From extra particles to the Standard Model Effective Field Theory

Juan Carlos Criado University of Granada

Outline

- Introduction: general extensions of the SM
- Tree level integration: general picture and examples of integration for general extensions
- Mixed contributions to the SM EFT
- Conclusions

General extensions of the Standard Model

Standard Model Effective Field Theory

Standard Model Effective Field Theory

$$\mathcal{L}_{eff} = \mathcal{L}_{renorm} + \sum_{i} \frac{\alpha_i}{\Lambda^{\dim(\mathcal{O}_i) - 4}} \mathcal{O}_i$$

The effect of an operator in amplitudes goes roughly as

 $\sim \left(\frac{E}{\Lambda}\right)^{\dim(\mathcal{O}_i)-4}$

We can cut the expansion at a fixed operator dimension

General extensions of the SM with new particles

General extensions of the SM with new particles

Integrating general extensions with new particles

Integrating general extensions with new particles

Indirect study of new particles

Masses of the heavy particles

E

Energies accessible to the collider (LHC)

Measure precision observables

Tree level integration

UV theory

$$S[\phi, \Phi] = S_{quad}[\Phi] + S_{int}[\phi, \Phi]$$
$$S_{quad}[\Phi] = -\int d^4x \Phi^{\dagger} Q \Phi$$

EOM

$$Q\Phi_c = \frac{\delta S_{int}}{\delta \Phi^\dagger}$$

Classical solution

$$\Phi_c = Q^{-1} \frac{\delta S_{int}}{\delta \Phi^\dagger}$$

Tree level integration

 $S_{eff}[\phi] = S[\phi, \Phi_c]$

We only keep terms with dimension 6 or less

Tree level integration

Expand Q^{-1} in powers of the covariant derivative:

$$\Phi_c \sim F_0 + \left(\frac{D}{M}\right)^2 F_1 + \left(\frac{D}{M}\right)^4 F_2 + \cdots$$

Increasing dimension

If some heavy fields appear in the expansion, substitute iteratively until all terms under some dimension depend only on the light fields

Basis of dim. 6 operators

- Identities for tensor products (such as Fierz)
- Integration by parts
- EOMs for light fields
- •

Complete set of independent operators (basis)

Heavy quarks

Single heavy quark and two heavy quarks contributions

F. del Águila, M. Pérez-Victoria, J. Santiago, [hep-ph/0007316]

Heavy scalars

J. de Blas, M. Chala, M. Pérez-Victoria, [1412.8480]

Heavy leptons and vectors

The contributions from each kind of particle have been computed

F. del Águila, J. de Blas, M. Pérez-Victoria, [0803.4008, 1005.3998]

Mixed contributions

The importance of dimension 3 linear couplings

 $6 \ge \dim(\mathcal{O}_{eff}) = \dim(\mathcal{O}_1^{SM}) + \dim(\mathcal{O}_2^{SM}) + \dim(\mathcal{O}_{12}^{SM})$

 \implies A linear coupling of dim. 3 is necessary

Finding the dimension 3 linear couplings

For fermions:

- Each one has dimension 3/2
- They need to couple to at least another fermion

No dimension 3 couplings

Finding the dimension 3 linear couplings

For vectors:

- Each one has dimension 1
- Their Lorentz index can couple to:
 - 1. A gamma matrix. Brings 2 fermions
 - 2. A covariant derivative. Adds 1 to the dim.
- We can only add a SM field with dim. 1: Higgs

$$V_{\mu}D^{\mu}\phi \implies V_{\mu}\sim 2_{1/2}$$

Finding the dimension 3 linear couplings

For scalars:

- Each one has dimension 1
- Should couple to SM dim. 2 scalar operator: two Higgs bosons

$$S\phi^{\dagger}\phi \implies S \sim 1_{0}$$
$$S^{a}\phi^{\dagger}\sigma^{a}\phi \implies S \sim 3_{0}$$
$$S^{\dagger a}\tilde{\phi}^{\dagger}\sigma^{a}\phi \implies S \sim 3_{1}$$

Example of mixed contribution

Example of mixed contribution

Mixed contributions

Establish a **complete** dictionary

All tree-level contributions to dim. 6 SM EFT

This work will be published soon

$$\begin{split} & \frac{\Omega_{\Box\phi}}{\Lambda^{2}} = \frac{\mathrm{Im}\left(g_{B_{i}}^{\phi}\right)\delta_{B}^{ij}\kappa_{S}^{j}}{M_{E_{i}}^{2}M_{E_{j}}^{2}} - \frac{\mathrm{Im}\left(g_{W_{i}}^{\phi}\right)\delta_{W}^{ij}\kappa_{\Xi_{0}}^{j}}{2M_{W_{i}}^{2}M_{\Xi_{0}}^{2}} + \frac{\mathrm{Im}\left(g_{W_{i}}^{\phi}\right)\delta_{W}^{ij*}\kappa_{\Xi_{1}}^{j}}{M_{W_{i}}^{2}M_{\Xi_{1}}^{2}} - \frac{\mathrm{Re}\left(g_{S_{i},C_{j}}^{(1)}\gamma_{j}\right)\kappa_{S}^{i}}{M_{C_{j}}^{2}M_{E_{i}}^{2}}} \\ & + \frac{\mathrm{Re}\left(g_{\Xi_{0i},C_{j}}^{(1)}\gamma_{j}\right)\kappa_{\Xi_{0}}^{i}}{M_{C_{j}}^{2}M_{\Xi_{0}}^{2}} + \frac{\mathrm{2Re}\left(g_{\Xi_{1i},C_{j}}^{(1)}\gamma_{j}\kappa_{\Xi_{1}}^{i}}\right)}{M_{C_{j}}^{2}M_{E_{1}}^{2}} - \frac{\mathrm{Re}\left(g_{\Xi_{0i},C_{j}}^{(2)}\gamma_{j}\right)\kappa_{S}^{i}}{M_{C_{j}}^{2}M_{\Xi_{0}}^{2}} \\ & - \frac{\mathrm{2Re}\left(g_{\Xi_{1i},C_{j}}^{(2)}\gamma_{j}\kappa_{\Xi_{1}}^{i}}\right)}{M_{C_{j}}^{2}M_{E_{1}}^{2}} + \frac{\delta_{B}^{ij}\delta_{B}^{ik}\kappa_{S}^{i}\kappa_{S}^{k}}{2M_{B}^{2}M_{S}^{2}} - \frac{\delta_{W}^{ij}\delta_{W}^{ik}\kappa_{\Xi_{0}}^{j}\kappa_{\Xi_{0}}^{k}}{M_{C_{j}}^{2}M_{\Xi_{0}}^{2}} \\ & - \frac{\mathrm{2Re}\left(g_{\Xi_{1i},C_{j}}^{(2)}\gamma_{j}\kappa_{\Xi_{1}}^{i}}\right)}{M_{C_{j}}^{2}M_{E_{1}}^{2}} - \frac{\varepsilon_{B}^{ij}\delta_{B}^{ik}\kappa_{S}^{i}\kappa_{S}^{k}}{2M_{B}^{2}M_{S}^{2}} - \frac{\delta_{W}^{ij}\delta_{W}^{ik}\kappa_{\Xi_{0}}^{j}}{M_{W_{1}}^{2}M_{Z_{0}}^{2}} - \frac{\mathrm{2}\delta_{W_{1}}^{ij}\delta_{W}^{ik}\kappa_{\Xi_{1}}^{j}\kappa_{\Xi_{1}}^{k}}{M_{W_{1}}^{2}M_{Z_{0}}^{2}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{k}\kappa_{\Xi_{1}}\right)}{M_{W_{1}}^{2}M_{Z_{0}}^{2}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{0}}^{2}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{0}}^{2}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{0}}^{2}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{0}}^{2}}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{0}}^{2}}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{0}}^{2}}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{0}}^{2}}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{1}}^{2}}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}}\right)}{M_{W_{1}}^{2}M_{Z_{1}}^{2}}} - \frac{\mathrm{2}Re\left(g_{\Xi_{1i},C_{j}}^{ij}\gamma_{M}^{i}\kappa_{\Xi_{1}}\right)}{M_{W_{1}}^{2}}}$$

Computer tools

A Python library for these symbolic calculations:

- Tree level integration in any model
- Transformations of the effective lagrangian

This work will be published soon

Sample code: integration

$$\mathcal{L}_{int} = -\kappa \Xi^a \phi^\dagger \sigma^a \phi - \lambda \Xi^a \Xi^a \phi^\dagger \phi$$

```
sigma = TensorBuilder("sigma")
kappa = TensorBuilder("kappa")
lamb = TensorBuilder("lamb")
phi = FieldBuilder("phi", 1, boson)
phic = FieldBuilder("phic", 1, boson)
Xi = FieldBuilder("Xi", 1, boson)
interaction_lag = -OpSum(
        Op(kappa(), Xi(0), phic(1), sigma(0, 1, 2), phi(2)),
        Op(lamb(), Xi(0), Xi(0), phic(1), phi(1)))
heavy_Xi = RealScalar("Xi", 1)
effective_lag = integrate([heavy_Xi], interaction_lag, 6)
```

Sample code: transformation rules

Fierz identities

$$\sigma^a_{ij}\sigma^a_{kl} = 2\delta_{il}\delta_{kj} - \delta_{ij}\delta_{kl}$$

Sample code: op. basis

$$egin{aligned} &\mathcal{O}_{\phi 6}=(\phi^{\dagger}\phi)^{3}, &\mathcal{C}\ &\mathcal{O}_{\phi}^{(1)}=\phi^{\dagger}\phi(D_{\mu}\phi)^{\dagger}D^{\mu}\phi, &\mathcal{C}\ &\mathcal{O}_{D\phi}=\phi^{\dagger}(D_{\mu}\phi)\phi^{\dagger}D^{\mu}\phi, &\mathcal{C} \end{aligned}$$

$$\mathcal{O}_{\phi 4} = (\phi^{\dagger} \phi)^{2},$$

$$\mathcal{O}_{\phi}^{(3)} = (\phi^{\dagger} D_{\mu} \phi) (D^{\mu} \phi)^{\dagger} \phi,$$

$$\mathcal{O}_{D\phi}^{*} = (D_{\mu} \phi)^{\dagger} \phi (D^{\mu} \phi)^{\dagger} \phi$$

```
Ophi6 = tensor_op("Ophi6")
Ophi4 = tensor_op("Ophi4")
Olphi = tensor_op("Olphi")
...
definition_rules = [
   (Op(phic(0), phi(0), phic(1), phi(1), phic(2), phi(2)),
        OpSum(Ophi6)),
        (Op(phic(0), phi(0), phic(1), phi(1)),
            OpSum(Ophi4)),
        (Op(D(2, phic(0)), D(2, phi(0)), phic(1), phi(1)),
            OpSum(Olphi)),
        ...]
```

Sample results

Conclusions

- Complete study of new particles at low energies: integrate general extensions of the Standard Model
- Non-trivial mixed contributions appear
- Results: a dictionary between general new particles and the effective operators of the SM
- The tree-level contribution to dimension 6 of any model is a particular case