# Constraining the Inert Doublet Model

Tania Robens

based on work with

A. Ilnicka, M. Krawczyk [arXiv:1505.04734; arXiv:1508.01671; arXiv:1510.04159;

arXiv: 1705.00225]

Michigan State University

Planck 20<sup>th</sup>17 University of Warsaw Warsaw, Poland 05/25/2017



### Inert doublet model: The model

• idea: take two Higgs doublet model, add additional Z<sub>2</sub> symmetry

$$\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S, SM \rightarrow SM$$

(⇒ implies CP conservation)

- ⇒ obtain a 2HDM with (a) dark matter candidate(s)
  - potential

$$\begin{split} V &= -\frac{1}{2} \left[ m_{11}^2 (\phi_S^\dagger \phi_S) + m_{22}^2 (\phi_D^\dagger \phi_D) \right] + \frac{\lambda_1}{2} (\phi_S^\dagger \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^\dagger \phi_D)^2 \\ &+ \lambda_3 (\phi_S^\dagger \phi_S) (\phi_D^\dagger \phi_D) + \lambda_4 (\phi_S^\dagger \phi_D) (\phi_D^\dagger \phi_S) + \frac{\lambda_5}{2} \left[ (\phi_S^\dagger \phi_D)^2 + (\phi_D^\dagger \phi_S)^2 \right], \end{split}$$

only one doublet acquires VeV v, as in SM
 (⇒ implies analogous EWSB)

### Number of free parameters

⇒ then, go through standard procedure...

- ⇒ minimize potential
- ⇒ determine number of free parameters

Number of free parameters here: 7

e.g.

$$v, M_h, M_H, M_A, M_{H^{\pm}}, \lambda_2, \lambda_{345} [= \lambda_3 + \lambda_4 + \lambda_5]$$

• v,  $M_h$  fixed  $\Rightarrow$  left with 5 free parameters

### Constraints: Theory

- $\Rightarrow$  consider all current constraints on the model  $\Leftarrow$
- Theory constraints: vacuum stability, positivity, constraints to be in inert vacuum
  - ⇒ limits on (relations of) couplings, e.g.

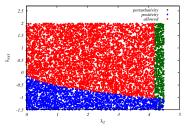
$$\lambda_1\,>\,0,\,\lambda_2\,>\,0,\,\lambda_3+\sqrt{\lambda_1\lambda_2}>0,\,\lambda_{345}+\sqrt{\lambda_1\lambda_2}\,>0$$

- perturbative unitarity, perturbativity of couplings
- **choosing**  $M_H$  as dark matter:

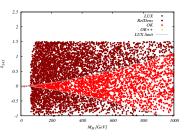
$$M_H < M_A, M_{H^{\pm}}$$



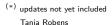
### Constraints: Experiment


$$M_h = 125.1 \,\text{GeV}, \, v = 246 \,\text{GeV}$$

- total width of  $M_h$  ( $\Gamma_h < 13 \, \mathrm{GeV}$ );  $\Rightarrow$  JHEP, 09:051, 2016
- total width of W, Z
- collider constraints from signal strength/ direct searches;  $R_{\gamma\gamma}$  and BR<sub>h  $\rightarrow$  inv</sub> from JHEP, 08:045, 2016
- electroweak precision through S, T, U
- unstable H<sup>±</sup>
- reinterpreted/ recastet LEP/ LHC SUSY searches (Lundstrom ea 2009; Belanger ea, 2015)
- dark matter relic density (upper bound)
- dark matter direct search limits (LUX)
- ⇒ tools used: 2HDMC, HiggsBounds, HiggsSignals, MicrOmegas


□ ▶ ◆ □ ▶ ◆ ■ ▶ ■ ● りゅ○Planck '17

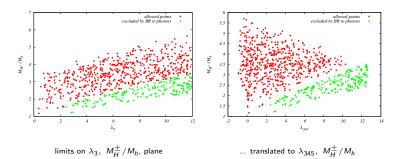
# Obvious/ direct constraints on couplings


- some constraints ⇒ direct limits on couplings
- examples: limit on  $\lambda_2$  from HHHH coupling, limit on  $\lambda_{345}(M_H)$  from direct detection



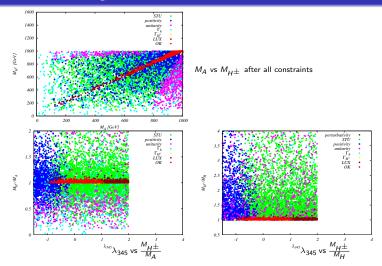
 $\lambda_2,~\lambda_{345}$  plane and limits from perturbativity,




 $M_H$ ,  $\lambda_{345}$  plane, limits from LUX<sup>(\*)</sup>





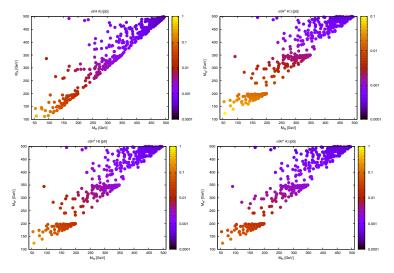

## More direct constraints on couplings

• constraints on combination of  $M_H^{\pm}/M_h$  and  $\lambda_3$  from one-loop corrected rate of  $h \to \gamma \gamma$  (constraints: ratio too low !!)



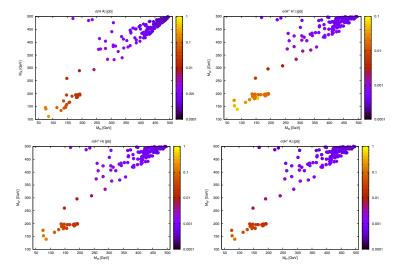


# Other constraints less obvious (interplay); result ⇒ mass degeneracies




### Benchmark selection for current LHC run

- ⇒ points need to have passed all bounds
- ⇒ total cross sections calculated using Madgraph5, IDM model file from Goudelis ea, 2013 (LO)
- ⇒ effective ggH vertex implemented by hand
  - highest production cross sections: HA;  $H^{\pm}H$ ;  $H^{\pm}A$ ;  $H^{+}H^{-}$
  - decay  $A \rightarrow HZ$  always 100 %
  - ullet decay  $H^\pm o H \, W^\pm$  usually dominant


$$p p \to H A$$
 :  $\leq 0.03 \,\mathrm{pb},$   
 $p p \to H^{\pm} H$  :  $\leq 0.03 \,\mathrm{pb},$   
 $p p \to H^{\pm} A$  :  $\leq 0.015 \,\mathrm{pb},$   
 $p p \to H^{+} H^{-}$  :  $\leq 0.01 \,\mathrm{pb}.$ 

### Benchmark planes [old]





### Benchmark planes [new; LUX/ Signal rates improved]

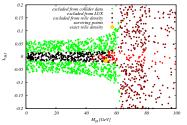




### Parameters tested at LHC: masses

- side remark: all couplings involving gauge bosons determined by electroweak SM parameters
- LHC@13 TeV does not depend on  $\lambda_2$ , only marginally on  $\lambda_{345}$
- all relevant couplings follow from ew parameters (+ derivative couplings) ⇒ in the end a kinematic test
- ullet only in expectional cases  $\lambda_{345}$  important; did not find such points
- ⇒ high complementarity between astroparticle physics and collider searches

```
(holds for M_H \geq \frac{M_h}{2})
```

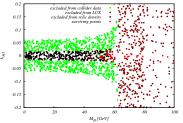



Tania Robens IDM

Inert Doublet model Predictions Appendix

# Last comment: cases where $M_H < M_h/2$ [old]

- discussion so far: decay  $h \rightarrow HH$  kinematically not accessible
- for these cases, discussion along different lines
- ⇒ extremely strong constraints from signal strength, and dark matter requirements




• additional constraints from combination of W, Z decays and recasted analysis at LEP

> no allowed point with  $M_H < 45 \,\mathrm{GeV}$ Planck '17

## Last comment: cases where $M_H \leq M_h/2$ [new]

- discussion so far: decay h → H H kinematically not accessible
- for these cases, discussion along different lines
- ⇒ extremely strong constraints from signal strength, and dark matter requirements



 $\bullet$  additional constraints from combination of W,Z decays and recasted analysis at LEP

no allowed point with  $M_H < 45 \text{ GeV}$ , as the second plane of  $^{17}$ 

### Summary

- LHC run II in full swing ⇒ exciting times ahead of us
- one important question: test Higgs sector, especially wrt extensions/ additional matter content
- from current LHC and astrophysical data: models already highly constrained
- discussion here: 2HDM with dark matter (IDM)
- identified viable regions in parameter space
- from these: predictions for current LHC run
   [A. Ilnicka, M. Krawzyk, TR, CERN Yellow Report]
  - !! stay tuned, and thanks for listening !!



# **Appendix**

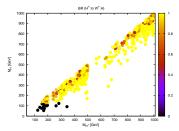


## Last comments: publications where scan has been used

- Production of Inert Scalars at the high energy e<sup>+</sup>e<sup>-</sup>
   colliders, M. Hashemi ea, JHEP 1602 (2016) 187
- Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC, P. Poulose ea, Phys.Lett. B765 (2017) 300-306
- Yellow Report IV of the Higgs Cross Section Working Group, arXiv:1610.07922
- S. Moretti ea, to appear



Tania Robens IDM Planck '17


# Very brief: parameters determining couplings (production and decay)

dominant production modes: through Z; Z,  $\gamma$ , h for AH;  $H^+H^-$  important couplings:

- ZHA:  $\sim \frac{e}{s_W c_w}$
- $ZH^+H^-$ :  $\sim e \coth(2\theta_w)$
- $\gamma H^{+} H^{-}$ :  $\sim e$
- $h H^+ H^-$ :  $\lambda_3 v$
- $H^+ W^+ H$ :  $\sim \frac{e}{s_w}$
- $H^+ W^+ A$ :  $\sim \frac{e}{s_w}$
- !! mainly determined by electroweak SM parameters !!

### Aside: typical BRs

- decay  $A \rightarrow HZ$  always 100 %
- decay  $H^{\pm} \rightarrow H W^{\pm}$



second channel  $H^{\pm} \rightarrow A W^{\pm}$ 

⇒ collider signature: SM particles and MET ←

### Total widths in IDM scenario

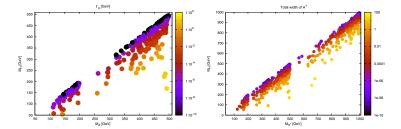
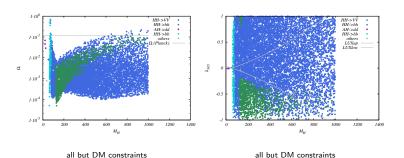
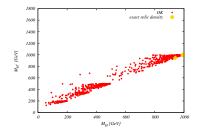




Figure : Total widths of unstable dark particles: A and  $H^{\pm}$  in plane of their and dark matter masses.

### Dark matter relic density






Tania Robens IDM Planck '17

### ... and what if I want exact DM relic density ??

### [preliminary results]

#### E.g. this means

- $m_{H^{\pm}} \in [100 \, \text{GeV}; 620 \, \text{GeV}] \text{ or } > 840 \, \text{GeV}$
- $m_H \notin [75\,\mathrm{GeV}; 120\,\mathrm{GeV}]$  or  $\sim 54\,\mathrm{GeV}$
- ...



sample plot,  $M_H$  vs.  $M_{H\pm}$ 



# Benchmarks submitted to Higgs Cross Section Working Group

all benchmarks:  $A \rightarrow ZH = 100\%$ 

Benchmark I: low scalar mass

$$M_H = 57.5\,{\rm GeV},\, M_A = 113.0\,{\rm GeV}, M_{H^\pm} = 123\,{\rm GeV}$$

$$HA: 0.371(4) \mathrm{pb}, \ H^+ \ H^-: 0.097(1) \mathrm{pb}$$

Benchmark II: low scalar mass

$$M_H = 85.5 \,\mathrm{GeV}, \ M_A = 111.0 \,\mathrm{GeV}, M_{H^\pm} = 140, \,\mathrm{GeV}$$

 $HA: 0.226(2) \mathrm{pb}, H^+H^-: 0.0605(9) \mathrm{pb}$ 

Benchmark III: intermediate scalar mass

$$M_H = 128.0 \,\mathrm{GeV}, \, M_A = 134.0 \,\mathrm{GeV}, \, M_{H^\pm} = 176.0, \,\mathrm{GeV}$$

$$HA: 0.0765(7)$$
pb,  $H^+H^-: 0.0259(3)$ pb;

Tania Robens IDM Planck '17

### Benchmark: high masses

• Benchmark IV: high scalar mass, mass degeneracy

$$M_H = 363.0 \,\mathrm{GeV}, M_A = 374.0 \,\mathrm{GeV}, M_{H^\pm} = 374.0 \,\mathrm{GeV}$$

$$H, A: 0.00122(1) \mathrm{pb}, \ H^+H^-: 0.00124(1) \mathrm{pb}$$

Benchmark V: high scalar mass, no mass degeneracy

$$M_H = 311.0 \,\text{GeV}, M_A = 415.0 \,\text{GeV}, M_{H^{\pm}} = 447.0 \,\text{GeV}$$

$$H, A: 0.00129(1) \text{pb}, H^+H^-: 0.000553(7) \text{pb}$$

# Combination of ew gauge boson total widths and LEP recast

• decays widths W, Z: kinematic regions

$$M_{A,H} + M_H^{\pm} \geq m_W, M_A + M_H \geq m_Z, 2 M_H^{\pm} \geq m_Z.$$

• LEP recast (Lundstrom 2008)

$$M_A \leq 100 \,\mathrm{GeV}, \, M_H \leq 80 \,\mathrm{GeV}, \Delta M \geq 8 \,\mathrm{GeV}$$

- combination leads to
  - $M_H \in [0; 41 \,\mathrm{GeV}]$ :  $M_A \ge 100 \,\mathrm{GeV}$ ,
  - $M_H \in [41; 45 \text{GeV}]$ :  $M_A \in [m_Z M_H; M_H + 8 \text{GeV}]$  or  $M_A \ge 100 \text{ GeV}$
  - $M_H \in [45; 80 \text{GeV}]$ :  $M_A \in [M_H; M_H + 8 \text{GeV}]$  or  $M_A > 100 \text{ GeV}$

Planck '17

## Last comment: IDM tools for LHC phenomenology

- leading order production and decay: Madgraph5, + (currently) private version for ggh (top loop in  $m_{top} \rightarrow \infty$  limit)
- in principle available: gg @ NLO, MG5 (needs however modification of current codes, not straightforward)

IDM

• IMHO: currently LO sufficient

