Heavy Higgs decays

in models with vectorlike fermions

Radovan Dermisek

Indiana University, Bloomington Seoul National University

Scalars 2015, Warsaw, December 5, 2015

Simple extensions of the standard model:

- Models with extended Higgs sector
 - two Higgs doublets, singlets, ...
 - SUSY requires it

Simple extensions of the standard model:

- Models with extended Higgs sector
 - two Higgs doublets, singlets, ...
 - SUSY requires it

Models with more matter fields

- vectorlike quarks and leptons, ...
- in complete families easy to add to any GUT

Simple extensions of the standard model:

- Models with extended Higgs sector
 - two Higgs doublets, singlets, ...
 - SUSY requires it
- Models with more matter fields
 - vectorlike quarks and leptons, ...
 - in complete families easy to add to any GUT
 - their effects can be dialed by Yukawa couplings

Simple extensions of the standard model:

- Models with extended Higgs sector
 - two Higgs doublets, singlets, ...
 - SUSY requires it
- Models with more matter fields
 - vectorlike quarks and leptons, ...
 - in complete families easy to add to any GUT
 - their effects can be dialed by Yukawa couplings

Sometimes searching for combined signatures of two extensions is more advantageous than separate searches

Two Higgs doublet model - type II + VL

VL mixing only with 2nd generation of leptons:

R.D., E. Lunghi and S. Shin, 1509.04292

$$\begin{aligned} \mathcal{L} \supset &- y_{\mu} \bar{\mu}_{L} \mu_{R} H_{d} - \lambda_{E} \bar{\mu}_{L} E_{R} H_{d} - \lambda_{L} \bar{L}_{L} \mu_{R} H_{d} - \lambda \bar{L}_{L} E_{R} H_{d} - \bar{\lambda} H_{d}^{\dagger} \bar{E}_{L} L_{R} \\ &- \kappa_{N} \bar{\mu}_{L} N_{R} H_{u} - \kappa \bar{L}_{L} N_{R} H_{u} - \bar{\kappa} H_{u}^{\dagger} \bar{N}_{L} L_{R} \\ &- M_{L} \bar{L}_{L} L_{R} - M_{E} \bar{E}_{L} E_{R} - M_{N} \bar{N}_{L} N_{R} + \text{h.c.} \end{aligned}$$

$$\mu_L = \begin{pmatrix} \nu_\mu \\ \mu_L^- \end{pmatrix}, \ L_{L,R} = \begin{pmatrix} L_{L,R}^0 \\ L_{L,R}^- \end{pmatrix}, \ H_d = \begin{pmatrix} H_d^+ \\ H_d^0 \end{pmatrix}, \ H_u = \begin{pmatrix} H_u^0 \\ H_u^- \end{pmatrix}$$

Two Higgs doublet model - type II + VL

VL mixing only with 2nd generation of leptons:

R.D., E. Lunghi and S. Shin, 1509.04292

$$\mathcal{L} \supset -y_{\mu}\bar{\mu}_{L}\mu_{R}H_{d} - \lambda_{E}\bar{\mu}_{L}E_{R}H_{d} - \lambda_{L}\bar{L}_{L}\mu_{R}H_{d} - \lambda\bar{L}_{L}E_{R}H_{d} - \bar{\lambda}H_{d}^{\dagger}\bar{E}_{L}L_{R} -\kappa_{N}\bar{\mu}_{L}N_{R}H_{u} - \kappa\bar{L}_{L}N_{R}H_{u} - \bar{\kappa}H_{u}^{\dagger}\bar{N}_{L}L_{R} -M_{L}\bar{L}_{L}L_{R} - M_{E}\bar{E}_{L}E_{R} - M_{N}\bar{N}_{L}N_{R} + \text{h.c.} , \mu_{L} = \begin{pmatrix} \nu_{\mu} \\ \nu_{\mu} \end{pmatrix}, \ L_{L}\mu_{R} = \begin{pmatrix} L_{L}^{0}, R \\ \mu_{L} \end{pmatrix}, \ H_{d} = \begin{pmatrix} H_{d}^{+} \\ \mu_{L} \end{pmatrix}, \ H_{u} = \begin{pmatrix} H_{u}^{0} \\ \mu_{u} \end{pmatrix}$$

$$\mu_L = \begin{pmatrix} \nu_\mu \\ \mu_L^- \end{pmatrix}, \ L_{L,R} = \begin{pmatrix} L_{L,R}^\circ \\ L_{L,R}^- \end{pmatrix}, \ H_d = \begin{pmatrix} H_d^+ \\ H_d^0 \end{pmatrix}, \ H_u = \begin{pmatrix} H_u^\circ \\ H_u^- \end{pmatrix}$$

couplings to gauge bosons are modified because SU(2) doublets mix with SU(2) singlets and couplings to Higgs are modified because of explicit vectorlike mass terms:

$$(\bar{\mu}_L, \bar{L}_L^-, \bar{E}_L) \begin{pmatrix} y_\mu v_d \ 0 & \lambda^F v_d \\ \lambda^L v_d M_L & \lambda v_d \\ 0 & \bar{\lambda} v_d M_E \end{pmatrix} \begin{pmatrix} \mu_R \\ L_R^- \\ E_R \end{pmatrix} \qquad \left(\begin{array}{c} \bar{\nu}_\mu \ \bar{L}_L^0 \ \bar{N}_L \end{array} \right) \begin{pmatrix} 0 & 0 & \kappa_N v_u \\ 0 \ M_L & \kappa v_u \\ 0 \ \bar{\kappa} v_u & M_N \end{pmatrix} \begin{pmatrix} \nu_R = 0 \\ L_R^0 \\ N_R \end{pmatrix}$$

and flavor changing couplings are generated: $e_4\mu(Z,h,H), \nu_4\nu(Z,h,H), (e_4\nu,\nu_4\mu)W$

New (possibly discovery) decay modes

The flavor changing couplings lead to new decay modes of heavy Higgses:

New (possibly discovery) decay modes

$$H \rightarrow WW, ZZ, \gamma\gamma, H, b\bar{b}, \tau\bar{\tau}, \ldots$$

if h is SM-like and H (or A) is below ~350 GeV flavor changing decays can be dominant:

decays to pairs of heavy leptons also possible but limited to smaller mass ranges and lead to the same final states as pair-production

New (possibly discovery) decay modes

$$H \rightarrow WW, ZZ, \gamma\gamma, H, b\bar{b}, \tau\bar{\tau}, \ldots$$

if h is SM-like and H (or A) is below ~350 GeV flavor changing decays can be dominant:

decays to pairs of heavy leptons also possible but limited to smaller mass ranges and lead to the same final states as pair-production

they all look similar to WW, ZZ, hZ decay modes of H or ZZ, WW, Zh production!

Scan over the parameter space

We scan over parameters in the following ranges: $m_H \in [130, 340] \text{ GeV}$, $\tan \beta \in [0.3, 3]$, $\kappa_N, \kappa, \bar{\kappa} \in [-0.5, 0.5] \text{ or } \lambda_L, \lambda_E, \lambda, \bar{\lambda} \in [-0.5, 0.5]$, $M_{L,N} \in [100, 500] \text{ GeV} \text{ or } M_{L,E} \in [100, 500] \text{ GeV}$

Constraints:

- Precision EW data (muon lifetime, Z-pole obs., S and T, ...)
- direct searches for new leptons
- searches for anomalous production of multi-lepton events R.D., J. Hall, E. Lunghi and S. Shin, arXiv:1408.3123
- searches for $H \rightarrow \gamma \gamma$ and $H \rightarrow WW$

R.D., E. Lunghi and S. Shin, 1503.0882, 1509.04292

Limits on vectorlike leptons

from searches for anomalous production of multi-lepton events

R.D., J. Hall, E. Lunghi and S. Shin, arXiv:1408.3123 based on ATLAS-CONF-2013-070

We set limits on 20 possible processed with at least 3 SM leptons in the final state (originating from 3 pair production processes, and 3 possible decay modes of each of the final state leptons)

Assumption: The vector like leptons mix with only one SM lepton, namely the muon. Limits for electron would be similar, and the current analysis is not sensitive to the tau case.

	masses / GeV								
	105	125	150	200	300	400	500	750	1000
[predicted production cross-sections / fb								
$\sigma(e^+e^-)$ (singlet)	426	225	114	37.9	6 73	1 75	0.552	0.0481	0.00573
$\sigma(e_4 e_4)$ (singlet) $\sigma(e^+e^-)$ (doublet)	1040	538	260	86.6	15.5	3.08	1.94	0.106	0.00013
$\sigma(e_4 e_4)$ (doublet)	3870	1070	073	310	55 5	14.4	4.59	0.378	0.0124
$\sigma(e_4 \nu_4)$ (doublet)	3010	1970	913	27.4	4 64	1 15	4.00	0.010	0.0406
0(V4V4) (doublet)	012	160	00.9	27.4	4.04	1.10	0.55	0.0279	0.00300
	95% C.L. limits / fb and best cuts								
$\sigma(e_4^+e_4^-) \times$	530	190	66	21	12	7.5	4.8	2.2	1.9
$BR(e_4 \rightarrow Z\mu)^2$	СЪ	Af	Af	Af	Af	Ah	Ah	Am	Am
$\sigma(e_4^+e_4^-) imes$	520	260	140	65	43	29	23	5.1	3.7
$BR(e_4 \to Z\mu)BR(e_4 \to W\nu)$	СЪ	СЪ	СЪ	СЪ	Cc	Cc	Cd	Cr	Cr
$\sigma(e_4^+e_4^-) \times$			100	19	8.4	5.5	3.1	1.3	1.1
$BR(e_4 \rightarrow Z\mu)BR(e_4 \rightarrow h\mu)$			Aa	Ag	Ag	Ah	Ah	Am	Am
$\sigma(e_4^+e_4^-) \times$			370	130	67	41	28	11	7.2
$BR(e_4 \rightarrow W\nu)BR(e_4 \rightarrow h\mu)$			АЪ	Аъ	AЪ	Ac	Ac	Am	Am
$\sigma(e_4^+e_4^-) \times$			220	64	17	14	7.2	2.5	2.1
$BR(e_4 \rightarrow h\mu)^2$			Aa	Ag	Ag	Ag	Ah	Am	Am
$\sigma(e_4^{\pm}\nu_4)\times$	820	510	230	79	44	29	23	4.8	3.4
$BR(e_4 \rightarrow Z\mu)BR(\nu_4 \rightarrow Z\nu)$	СЪ	СЪ	СЪ	СЪ	СЪ	Cc	Cd	Cr	Cr
$\sigma(e_4^{\pm}\nu_4) \times$	190	83	45	13	7.3	4.7	2.8	1.2	1
$BR(e_4 \rightarrow Z\mu)BR(\nu_4 \rightarrow W\mu)$	Aa	Aa	Ag	Ag	Af	Ah	Ah	Am	Am
$\sigma(e_4^{\pm}\nu_4) \times$	2700	1800	1100	520	330	150	110	45	42
$BR(e_4 \rightarrow W\nu)BR(\nu_4 \rightarrow Z\nu)$	СЪ	Ср	СЪ	Съ	СЪ	Cc	Cd	Cd	Cd
$\sigma(e_{4}^{\pm}\nu_{4})\times$	420	400	260	110	57	32	21	11	7.1
$BR(e_4 \rightarrow W\nu)BR(\nu_4 \rightarrow W\mu)$	Aa	Aa	Ab	Ag	Ab	Ac	Ac	Am	Am
$\sigma(e^{\pm}\nu_{4})\times$			1100	280	110	64	51	9.8	7.7
$BR(e_4 \rightarrow Z\mu)BR(\nu_4 \rightarrow h\nu)$			Aa	Ср	СЪ	Cc	Cr	Cr	Cr
$\sigma(e^{\pm}u_{1})$ ×			1400	250	110	75	53	9.3	7.1
$BR(e_4 \rightarrow h\mu)BR(\mu_4 \rightarrow Z\mu)$			Aa	Ch	СЪ	Ca	CT.	CT	CT
$\sigma(e^{\pm}w)$			6400	5000	1800	1200	680	360	270
$BR(\mu_{4} \rightarrow W\mu)BR(\mu_{4} \rightarrow h\mu)$			Ab	An	45	Bc	Ac	Ac	Bc
$\sigma(e^{\pm}\nu_{e})$			110	20	0.2	6.3	3.5	1.5	1.2
$BR(a_1 \rightarrow b_1)BR(u_1 \rightarrow W_1)$			110	20	3.2	0.5 Ab	0.0 Ab	1.0 Am	1.2
$\sigma(e^{\pm}\mu_{1})$			010	420	140	03	52	10	13
$BR(e_1 \rightarrow h_H)BR(\mu_1 \rightarrow h_H)$			42	40	An	40	02 Ar	A	Am
$\sigma(u,u) \times$	5100	5700	4000	850	450	200	150	97	79
$BR(u \rightarrow Zu)^2$	0100	5700	4000	850	400	200	100	01	() ()
$\sigma(ww) \times$	570	450	200	00	47	20	00	4.6	2 5
$\sigma(\nu_4\nu_4)x$	570	400	290	82	4(33	22	4.0	3.5
$BR(\nu_4 \rightarrow Z\nu)BR(\nu_4 \rightarrow W\mu)$	Ag	Ag	Ag	CB	6.4	00	1.0	0.00	0.70
$\sigma(\nu_4\nu_4) \times$	67	52	25	9	5.4	3.1	1.9	0.82	0.72
$BR(\nu_4 \rightarrow W \mu)^-$	Aa	Aa	Ag	Ag	Af	Ah	Am	Am	Am
$\sigma(\nu_4\nu_4) \times$			2800	830	380	220	160	79	72
$BR(\nu_4 \rightarrow Z\nu)BR(\nu_4 \rightarrow h\nu)$			СЪ	СЪ	СЪ	Cc	Cc	Cd	Cd
$\sigma(\nu_4\nu_4)\times$			320	120	61	40	27	11	6.9
$BR(\nu_4 \to W\mu)BR(\nu_4 \to h\nu)$			Ag	Ag	Ag	Ac	Ac	Am	Am
$\sigma(\nu_4\nu_4)\times$			9400	6900	2800	1700	930	460	380
$BR(\nu_4 \rightarrow h\nu)^2$			Aa	Ap	Ab	Bc	Bc	Bc	Bc

indicates non-trivial limits assuming doublet production

indicates, additionally, non-trivial limits assuming singlet production

Search categories:

A	$\geq 3e/\mu \text{ off-}Z$
В	$2e/\mu + au_h ext{ off-}Z$
С	$\geq 3e/\mu \text{ on-}Z$
D	$2e/\mu + au_h ext{ on-}Z$
a	$H_T^j < 150 { m ~GeV}$
ъ	$H_T^j < 150 \text{ GeV}, \not \!\!E_T > 100 \text{ GeV}$
с	$H_T^j < 150~{ m GeV}, E_T > 200~{ m GeV}$
d	$H_T^j < 150~{\rm GeV}, {\not\!\! E}_T > 300~{\rm GeV}$
f	$\min p_T^l > 50 { m GeV}$
g	$H_T^l > 200 { m ~GeV}$
h	$H_T^l > 500 { m ~GeV}$
m	$m_{ m eff} > 1000~{ m GeV}$
n	$H^{j} > 150 \text{ CoV}$ $H > 200 \text{ CoV}$
	$H_T > 150 \text{ GeV}, \#_T > 200 \text{ GeV}$
P	$H_T > 150 \text{ GeV}, E_T > 200 \text{ GeV}$ $E_T > 100 \text{ GeV}$
P q	$H_T > 150 \text{ GeV}, E_T > 200 \text{ GeV}$ $E_T > 100 \text{ GeV}$ $E_T > 100 \text{ GeV}, m_{\text{eff}} > 600 \text{ GeV}$

Radovan Dermisek

Some of the strongest limits:

Some of the weakest limits:

no constraints at all if both charged leptons decay through W

Radovan Dermisek

Combined limits on simple scenarios

Radovan Dermisek

$H \rightarrow v_4 v_\mu vs. H \rightarrow WW and pp \rightarrow WW$

constraints from H→WW:

CMS, 1312.1129

naively SM production cross section for H is ruled out, but different kinematic distribution of final states leads to different acceptances

Radovan Dermisek

$H \rightarrow v_4 v_\mu \text{ vs. } H \rightarrow WW \text{ and } pp \rightarrow WW$

contribution to pp → WW consistent with H → WW:

R.D., E. Lunghi and S. Shin, 1503.08829, 1509.04292

ruled out by $H \rightarrow WW$

very large (even larger than H production cross section!) contributions to $pp \rightarrow WW$ are possible and consistent with H \rightarrow WW constraints

Radovan Dermisek

$H \rightarrow v_4 v_\mu \text{ vs. } H \rightarrow WW \text{ and } pp \rightarrow WW$

contribution to $pp \rightarrow WW$ consistent with $H \rightarrow WW$:

R.D., E. Lunghi and S. Shin, 1503.08829, 1509.04292

nothing ruled out by $H \rightarrow WW$

very large (even larger than H production cross section!) contributions to $pp \rightarrow WW$ are possible and consistent with H $\rightarrow WW$ constraints

Radovan Dermisek

Allowed ranges for $H \rightarrow v_4 v_\mu$

Applying all the constraints:

$H \rightarrow v_4 v_\mu$ can be as large as 50%

Allowed ranges for $H \rightarrow e_4 \mu$

Applying all the constraints:

$H \rightarrow e_4 \mu$ can be as large as 50%

Allowed branching ratios of v₄

Impact of searches for anomalous production of multilepton events: R.D., J. Hall, E. Lunghi and S. Shin, arXiv:1408.3123

R.D., E. Lunghi and S. Shin, in progress

EW precision

EW precision + multilepton

Allowed branching ratios of e₄

Impact of searches for anomalous production of multilepton events: R.D., J. Hall, E. Lunghi and S. Shin, arXiv:1408.3123

R.D., E. Lunghi and S. Shin, in progress

EW precision

EW precision + multilepton

$H \rightarrow hvv$ and $H \rightarrow h\mu\mu$

look like Zh production, with potentially much larger cross section, (no Z, but no penalty for 2 leptons)

R.D., E. Lunghi and S. Shin, in progress

Conclusions

Heavy Higgs decays in models with VL:

- Both heavy Higgses and VL independently motivated
- potentially large production cross section
- Iarge branching ratios allowed
- Some of the decay modes are almost background free

Great discovery prospects!