^f \mathcal{O}_R^f \right) \right] ,$$

Affecting well-measured quantities by operator mixing under the RG flow:

J. Elias-Miro, J.R. Espinosa, E. Masso, A.P. 13

$$16\pi^{2}\gamma_{c_{T}} = (4N_{c}y_{t}^{2} - 9g^{2} - 3g'^{2})c_{T} + \frac{3}{2}g'^{2}c_{H} + 4N_{c}y_{t}^{2}(c_{R} - c_{L}), \qquad (65)$$

$$16\pi^{2}\gamma_{c_{R}} = \left[2(4 + N_{c})y_{t}^{2} - 9g^{2} - \frac{8}{3}g'^{2}\right]c_{R} + \frac{8}{9}g'^{2}\left[(N_{c} + 1)c_{RR} + N_{c}c_{LR}\right]$$

$$+2y_{t}^{2}\left[\frac{1}{4}c_{H} - c_{L} + N_{c}c_{LR} - 2(N_{c} + 1)c_{RR}\right], \qquad (66)$$

$$16\pi^{2}\gamma_{c_{L}} = \left[2(2+N_{c})y_{t}^{2} - 9g^{2} - \frac{8}{3}g'^{2}\right]c_{L} + \frac{2}{9}g'^{2}\left[(2N_{c}+1)c_{LL} + C_{F}c_{LL}^{(8)} + \frac{N_{c}}{2}c_{LR}\right] + y_{t}^{2}\left\{-\frac{1}{4}c_{H} - c_{R} - 9c_{L}^{(3)} - 2N_{c}c_{LR} + 4N_{c}c_{LL} + 2\left[c_{LL} + C_{F}c_{LL}^{(8)}\right]\right\}, \quad (67)$$

$$16\pi^{2}\gamma_{c_{L}^{(3)}} = \left[2(1+N_{c})y_{t}^{2} - \frac{17}{3}g^{2} - 3g'^{2}\right]c_{L}^{(3)} + \frac{2}{3}g^{2}\left[c_{LL} + C_{F} c_{LL}^{(8)}\right] + y_{t}^{2}\left\{\frac{1}{4}c_{H} - 3c_{L} - 2\left[c_{LL} + C_{F} c_{LL}^{(8)}\right]\right\},$$
(68)

$$16\pi^2 \gamma_{c_W} = \frac{1}{3} g_H^2 \left[-(c_H + c_T) + 16N_c c_L^{(3)} \right],$$
(69)

$$16\pi^2 \gamma_{c_B} = \frac{1}{3} g_H^2 \left[-(c_H + 5c_T) + \frac{8}{3} N_c \left(2c_R + c_L \right) \right] .$$
(70)

T:
$$\Delta c_T = -0.0030 c_H + 0.16 (c_L - c_R) \lesssim 0.002/\xi$$
,
S: $\Delta (c_B + c_W) = 0.010 c_H - 0.083 c_R - 0.041 c_L - 0.25 c_L^{(3)} \lesssim 0.003 \Lambda^2 / M_w^2$,
Zbb: $\Delta [c_L + c_L^{(3)}] = 0.014 c_R - 0.031 c_L + 0.057 c_L^{(3)} - 0.17 c_{LL} - 0.0064 c_{LL}^{(8)} + 0.081 c_{LR} \lesssim 0.002/\xi$.

operators highly constrained

J. Elias-Miro, J.R. Espinosa, E. Masso, A.P. 13

hyy:
$$\kappa_{\gamma\gamma}(m_h) = \kappa_{\gamma\gamma}(\Lambda) - \gamma_{\gamma\gamma}\log\frac{\Lambda}{m_h}$$

$$16\pi^{2}\gamma_{\gamma\gamma} = \left[6y_{t}^{2} - \frac{3}{2}(3g^{2} + {g'}^{2}) + 12\lambda\right]\kappa_{BB} + \left[\frac{3}{2}g^{2} - 2\lambda\right](\kappa_{HW} + \kappa_{HB}).$$

$$h\gamma Z:$$

$$16\pi^{2}\gamma_{\gamma Z} = \kappa_{\gamma Z}\left[6y_{t}^{2} + 12\lambda - \frac{7}{2}g^{2} - \frac{1}{2}{g'}^{2}\right] + (\kappa_{HW} + \kappa_{HB})\left[2g^{2} - 3e^{2} - 2\lambda\cos(2\theta_{w})\right]$$

dominant in certain scenarios $\kappa_{\text{BB}}{\approx}0\,$ & κ_{HW} - $\kappa_{\text{HB}}{\approx}0$ at Λ

e.g. **H** as **PGB**: • $H \rightarrow H+c$ implies $K_{BB} = 0$

Prediction:

• Left-right symmetry implies KHW=KHB

$$\frac{\delta\Gamma(h\to\gamma\gamma)}{\Gamma(h\to\gamma\gamma)}\simeq 1.5\frac{\delta\Gamma(h\to\gamma Z)}{\Gamma(h\to\gamma Z)}$$

Separation of operators depending on Tree-level vs Loop origin

• Holographic models = Strongly-coupled in the large N, large g²N limit

• Little Higgs = SU(n)

"tree-level" operators (or "current-current"):

can arise from integrating out massive states spin=0,1/2.1

Other interesting one-loop effects:

J. Elias-Miro, J.R. Espinosa, E. Masso, A.P. 13

Breaking of universality:

$$c_{y_t}(m_h) = c_{y_b}(m_h) \left(1 - \frac{8y_t^2}{16\pi^2} \log \frac{\Lambda}{m_h} \right) - \frac{3y_t^2 c_H}{16\pi^2} \log \frac{\Lambda}{m_h} \simeq 0.88 c_{y_b}(m_h) - 0.05 c_H ,$$

$$c_{y_b}(m_h) = c_{y_\tau}(m_h) \left(1 - \frac{y_t^2}{16\pi^2} \log \frac{\Lambda}{m_h} \right) \simeq 0.98 c_{y_\tau}(m_h) , \qquad \Lambda = 2 \text{ TeV},$$

Other interesting one-loop effects:

J. Elias-Miro, J.R. Espinosa, E. Masso, A.P. 13

Breaking of universality:

$$c_{y_t}(m_h) = c_{y_b}(m_h) \left(1 - \frac{8y_t^2}{16\pi^2} \log \frac{\Lambda}{m_h} \right) - \frac{3y_t^2 c_H}{16\pi^2} \log \frac{\Lambda}{m_h} \simeq 0.88 c_{y_b}(m_h) - 0.05 c_H ,$$

$$c_{y_b}(m_h) = c_{y_\tau}(m_h) \left(1 - \frac{y_t^2}{16\pi^2} \log \frac{\Lambda}{m_h} \right) \simeq 0.98 c_{y_\tau}(m_h) , \qquad \Lambda = 2 \text{ TeV},$$

