Conformal Electro-Weak Symmetry Breaking and Implications for Neutrinos and Dark Matter

Manfred Lindner

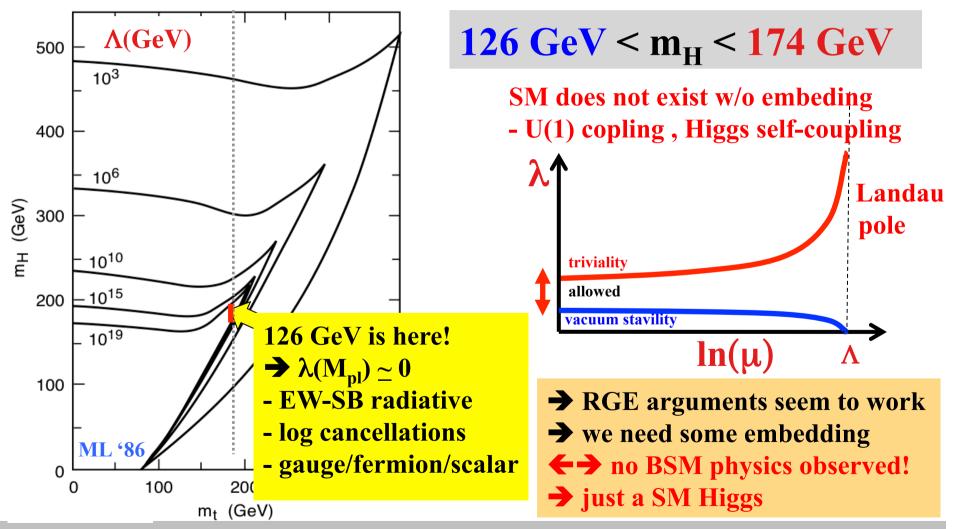
SCALARS 2015

03-07 December 2015 Warsaw, Poland

SM:Triviality and Vacuum Stability Bounds

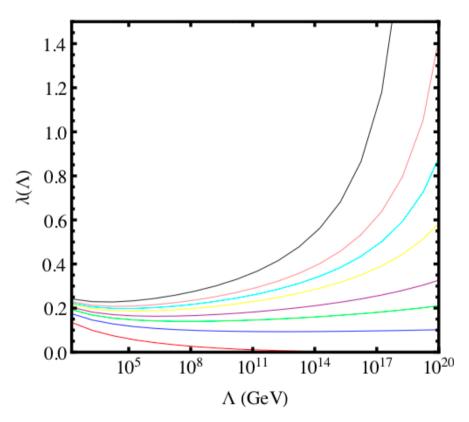
SM as QFT: A hard cutoff and the sensitivity towards Λ has no meaning

→ SM is a renormalizable QFT like QED w/o hierarchy problem



A special Value of λ at M_{planck} ?

ML '86



downward flow of RG trajectories

- → IR QFP → random λ flows to $m_H > 150 \text{ GeV}$
- \rightarrow m_H \simeq 126 GeV flows to tiny values at M_{Planck}...

Holthausen, ML Lim (2011)
Different conceivable special conditions:

- Vacuum stability $\lambda(M_{pl}) = 0$ [7–12]
- vanishing of the beta function of λ $\beta_{\lambda}(M_{pl}) = 0$ [9, 10]
- the Veltman condition [13–15] $Str \mathcal{M}^2 = 0$,

$$\delta m^{2} = \frac{\Lambda^{2}}{32\pi^{2}v^{2}} Str \mathcal{M}^{2}$$

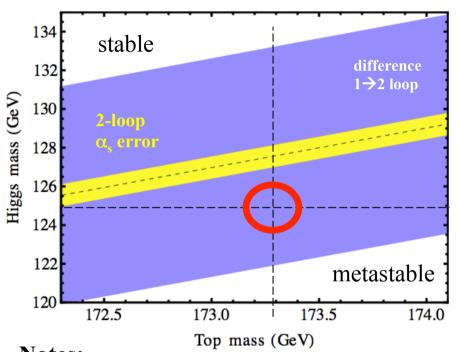
$$= \frac{1}{32\pi^{2}} \left(\frac{9}{4}g_{2}^{2} + \frac{3}{4}g_{1}^{2} + 6\lambda - 6\lambda_{t}^{2} \right) \Lambda^{2}$$

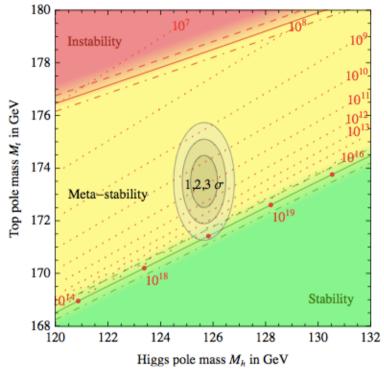
• vanishing anomalous dimension of the Higgs mass parameter

$$\gamma_m(M_{pl}) = 0, \ m(M_{pl}) \neq 0$$

Is the Higgs Potential at M_{Planck} flat?

Holthausen, ML, Lim (2011) Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia





Notes:

- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- strong cancellations between Higgs and top loops
 - \rightarrow very sensitive to exact value and error of $m_{H_s} m_{t_s} \alpha_s = 0.1184(7) \rightarrow$ currently 1.8 σ in m_t
- other physics: DM, m_v ... axions, ... Planck scale thresholds... SM+ \longleftrightarrow $\lambda = 0$
- \rightarrow top mass errors: data $\leftarrow \rightarrow$ LO-MC \rightarrow translation of $m_{pole} \rightarrow$ MS bar
- **→** be cautious about claiming that metastability is established
- → and we need to include DM, neutrino masses, ...

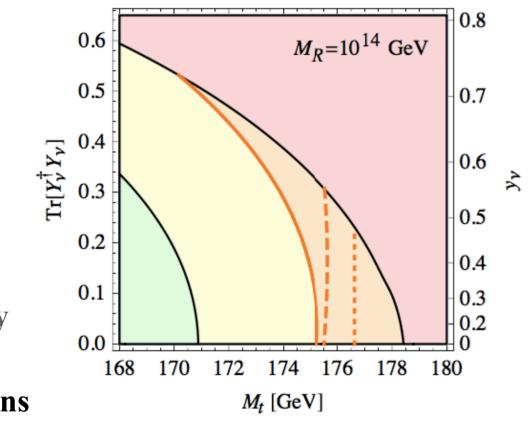
Absolute, Meta-, and Thermal Stability

ML, H. Patel, B. Radovcic, 1511.06215

- + thermal stability = stability against thermal fluctuations in early Univ.
- + sizable neutrino Yukawa couplings
- absolute stability
- T=0 quantum mechanical tunneling metastability (yellow and orange)
- instability

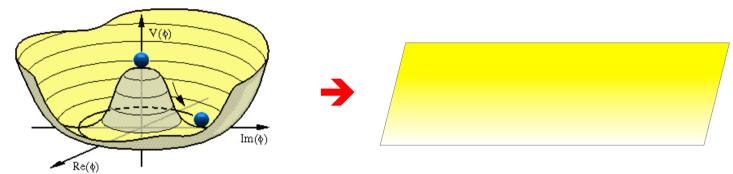
orange = instability due to thermal transitions in the early Universe with $T_{max} = 10^{18}$ GeV

→ neutrino Yukawas make things worse



Is there a Message?

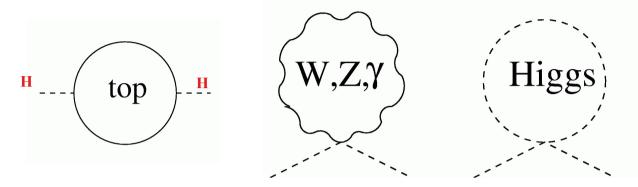
- $\lambda(M_{Planck}) \simeq 0$? \rightarrow flat potential at M_{planck}
 - → flat Mexcican hat at the Planck scale



- if in addition $\mu^2 = 0 \implies V(M_{Planck}) \simeq 0$? (Remember: μ is the only single scale of the SM)
- note also that $\lambda(M_{Planck}) \simeq 0$ implies big log cancellations
- → conformal (or shift) symmetry as solution to the HP
- → combined conformal & EW symmetry breaking
- realizations; implications for neutrino masses and DM

The naïve Hierarchy Problem

• Loops \rightarrow Higgs mass depends on 'cutoff scale Λ '



$$\delta M_H^2 = \frac{\Lambda^2}{32\pi^2 V^2} \left(6M_W^2 + 3M_Z^2 + 3M_H^2 - 12M_t^2 \right) \simeq \mathbf{O}(\Lambda^2 / 4\pi^2)$$

 $m_H \le 200$ GeV requires $\Lambda \sim \text{TeV} \implies$ new physics at TeV scale ***OR*** one must explain:

How can m_H be O(100 GeV) if Λ is huge?

BUT: What does Λ mean? For SM? Renormalizable embeddings?

\rightarrow Specify the new Physics connected to Λ

- Renormalizable QFTs with two scalars ϕ , Φ with masses m, M and a hierarchy m << M
- These scalars must interact since $\phi^+\phi$ and $\Phi^+\Phi$ are singlets
 - $\rightarrow \lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist in addition to φ^4 and Φ^4 (= portal)
- Quantum corrections $\sim M^2$ drive both masses to the (heavy) scale
 - → vastly different scalar scales are generically unstable
- Since SM Higgs exists → problem: embedding with a 2nd scalar
 - gauge extensions → must be broken...
 - GUTs \rightarrow must be broken
 - even for SUSY GUTS → doublet-triplet splitting...
 - also for fashinable Higgs-portal scenarios...

Options:

- no 2nd Higgs
- some symmetry: SUSY, ...?

Conformal Symmetry as Protective Symmetry

- Exact (unbroken) CS
 - \rightarrow absence of Λ^2 and $\ln(\Lambda)$ divergences
 - **→** no preferred scale and therefore no scale dependence
- Conformal Anomaly (CA): Quantum effects explicitly break CS existence of CA → CS preserving regularization does not exist
 - -- dimensional regularization is close to CS and gives only $ln(\Lambda)$
 - cutoff reg. \rightarrow Λ^2 terms; violates CS badly \rightarrow Ward Identity
 - **Bardeen:** maybe CS still forbids Λ² divergences
 - \rightarrow CS breaking $\leftarrow \rightarrow \beta$ -functions $\leftarrow \rightarrow \ln(\Lambda)$ divergences
 - **→** anomaly induced spontaneous EWSB

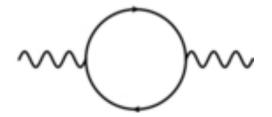
NOTE: asymmetric logic! The fact that dimensional regularization kills a Λ^2 dependence is well known. Argument goes the other way!

Looking at it in different Ways...

- Basics of QFT: Renormalization $\leftarrow \rightarrow$ commutator
 - $[\Phi(X),\Pi(y)]$ ~ $\delta^3(x-y)$ → delta funtion → distribution
 - freedom to define $\delta^*\delta$ renormalization \leftarrow counterterms
 - along come technicalities: lattice, Λ, Pauli-Villars, MS-bar, ...
- Reminder: Technicalities do not establish physical existence!
 - **→** Symmetries are essential!

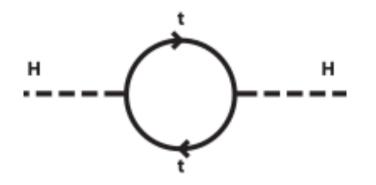
Question: Is gauge symmetry spoiled by discovering massive gauge bosons? → NO ←→ Higgs mechanism

- **→** non-linear realization of the underlying symmetry
- **→** important consequence: naïve power counting is wrong



Gauge invariance → only log sensitivity

Non-linear Realization of Conformal Symmetry



If conformal symmetry is realized in a non-linear way:

- **→** protective relic of conformal symmetry
- only log sensitivity
 - **←→** conformal anomaly
- No hierarchy problem, even though there is the the conformal anomaly only logs $\leftarrow \rightarrow \beta$ -functions
- Dimensional transmutation by log running like in QCD
 - → scalars can condense and set scales like fermions
 - → e.g. massless scalar QCD
 - → use this in Coleman Weinberg effective potential calculations \leftarrow → most attractive channels (MAC) \leftarrow → β -functions

General Comments / Expectations / Questions

- New (hidden) sector ←→ DM, neutrino masses, ...
- Question: Isn't the Planck-Scale spoiling things?
- → non-linear realization... → conformal gravity...

ideas: see e.g. 1403.4226 by A. Salvio and A. Strumia K. Hamada, 1109.6109, 0811.1647, 0907.3969, ...

- Question: What about inflation? see e.g. 1405.3987 by K. Kannike, A. Racioppi, M. Raidal or 1308.6338 by V. Khoze
- What about unification ...
- UV stability: ultimate solution should be asymptotically safe (have UV-FPs) ... → see talk by F. Sannino
- Justifying classical scale invariance
 - **\rightarrow** cancel the conformal anomaly
 - → nature of space time & observables...

Implementing the idea...

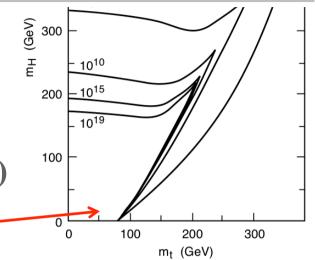
Why the minimalistic SM does not work

Minimalistic version: → SM-

SM + choose μ = 0 \leftrightarrow CS

Coleman Weinberg: effective potential

- **→** CS breaking (dimensional transmutation)
- → induces for m_t < 79 GeV a Higgs mass m_H = 8.9 GeV

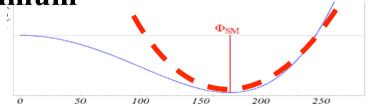


This would conceptually realize the idea, but:

Higgs too light and the idea does not work for $m_t > 79$ GeV

Reason for $m_H \ll v$: V_{eff} flat around minimum

 $\leftarrow \rightarrow m_{\rm H} \sim \text{loop factor} \sim 1/16\pi^2$



AND: We need neutrino masses, dark matter, ...

Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- CS → no scalar mass terms
- the scalars interact $\rightarrow \lambda_{mix}(\phi^+\phi)(\Phi^+\Phi)$ must exist
 - \rightarrow a condensate of $\langle \varphi^+ \varphi \rangle$ produces $\lambda_{mix} \langle \varphi^+ \varphi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- CS anomalous ... \rightarrow breaking \rightarrow only $\ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for φ to obtain $\langle \Phi \rangle = 246$ GeV
- Model building possibilities / phenomenological aspects:
 - ϕ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe due to Higgs portal, but there is TeV-ish new physics!

Realizing the Idea: Specific Realizations

SM + extra singlet: Φ , φ

Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas, ...

SM + extra SU(N) with new N-plet in a hidden sector

Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML, (Hambye, Strumia), ...

SM embedded into larger symmetry (CW-type LR) Holthausen, ML, M. Schmidt

SM + QCD colored scalar which condenses at TeV scale Kubo, Lim, ML

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism $SU(2) \times SU(2) \simeq Spin(4) \rightarrow representations$)

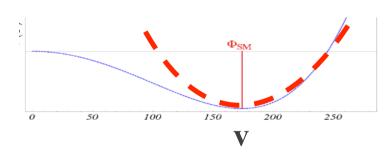
particle	parity \mathcal{P}	\mathbb{Z}_4	$\operatorname{Spin}(1,3) \times (\operatorname{SU}(2)_L \times \operatorname{SU}(2)_R) \times (\operatorname{SU}(3)_C \times \operatorname{U}(1)_{B-L})$
$\mathbb{L}_{1,2,3} = \left(egin{array}{c} L_L \ -\mathrm{i} L_R \end{array} ight)$	$P\mathbb{PL}(t,-x)$	$L_R o \mathrm{i} L_R$	$\left[\left(\frac{1}{2},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\frac{1}{2}\right)(\underline{1},\underline{2})\right](\underline{1},-1)$
$\mathbb{Q}_{1,2,3}=\left(egin{array}{c} Q_L \ -\mathrm{i}Q_R \end{array} ight)$	$P\mathbb{PQ}(t,-x)$	$Q_R o -\mathrm{i} Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}^{\Phi^{\dagger}}\mathbb{P}(t,-x)$	$\Phi \to \mathrm{i} \Phi$	$(\underline{0},\underline{0})\ (\underline{2},\underline{2})\ (\underline{1},0)$
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \to -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$

- → the usual fermions, one bi-doublet, two doublets
- \rightarrow a \mathbb{Z}_4 symmetry
- \rightarrow no scalar mass terms $\leftarrow \rightarrow$ CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi, \Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^{\dagger} \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^{\dagger} \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^{\dagger}, \Phi] \Psi \; , \end{split}$$

- \rightarrow calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, \mathbb{Z}_4 , LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: $V_{\rm eff}$ flat around minimum
 - \leftrightarrow m_H ~ loop factor ~ $1/16\pi^2$
 - → generic feature → predictions
 - everything works nicely...



→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

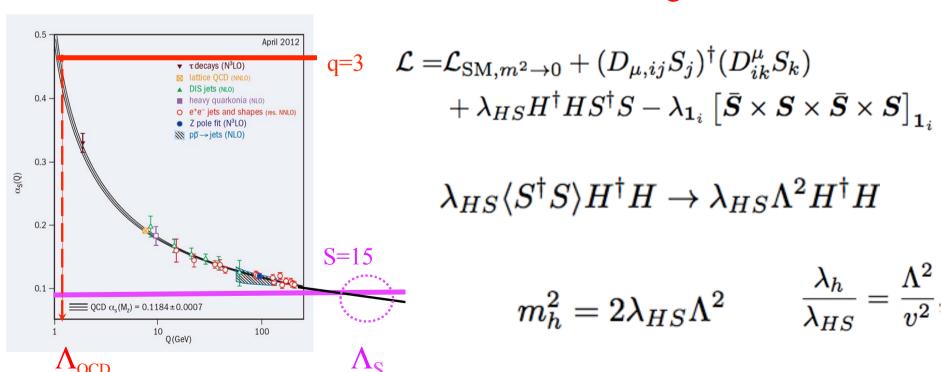
Rather minimalistic: SM + QCD Scalar S

J. Kubo, K.S. Lim, ML New scalar representation $S \rightarrow QCD$ gap equation:

$$C_2(S) lpha(\Lambda) \gtrsim X$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α



Phenomenology

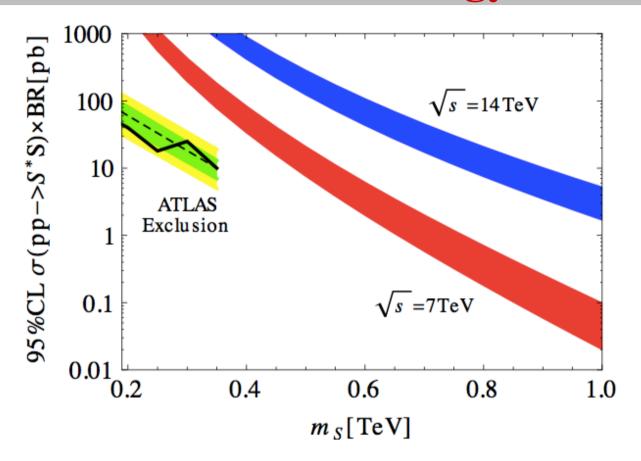


Figure 3. The S pair production cross section from gluon fusion channel is calculated for different value of m_S . The 95% confidence level exclusion limit on $\sigma \times BR$ for $\sqrt{s} = 7 \text{ TeV}$ by ATLAS is plotted. We assume 100% BR of $\langle S^{\dagger} S \rangle$ into two jets.

SM * hidden SU(3)_H Gauge Sector

Holthausen, Kubo, Lim, ML

• hidden $SU(3)_H$:

$$\mathcal{L}_{H} = -\frac{1}{2} \operatorname{Tr} F^{2} + \operatorname{Tr} \bar{\psi} (i\gamma^{\mu} D_{\mu} - yS) \psi$$

gauge fields; $\psi = 3_H$ with $SU(3)_F$; S = real singlet scalar

• SM coupled by S via a Higgs portal:

$$V_{\text{SM}+S} = \lambda_H (H^{\dagger}H)^2 + \frac{1}{4}\lambda_S S^4 - \frac{1}{2}\lambda_{HS} S^2 (H^{\dagger}H)$$

- no scalar mass terms
- use similarity to QCD, use NJL approximation, ...
- χ -ral symmetry breaking in hidden sector: SU(3)_LxSU(3)_R \rightarrow SU(3)_V \rightarrow generation of TeV scale
- → transferred into the SM sector through the singlet S
- → dark pions are PGBs: naturally stable → DM

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt and J. Smirnov

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + induced EW scale

Important consequence for fermion mass terms:

- **→** spectrum of Yukawa couplings ⊗ TeV or EW scale
- **→** interesting consequences ← → Majorana mass terms are no longer expected at the generic L-breaking scale → anywhere

Examples

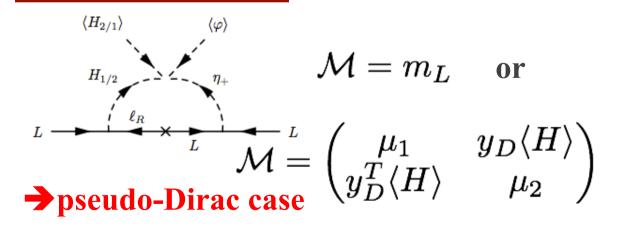
$$\mathcal{M} = egin{pmatrix} 0 & y_D\langle H
angle \ y_D^T\langle H
angle & y_M\langle \phi
angle \end{pmatrix}$$

Yukawa seesaw:

$$\mathrm{SM} + \mathrm{v_R} + \mathrm{singlet}$$
 $\langle \phi
angle pprox \mathrm{TeV}$ $\langle H
angle pprox 1/4\,\mathrm{TeV}$

- → generically expect a TeV seesaw
- BUT: y_M might be tiny
- **→** wide range of sterile masses **→** including pseudo-Dirac case
- → suppressed 0vββ

Radiative masses



The punch line: all usual neutrino mass terms can be generated

- → suitable scalars
- → no explicit masses all via Yukawa couplings
- → different numerical expectations

Another Example: Inverse Seesaw

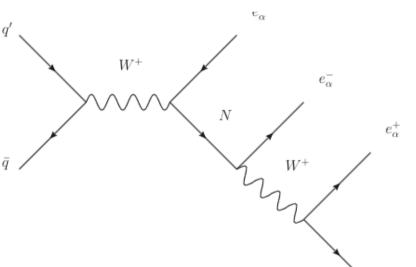
$$SU(3)_{\rm c} \times SU(2)_{\rm L} \times U(1)_{\rm Y} \times U(1)_{\rm X}$$

P. Humbert, ML, J. Smirnov

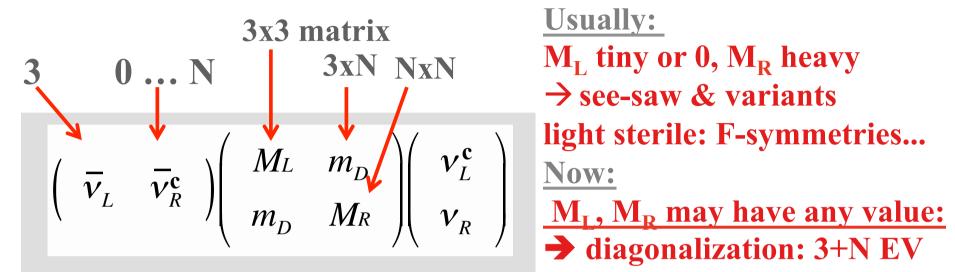
	H	ϕ_1	ϕ_2	L	ν_R	N_R	N_L
$U(1)_X$		1	2	0	0	1	1
Lepton Number		0	0	1	1	0	0
$U(1)_Y$		0	0	-1	0	0	0
$SU(2)_L$		1	1	2	1	1	1

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle & 0 & 0 \\ y_D \langle H \rangle & 0 & y_1 \langle \phi_1 \rangle & \tilde{y}_1 \langle \phi_1 \rangle \\ 0 & y_1 \langle \phi_1 \rangle & y_2 \langle \phi_2 \rangle & 0 \\ 0 & \tilde{y}_1 \langle \phi_1 \rangle & 0 & \tilde{y}_2 \langle \phi_2 \rangle \end{pmatrix}$$

- → light eV "active" neutrino(s)
- → two pseudo-Dirac neutrinos; m~TeV
- \rightarrow sterile state with $\mu \approx keV$
- → tiny non-unitarty of PMNS matrix
- → tiny lepton universality violation
- \rightarrow suppressed $0\nu\beta\beta$ decay \leftarrow !
- → lepton flavour violation
- → tri-lepton production could show up at the LHC
- → keV neutrinos as warm dark matter →



Implications for Neutrino Mass Spectra



Usually:

 M_L tiny or 0, M_R heavy → see-saw & variants

light sterile: F-symmetries...

- → diagonalization: 3+N EV
- **→** 3x3 active almost unitary

$$M_L=0$$
, $m_D=M_W$, $M_R=$ high: see-saw

$$\mathbf{M_L} = \mathbf{M_R} = \mathbf{0}$$
 $\mathbf{M_L} = \mathbf{M_R} = \mathbf{\epsilon}$
Dirac pseudo Dirac

$$I_R = 0$$
 $M_L = M_R = \varepsilon$ pseudo Dirac

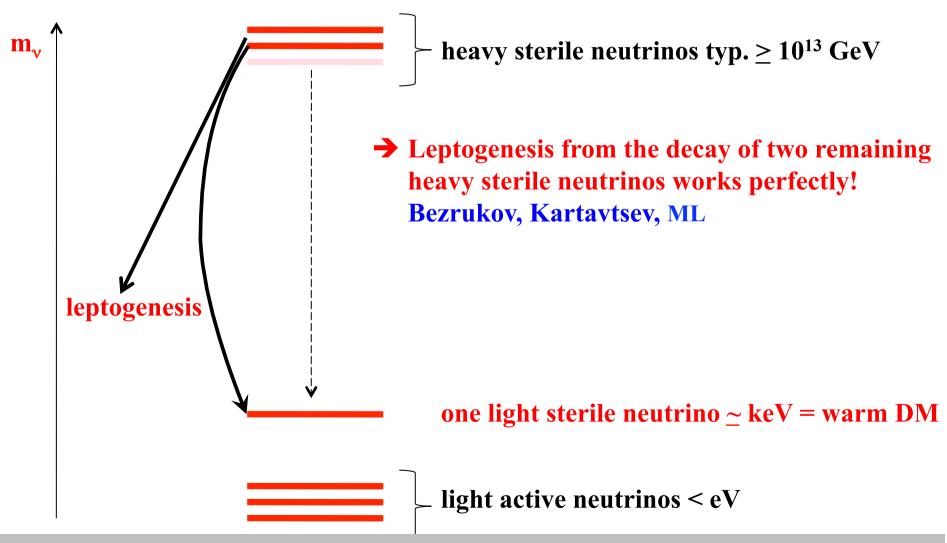
Conformal Symmetry & Dark Matter

Different quite natural options:

- 1) A keV sterile neutrino is in all cases easily possible
- 2) New particles which are fundamental or composite DM candidates:
 - hidden sector pseudo-Goldstone-bosons
 - stable color neutral bound states from new QCD representations
- → some look like WIMPs
- → others are extremely weakly coupled (via Higgs portal)
- → or even coupled to QCD (with threshold suppression)

A Minimalistic Scenario

... see-saw spectrum may be rather different than usual. E.g. ...



Summary

- SM works perfectly; (so far) no signs of new physics
- > The standard hierarchy problem suggests TeV scale physics ... which did (so far...) not show up
- Revisit how the hierarchy problem may be solved $\lambda(M_{Planck}) = 0$? $\leftarrow \Rightarrow$ precise value for m_t
 - → is there a message?
- → Embedings into QFTs with classical conformal symmetry
 - SM: Coleman Weinberg effective potential excluded
 - extended versions → work!
 - → implications for Higgs couplings, dark matter, ...
 - → implications for neutrino masses
 - → testable consequences @ LHC, dark matter, neutrinos