Probing Inflationary PBHs for the LIGO GW events

Kyohei Mukaida

Kavli IPMU, Univ. of Tokyo

Based on 1611.06130 (to be published in PRD) In collaboration with K.Inomata, M.Kawasaki, Y.Tada, T.T.Yanagida

What is "Primordial" BH?

- BH formed before any astrophysical objects exist (even in RD era).
- Need large density perturbation for the formation.

$$\rho \sim M R_s^{-3} \sim 10^{17} \text{g/cm}^3 \left(\frac{M}{M_{\odot}}\right)^{-2} \text{ where } R_s \sim 3 \text{km}\left(\frac{M}{M_{\odot}}\right)$$

$$(1g \simeq 5.6 \times 10^{23} \text{GeV}) \text{ & Comparable to that of radiation at T ~ GeV.}$$

- Is there any motivation to study them?
 - Non-particle candidate of DM
 - Behave as cold matter, interact gravitationally, and quasi-stable for $M > 10^{15}$ g.
 - Candidate of gravitational wave events observed by LIGO
 - Merger of PBHs with O(10) solarmasses may be responsible for the observed events.
 - Constrain other DM models
 - e.g., constraining WIMP via Ultra Compact Mini Halo, (axion via superradiance, ...)

Merging of Binary BH observed by LIGO

70 60 LIGO 50 Solar Masses 40 30 **X-Ray Studies** GW150914 20 10 LVT151012 GW151226 0

- Masses of BHs: GWI509I4 $(36^{+5}_{-4}M_{\odot}, 29^{+4}_{-4}M_{\odot})$, GWI5I226 $(14.2^{+8.3}_{-3.7}M_{\odot}, 7.5^{+2.3}_{-2.3}M_{\odot})$
- Estimated event rate: GW150914 2-53Gpc⁻³yr⁻¹, Total 9-240Gpc⁻³yr⁻¹

Kyohei Mukaida - Kavli IPMU

[Ref. https://www.ligo.caltech.edu]

Indicated PBH abundance: $f = \Omega_{PBH} / \Omega_c \sim O(10^{-4} - 10^{-2})$

• Merger rate as a function of PBH fraction estimated in Sasaki et al. 1603.08338

• Possible corrections?

- PBHs should have a continuous mass function, not a delta function.
- Surrounding DM halo (UCMH): Minihalo of DM is accompanied for f < 1. [Yu.N. Eroshenko 1604.04932]
- Surrounding Baryons: efficient angular momentum transfer of binary by baryon disk(?) [Hayasaki et al. 0909.1738]

Current observational constraints

- PBHs for all DM: marginal, maybe excluded/probed soon.
- PBHs for LIGO events: seems to be viable.

 Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

> Hawking radiation EGγ: 0912.5297

Gravitational lensing Femto: 1204.2056 HSC: 1701.02151 Kepler: PhysRevLett.111.181302 EROS/MACHO: 0607207

Dynamical

WD: 1505.04444 UFD: 1605.03665

Accretion

CMB: 1612.05644 (1612.06811, 1612.07264) Radio/Xray: 1612.00457

- Formation of PBHs (by cosmic inflation)
- Induced gravitational waves and pulsar timing array

Mechanisms to generate large density

- Collapse of localized configuration
 - Collision of Bubbles: Bubble formation rate should be tuned to obtain a prolonged duration of PT.
 - Cosmic Strings: string may get into a configuration within Schwarzschild-radius with a small probability.
 - Collapse of Domain-Wall network (?): ongoing with TTY and MK.
- Collapse of "large" primordial density perturbations
 - Inflation as an origin of primordial density perturbations

- PBH formation by large primordial density perturbations
 - Need large perturbations for Gravity force > Pressure

• PBH mass v.s. scale (k⁻¹) of large perturbation:

$$M = \gamma \rho \frac{4\pi H^{-3}}{3} \simeq M_{\odot} \left(\frac{\gamma}{0.2}\right) \left(\frac{g_*}{3.36}\right)^{-\frac{1}{6}} \left(\frac{k/(2\pi)}{3 \times 10^{-9} \,\mathrm{Hz}}\right)^{-2}$$

• Abundance is determined by \mathscr{P}_{ζ} (assump. Gaussian distribution)

- Probability of the PBH formation:
$$\beta(M) = \int_{\delta_c} d\delta \frac{e^{-\frac{\delta^2}{2\sigma^2(M)}}}{\sqrt{2\pi\sigma^2(M)}} \sim \sigma(M) e^{-\frac{\delta_c^2}{2\sigma^2(M)}}$$

• Standard deviation ~ Curvature perturbation: $\sigma^2(M) \sim \mathscr{P}_{\zeta}(k)$

For LIGO events, large $\mathscr{P}_{\zeta}(k) \sim 10^{-2}$ at $f \equiv k/2\pi \sim 10^{-9} \,\mathrm{Hz}$

Inflation as the origin of PBHs

• How to enhance curvature perturbation at small scales ?

• Crucial constraints on curvature perturbations at this scale.

Inflation as the origin of PBHs

• How to enhance curvature perturbation at small scales ? → Flatten your potential!

• Crucial constraints on curvature perturbations at this scale.

Inflation as the origin of PBHs

• How to enhance curvature perturbation at small scales ? → Flatten your potential!

• Crucial constraints on curvature perturbations at this scale.

Inflation as the origin of PBHs

• How to enhance curvature perturbation at small scales ? → Flatten your potential!

- Crucial constraints on curvature perturbations at this scale.
 - CMB spectral distortion at small scales: mu-distortion,...

Inflation as the origin of PBHs

• How to enhance curvature perturbation at small scales ? → Flatten your potential!

- Crucial constraints on curvature perturbations at this scale.
 - CMB spectral distortion at small scales: mu-distortion,...
 - Induced GWs via second order effects: constrained by pulsar timing array (PTA).

Induced GWs and Pulsar Timing Array

Induced GWs

Large scalar perturbations act as source terms of GWs

• Equation of motion for tensor perturbation

[Saito, Yokoyama; Bugaev, Klimai]

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

projection to transverse-traceless part

Source term:
$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right)$$
 where $\Psi \sim \zeta$

Production of GW by second order effects

$$h_{ij} \propto \Psi^2 \sim \zeta^2$$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathscr{P}_{\zeta}(k)}{10^{-2}}\right)^2$$

where $\Omega_{\rm GW,tot} = \left(d\log k \Omega_{\rm GW}(k) \right)$

Induced GWs

Large scalar perturbations act as source terms of GWs

• Equation of motion for tensor perturbation

[Saito, Yokoyama; Bugaev, Klimai]

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

projection to transverse-traceless part

Source term:
$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right)$$
 where $\Psi \sim \zeta$

Formation of PBH

roduction of GW by second order effects

Induced GWs

Large scalar perturbations act as source terms of GWs

• Equation of motion for tensor perturbation

[Saito, Yokoyama; Bugaev, Klimai]

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

projection to transverse-traceless part

Source term:
$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right)$$
 where $\Psi \sim \zeta$

Formation of PBH

Production of GW by second order effects

$$h_{ij} \propto \Psi^2 \sim \zeta^2$$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathscr{P}_{\zeta}(k)}{10^{-2}}\right)^2$$

where $\Omega_{\rm GW,tot} = \int d\log k \,\Omega_{\rm GW}(k)$

Kyohei Mukaida - Kavli IPMU

Horizon

Constraints on induced GWs

Large scalar perturbations act as source terms of GWs

• GW-spectrum has a peak at the same k!

[K.Inomata, M.Kawasaki, KM, Y.Tada, T.T.Yanagida; 1611.06130] See also Orlofsky, Pierce, Wells; 1612.05279, Nakama, Silk, Kamionkowsky; 1612.06264

• Induced GWs: $\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathscr{P}_{\zeta}(k)}{10^{-2}}\right)^2$

Constraints on induced GWs

Large scalar perturbations act as source terms of GWs

• GW-spectrum has a peak at the same k!

[K.Inomata, M.Kawasaki, KM, Y.Tada, T.T.Yanagida; 1611.06130] See also Orlofsky, Pierce, Wells; 1612.05279, Nakama, Silk, Kamionkowsky; 1612.06264

• Spectrum should be so steep.

$$\mathcal{P}_{\zeta} \propto \begin{cases} k^x & \cdots & k < k_{\text{peak}} \\ k^{-y} & \cdots & k > k_{\text{peak}} \end{cases}$$

- Current constraints

 $x \gtrsim 1.5, y \gtrsim 2$

(cf.) Slow Roll condition

$$y = -(n_s - 1)$$

 $\simeq -2\eta < 2$

 $\boldsymbol{\diamond} \ \boldsymbol{\epsilon} {\ll} |\boldsymbol{\eta}| \ \textbf{@}$ single small field inflation

Conclusions and Discussion

- Inflation can produce PBHs whose mergers account for the LIGO GW events.
- But, need large density perturbations @ f ~ 10-9 Hz.

Small scale CMB distortions and induced GWs can probe such large density perturbations. * Assume almost Gaussian

• Enhanced **Non-Gaussianity** at small scales could generate PBHs with a smaller P_{ζ} , and thus may evade these constraints. [Nakama, Silk, Kamionkowsky; 1612.06264]

Constraints on induced GWs

Current and Future constraints summary of GWs

Constraints on PBH abundance

Constraints on *inflationary* PBHs

- If one specifies the production mechanism, there may be another way to probe PBHs.
- Inflationary PBHs → Small scale distortions of CMB and Induced GWs

