CONNECTING SCIENCES

Can primordial Black Hole Dark Matter explain the γ-ray excess at the Galactic Centre?

> Andi Hektor andi.hektor@cern.ch NICPB, Tallinn

in collaboration with G.Hütsi, M.Raidal

> Planck 2017 Warssaw

CONNECTING SCIENCES

- Motivation
 - LIGO g-wave events \rightarrow primordial BHs?
 - Fermi LAT \rightarrow Galactic Centre Excess?
- Constraints on PBHs
- Energy spectrum and morphology of the signal of Galactic PBH
- Summing up problems, troubles and uncertainties
- Always look on the bright side of life PBH can explain GCE
- Takeaway messages

Why not primordial BHs?

Primordial Black Holes as Dark Matter: motivation & constraints

Motivation

LIGO boosted the experimental motivation (so far)

Gravitational wave event	Detection time \$ (UTC)	Publication date	Location +	Luminosity distance	Energy +	Source +
GW150914	2015-09-14 09:50:45	2016-02-11	Uncertain, probably in Southern sky	410 Mpc (1,300 Mly)	3 $M_{\odot} \times c^2$; 5.4 × 10 ⁴⁷ joules (5.4 × 10 ⁵⁴ erg; 5.4 × 10 ³ foe) ^[NB 1]	Merger of a 36 M_{\odot} black hole with a 29 M_{\odot} black hole, detected by LIGO
GW151226	2015-12-26 03:38:53	2016-06-15	Uncertain	440 Mpc (1,400 Mly)	1 $M_{\odot} \times c^2$; 1.8 × 10 ⁴⁷ joules (1.8 × 10 ⁵⁴ erg; 1.8 × 10 ³ foe) ^[NB 2]	Merger of a 14 M_{\odot} black hole with a 8 M_{\odot} black hole, detected by LIGO

- Theoretically motivated by models of inflation For example, Kannike, Marzola, Raidal & Veermäe [1705.06225]
- BHs radiates due to 'eating' of gas/plasma
 many constraints!

Carr, Raidal, Tenkanen, Vaskonen & Veermäe [1705.05567]

Carr, Raidal, Tenkanen, Vaskonen & Veermäe [1705.05567]

Galactic Centre (γ -ray) Excess

NB! The GCE signal is only few % of the total

GCE: energy spectrum

Hektor, Hütsi & Raidal [appearing soon]

GCE: energy spectrum

Ackermann et al [1704.03910]

GCE: morphology

Ajello et al [1705.00009]

Does BH radiate γ -rays?

Radiation of BH

- BH radiates due to the dissipation of accretion (gas/plasma)
- PBHs are typically isolated and 'starving' ($L_{tot} \ll L_{Edd}$) \rightarrow ADAF, $L_{tot} < 0.01 L_{Edd}$
- The bolometric luminosity of BH

 $L_B \propto (n_{gas} v^{-3})^{\alpha}$, $|< \alpha < 2$

Credit: NASA/CXC/M. Weiss

Radiation spectrum of ADAF

Narayan, Mahadevan & Quataert: Advection-Dominated Accretion

Narayan, Mahadevan & Quataert [astro-ph/9803141]

Radiation spectrum of ADAF

Narayan, Mahadevan & Quataert [astro-ph/9803141]

Let's put this to the picture...

Let's put this to the picture...

Hektor, Hütsi & Raidal [appearing soon]

The morphology & total luminosity

Radiation of BH

 $L_B = \eta(\dot{m}) \ \dot{m}c^2$

 $\dot{m} = \lambda \ \dot{m}_{
m Bondi}, \ \lambda \simeq 0.01$

 $\dot{m}_{\rm Bondi} = 4\pi (GM)^2 \rho_{\rm gas} (v^2 + c_s^2)^{-3/2} \simeq 4\pi (GM)^2 \rho v^{-3}$

$$\eta(\dot{m}) = \begin{cases} 0.1, & \dot{m} > \dot{m}_{\rm crit} \\ 0.1 \, \dot{m}/m_{\rm crit}, & \dot{m} < \dot{m}_{\rm crit} \end{cases}$$

 $\dot{m}_{
m crit} \simeq (10^{-2} \dots 10^{-3}) \, \dot{m}_{
m Edd}$

 $L_B \propto (
ho_{
m gas} v^{-3})^lpha, \ lpha = 1 \dots 2$

 $L_{
m NuSTAR} \simeq 0.01 L_B$

$$L_{\rm Fermi} \simeq 0.06 L_B$$

Summing up problems, troubles and uncertainties

Summing up problems, troubles and uncertainties

Distribution of H2

Pohl et al [0712.4264]

Morphology of the signal

Calculations — Monte Carlo (with some analytical tests):

— due to $j \propto v^{-3\alpha}$, the MC samples vary strongly

— some bright sources can appear above the NuSTAR point source constraint

- The distribution of molecular gas (Pohl et al [0712.4264]) has north/south (b>0/b<0) asymmetry
- 'Technicalities': H2 is measured by CO lines, what is the relation factor X_{CO} between CO and H2? Many different models

Morphology of the signal

Takeaway messages

- PHS can provide all DM in the dark corners of some models
- The energy spectrum of PBH fits GCE
- The morphology of the PHB signal has many uncertainties: distribution of gas and PBHs, velocity dispersion
- Fitting the PHB signal against GCE:
 - (too) bright central region (b<l deg)
 - asymmetry between the north and south (b>0 / b<0)</p>
- **Future:** finish a preprint, try different H2 datasets, looking for better models of velocity dispersion etc

Thank you!