Implications of Symmetries in the Scalar Sector (CP Properties and Mass Degeneracies)

M. N. Rebelo CFTP/IST, U. Lisboa

Harmonia Meeting

Warsaw, 6 December 2018

Work done in collaboration with D. Emmanuel-Costa, Howard E. Haber, 0. M. Ogreid and P. Osland, arXiv:1 601.04654, DOI: 10.1007/JHEP08(2016)169, 10.1007/ JHEPO2(2016)154, arXiv:1701.0476, DOI: 10.1007/JHEP08(2017)005, arXiv:1808.08629 accepted for publication in JHEP

Work Partially supported by:

FCT Fundação para a Ciência e a Tecnologia

 MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

European Union

COMPETE
PROGRAMA OPERACIONAL FACTORES DE COMPETITIVIDADE

Fundação para a Ciência e a Tecnologia
ministério da educaçÃo e ciência

Two Higgs Doublet Models

Several motivations

- New sources of CP violation

SM cannot account for BAU

- Possibility of having spontaneous CP violation

EW symmetry breaking and CP violation same footing
T. D. Lee 1973, Kobayashi and Maskawa 1973

- Strong CP Problem, Peccei-Quinn
- Supersymmetry

LHC important role

Motivation for three Higgs doublets

Three fermion generations may suggest three doublets
Interesting scenario for dark matter
Possibility of having a discrete symmetry and still having spontaneous CP violation
Rich phenomenology

Motivation for imposing discrete symmetries

Symmetries reduce the number of free parameters leading to (testable) predictions

Symmetries help to control HFCNC
Example: NFC, no HFCNC due to Z_{2} symmetry(ies)
Example: MFV suppression of HFCNC, BGL models

Symmetries are needed to stabilise dark matter

Inert Higgs

Initial proposal: 2 Higgs doublets, Unbroken Z_{2} symmetry $\Phi_{2} \rightarrow-\Phi_{2}$ all other Standard Model particles are invariant under Z_{2}

E. Ma; R. Barbieri, L. J. Hall, and V. S. Rychkov, 2006
L.L. Honorez, E. Nezri, J. F. Oliver, M. H. G. Tytgat , 2006

$\Phi_{2^{-}}$, the inert Higgs, does not couple to matter and acquires no vev, NFC

Notice that this is different from going to the Higgs basis

The Z_{2} symmetry is left unbroken, as a result the lightest inert particle will be stable and will contribute to dark matter density

Inert scalars can be produced at colliders through their couplings to the EW gauge bosons subject to Z_{2} constraints and participate in cubic and quartic Higgs couplings

Many works on Dark matter with an Inert Higgs doublet

N. Darvishi, Mikael Dhen; I. F. Ginzburg, Thomas Hambye, K. A. Kanishev, M. Krawczyk, T. Robens, D. Sokolowska, P. Swaczyna, B. Swiezewska, and many more authors

The Inert doublet model has been extended by several authors to include three Higgs Doublets

Possibility of having CP Violation and a stable DM candidate

B. Grzadkowski, O. M. Ogreid, P. Osland, G.M. Pruna , A. Pukhov, M. Purmohammadi
A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S.F. King, S. Moretti, D. Rojas, D. Sokołowska

Symmetries of the 2 Higgs Doublet Model

$$
\begin{align*}
\mathcal{V}= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right]+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \\
& +\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right] \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right\} . \tag{2.1}
\end{align*}
$$

11 independent parameters

If all the parameters are real CP is explicitly conserved:

 most general CP transformation $\quad \Phi_{i} \xrightarrow{\mathrm{CP}} U_{i j} \Phi_{j}^{*}$with U a unitary matrix which we can choose as the identity matrix when all parameters are real
However, there is still the possibility of Spontaneous Symmetry Breaking
T. D. Lee 1973

The above equation together with the assumption that the vacuum is CP invariant leads to

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle \quad \mathcal{L}(U \phi)=\mathscr{L}(\phi) \quad \mathrm{CP}|0\rangle=|0\rangle
$$

G. C. Branco, J. M. Gerard and W. Grimus 1984

CP is violated spontaneously by vevs of the form $\left(\rho_{1} e^{i \theta}, \rho_{2}\right)$,
in the region of parameters
of the potential where ρ_{1} and ρ_{2} are different from zero and

$$
e^{i \theta} \neq 1
$$

List of all possible Symmetries of the 2HDM

The complete list of such symmetries is known:

symmetry	transformation law		
\mathbb{Z}_{2}	$\Phi_{1} \rightarrow \Phi_{1}$	$\Phi_{2} \rightarrow-\Phi_{2}$	
$\mathrm{U}(1)$	$\Phi_{1} \rightarrow \Phi_{1}$	$\Phi_{2} \rightarrow e^{2 i \theta} \Phi_{2}$	
$\mathrm{SO}(3)$	$\Phi_{a} \rightarrow U_{a b} \Phi_{b}$	$U \in \mathrm{U}(2) / \mathrm{U}(1)_{\mathrm{Y}}$	(for $a, b=1,2)$
GCP1	$\Phi_{1} \rightarrow \Phi_{1}^{*}$	$\Phi_{2} \rightarrow \Phi_{2}^{*}$	
GCP2	$\Phi_{1} \rightarrow \Phi_{2}^{*}$	$\Phi_{2} \rightarrow-\Phi_{1}^{*}$	
GCP3	$\Phi_{1} \rightarrow \Phi_{1}^{*} \cos \theta+\Phi_{2}^{*} \sin \theta$	$\Phi_{2} \rightarrow-\Phi_{1}^{*} \sin \theta+\Phi_{2}^{*} \cos \theta$	$\left(\right.$ for $\left.0<\theta<\frac{1}{2} \pi\right)$
Π_{2}	$\Phi_{1} \rightarrow \Phi_{2}$	$\Phi_{2} \rightarrow \Phi_{1}$	

Deshpande and Ma 1978, Ivanov 2007, Ferreira, Haber and Silva 2009, Ferreira, Haber, Maniatis, Nachtmann and Silva 2011, Battye, Brawn, Pilaftsis 2011, Pilaftsis 2011

There are three possible Higgs family symmetries (first three rows) and three classes of CP symmetries with different U matrices (next three rows) There are seven additional accidental symmetries of the 2HDM scalar potential

Battye, Brawn, Pilaftsis 2011, Pilaftsis 2012 which are not exact symmetries since they are violated by the $\mathbf{U}(1)$ gauge kinetic term of the scalar potential, as well as by the Yukawa couplings, therefore, not considered here.

List of all possible Symmetries of the 2HDM (cont.)

Starting from a generic scalar potential given by Eq. (2.1) if the scalar potential respects one of the symmetries listed in Table 1, the coefficients of the scalar potential are constrained according to Table 2, in the basis where the symmetry is manifest

symmetry	m_{11}^{2}	m_{22}^{2}	m_{12}^{2}	λ_{1}	λ_{2}	λ_{3}	λ_{4}	$\operatorname{Re} \lambda_{5}$	$\operatorname{Im} \lambda_{5}$	λ_{6}	λ_{7}
\mathbb{Z}_{2}	-	-	0	-	-	-	-	-	-	0	0
$\mathrm{U}(1)$	-	-	0	-	-	-	-	0	0	0	0
SO(3)	-	m_{11}^{2}	0	-	λ_{1}	-	$\lambda_{1}-\lambda_{3}$	0	0	0	0
GCP1	-	-	real	-	-	-	-	-	0	real	real
GCP2	-	m_{11}^{2}	0	-	λ_{1}	-	-	-	-	-	$-\lambda_{6}$
GCP3	-	m_{11}^{2}	0	-	λ_{1}	-	-	$\lambda_{1}-\lambda_{3}-\lambda_{4}$	0	0	0
Π_{2}	-	m_{11}^{2}	real	-	λ_{1}	-	-	-	0	-	λ_{6}^{*}
$\mathbb{Z}_{2} \oplus \Pi_{2}$	-	m_{11}^{2}	0	-	λ_{1}	-	-	-	0	0	0
$\mathrm{U}(1) \oplus \Pi_{2}$	-	m_{11}^{2}	0	-	λ_{1}	-	-	0	0	0	0

In all these cases the imposed symmetry leads to explicit CP is conservation In all cases GCP1, and also 2 and 3 there is invariance under hermitian conjugation

$$
\text { Ferreira, Haber and Silva } 2009
$$

Possibility of spontaneous CP violation with Z_2 softly broken

Natural 2HDM mass degeneracies

Analysis of explicit expressions of the neutral scalar masses or
Consider all possible symmetries of the 2HDM
Mass degenerate neutral scalars can only arise naturally in the 2HDM in the case of the IDM with Z_5 = 0

$$
\begin{aligned}
\mathcal{V}= & Y_{1} H_{1}^{\dagger} H_{1}+Y_{2} H_{2}^{\dagger} H_{2}+\left[Y_{3} H_{1}^{\dagger} H_{2}+\text { h.c. }\right]+\frac{1}{2} Z_{1}\left(H_{1}^{\dagger} H_{1}\right)^{2} \\
& +\frac{1}{2} Z_{2}\left(H_{2}^{\dagger} H_{2}\right)^{2}+Z_{3}\left(H_{1}^{\dagger} H_{1}\right)\left(H_{2}^{\dagger} H_{2}\right)+Z_{4}\left(H_{1}^{\dagger} H_{2}\right)\left(H_{2}^{\dagger} H_{1}\right) \\
& +\left\{\frac{1}{2} Z_{5}\left(H_{1}^{\dagger} H_{2}\right)^{2}+\left[Z_{6}\left(H_{1}^{\dagger} H_{1}\right)+Z_{7}\left(H_{2}^{\dagger} H_{2}\right)\right] H_{1}^{\dagger} H_{2}+\text { h.c. }\right\}
\end{aligned}
$$

exact \mathbb{Z}_{2} symmetry $\quad H_{1} \rightarrow+H_{1}$ and $H_{2} \rightarrow-H_{2}$
$Y_{3}=Z_{6}=Z_{7}=0 \quad$ preserved by the vacuum
Physical scalar mass spectrum

$$
\begin{aligned}
m_{h}^{2}=Z_{1} v^{2}, & m_{H^{ \pm}}^{2}=Y_{2}+\frac{1}{2} Z_{3} v^{2} \\
m_{A}^{2}=m_{H^{ \pm}}^{2}+\frac{1}{2}\left(Z_{4}-Z_{5}\right) v^{2}, & m_{H}^{2}=m_{A}^{2}+Z_{5} v^{2} \\
m_{H}=m_{A}, \text { due } & \text { to } Z_{5}=0
\end{aligned}
$$

Natural 2HDM mass degeneracies (cont.)

$$
Y_{3}=Z_{6}=Z_{7}=0 . \quad \text { together with } \quad Z_{5}=0
$$

exact continuous unbroken $\mathbf{U}(1)$ symmetry $\quad H_{1} \rightarrow H_{1} \quad H_{2} \rightarrow e^{i \theta} H_{2}$ It is this symmetry that is responsible for the mass degenerate states H and A

One can now define eigenstates of $\mathbf{U}(1)$ charge:

$$
\phi^{ \pm}=\frac{1}{\sqrt{2}}[H \pm i A]
$$

Physical mass spectrum of the mass degenerate IDM:

$$
\begin{aligned}
m_{h}^{2} & =Z_{1} v^{2} \\
m_{H^{ \pm}}^{2} & =Y_{2}+\frac{1}{2} Z_{3} v^{2} \\
m_{\phi^{ \pm}}^{2} & =Y_{2}+\frac{1}{2}\left(Z_{3}+Z_{4}\right) v^{2}
\end{aligned}
$$

Natural 2HDM mass degeneracies (cont.)

Although $\phi^{ \pm}$are mass degenerate states, they can be physically distinguished on an event by event basis.

The relevant interaction terms of $\phi^{ \pm}$are

$$
\begin{aligned}
\mathscr{L}_{\text {int }}= & {\left[\frac{1}{2} g^{2} W_{\mu}^{+} W^{\mu-}+\frac{g^{2}}{4 c_{W}^{2}} Z_{\mu} Z^{\mu}\right] \phi^{+} \phi^{-}+\frac{i g}{2 c_{W}} Z^{\mu} \phi^{-\overleftrightarrow{\partial} \mu} \phi^{+}-\frac{g}{\sqrt{2}}\left[i W_{\mu}^{+} H^{-\overleftrightarrow{\partial}}{ }^{\mu} \phi^{+}+\text {h.c. }\right] } \\
& +\frac{e g}{\sqrt{2}}\left(A^{\mu} W_{\mu}^{+} H^{-} \phi^{+}+A^{\mu} W_{\mu}^{-} H^{+} \phi^{-}\right)-\frac{g^{2} s_{W}^{2}}{\sqrt{2} c_{W}}\left(Z^{\mu} W_{\mu}^{+} H^{-} \phi^{+}+Z^{\mu} W_{\mu}^{-} H^{+} \phi^{-}\right) \\
& -v\left(Z_{3}+Z_{4}\right) h \phi^{+} \phi^{-}-\frac{1}{2}\left[Z_{2}\left(\phi^{+} \phi^{-}\right)^{2}+\left(Z_{3}+Z_{4}\right) h^{2} \phi^{+} \phi^{-}\right]-Z_{2} H^{+} H^{-} \phi^{+} \phi^{-} .
\end{aligned}
$$

For example, Drell-Yan production via a virtual s-channel W^{+}exchange can produce H^{+}in association with ϕ^{-}, whereas virtual s-channel W^{-}exchange can produce H^{-}in association with ϕ^{+}. Thus, the sign of the charged Higgs boson reveals the $U(1)$-charge of the produced neutral scalar. The origin of this correlation lies in the fact that, by construction, H^{+}and ϕ^{+}both reside in H_{2}, whereas H^{-}and ϕ^{-}both reside in H_{2}^{\dagger}.

Models with three Higgs doublets

There is not yet a full study of all possible symmetries
e.g. Ivanov et al

Two Particular Scenarios will be briefly discussed in what follows

Three Higgs doublet models with S_{3} Symmetry

A CP-conserving multi-Higgs Model with irremovable complex coefficients

Three Higgs doublet models with \mathbf{S}_{3} Symmetry

(extended to flavour)

Despite

many works aiming at explaining neutrino masses and leptonic mixing
Ma, Koide, Kubo, Mondragon, Rodriguez-Jauregui, Chen, Wolfenstein, Mohapatra, Nasri, Yu, Harrison, Scott, Frigerio, Grimus, Lavoura, Branco, Silva-Marcos...
several works addressing masses and mixing in the quark sector
Harari, Haut, Weyers, Meloni, Teshima, Melic, Canales, S Salazar, Velasco-Sevilla ,...
a lot of work already done analysing the Higgs potential
Derman, Tsao, Pakvasa, Sugawra, Wyler, Branco, Gerard, Grimus, Das, Dey, Bhattacharyya, Leser, Pas, Ivanov, Nishi...
inert dark matter candidates from $\mathrm{S}_{3} 3 \mathrm{HDM}$ considered
Fortes, Machado, Montano, Pleitez...
Interesting open questions still remain!

The Scalar potential

S_{3} is the permutation group involving three objects, $\phi_{1}, \phi_{2}, \phi_{3}$

$$
\begin{aligned}
V_{2}= & -\lambda \sum_{i} \phi_{i}^{\dagger} \phi_{i}+\frac{1}{2} \gamma \sum_{i<j}\left[\phi_{i}^{\dagger} \phi_{j}+\mathrm{hc}\right] \\
V_{4}= & A \sum_{i}\left(\phi_{i}^{\dagger} \phi_{i}\right)^{2}+\sum_{i<j}\left\{C\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{j}^{\dagger} \phi_{j}\right)+\bar{C}\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{j}^{\dagger} \phi_{i}\right)+\frac{1}{2} D\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)^{2}+\mathrm{hc}\right]\right\} \\
& +\frac{1}{2} E_{1} \sum_{i \neq j}\left[\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{i}^{\dagger} \phi_{j}\right)+\mathrm{hc}\right]+\sum_{i \neq j \neq k \neq i, j<k}\left\{\frac{1}{2} E_{2}\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{k}^{\dagger} \phi_{i}\right)+\mathrm{hc}\right]\right. \\
& \left.+\frac{1}{2} E_{3}\left[\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{k}^{\dagger} \phi_{j}\right)+\mathrm{hc}\right]+\frac{1}{2} E_{4}\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{i}^{\dagger} \phi_{k}\right)+\mathrm{hc}\right]\right\}
\end{aligned}
$$

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

$$
\phi_{1}+\phi_{2}+\phi_{3}
$$

remains invariant, it splits into two irreducible representations,
doublet and singlet: $\quad\binom{h_{1}}{h_{2}}, h_{S}$

Decomposition into these two irreducible representations

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{S}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right) \quad\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

This definition does not treat equally

$$
\phi_{1}, \phi_{2}, \phi_{3}
$$

they could be interchanged
Notice similarity with tribimaximal mixing:

$$
(F=)\left(\begin{array}{ccc}
-\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

The scalar potential in terms of fields from irreducible representations

$$
\begin{aligned}
V_{2} & =\mu_{0}^{2} h_{S}^{\dagger} h_{S}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right) \\
V_{4} & =\lambda_{8}\left(h_{S}^{\dagger} h_{S}\right)^{2}+\lambda_{5}\left(h_{S}^{\dagger} h_{S}\right)\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)+\lambda_{1}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)^{2} \\
& +\lambda_{2}\left(h_{1}^{\dagger} h_{2}-h_{2}^{\dagger} h_{1}\right)^{2}+\lambda_{3}\left[\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)^{2}+\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)^{2}\right] \\
& +\lambda_{6}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{S}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{2}^{\dagger} h_{S}\right)\right] \\
& +\lambda_{7}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{S}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{S}^{\dagger} h_{2}\right)+\text { h.c. }\right] \\
& +\lambda_{4}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\text { h.c. }\right] \quad \text { Das and Dey }
\end{aligned}
$$

no symmetry under the interchange of $\quad h_{1}$ and h_{2} however there is symmetry for $\quad h_{1} \rightarrow-h_{1}$ equivalent doublet representation $\quad\binom{\chi_{1}}{\chi_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}i & 1 \\ -i & 1\end{array}\right)\binom{h_{1}}{h_{2}}$ now there is symmetry for $\quad \chi_{1} \leftrightarrow \chi_{2}$

In the special case $\quad \lambda_{4}=0 \quad$ the potential has $\mathbf{S O}(2)$ symmetry:

$$
\binom{h_{1}^{\prime}}{h_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \text { Danger: massless scalar! }
$$

Constraining the potential by the vevs

Possibility of SCPV - real parameters

Let us start with real vacua (no CP violation)

Three minimisation conditions:

can be solved to give μ_{0}^{2} and μ_{1}^{2} in terms of the quartic coefficients:

$$
\begin{align*}
& \mu_{0}^{2}=\frac{1}{2 w_{S}}\left[\lambda_{4}\left(w_{2}^{2}-3 w_{1}^{2}\right) w_{2}-\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right)\left(w_{1}^{2}+w_{2}^{2}\right) w_{S}-2 \lambda_{8} w_{S}^{3}\right], \tag{4.2a}\\
& \mu_{1}^{2}=-\frac{1}{2}\left[2\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)+6 \lambda_{4} w_{2} w_{S}+\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right) w_{S}^{2}\right], \tag{4.2b}\\
& \mu_{1}^{2}=-\frac{1}{2}\left[2\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)-3 \lambda_{4}\left(w_{2}^{2}-w_{1}^{2}\right) \frac{w_{S}}{w_{2}}+\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right) w_{S}^{2}\right] . \tag{4.2c}
\end{align*}
$$

Eqs (4.2b) and (4.2c) obtained dividing by w_{1} and w_{2} respectively
Consistency requires:

$$
\lambda_{4}=4 A-2(C+\bar{C}+D)-E_{1}-E_{2}+E_{4}=0
$$

- for $w_{1}=0$ the corresponding derivative is zero - no clash
- or else $\quad \lambda_{4}\left(3 w_{2}^{2}-w_{1}^{2}\right) w_{S}=0 \quad$ i. e., $\quad \lambda_{4}=0 \quad$ or $w_{1}= \pm \sqrt{3} w_{2}$ or $w_{S}=0$.
- for $w_{S}=0$. special condition: $\lambda_{4} w_{2}\left(3 w_{1}^{2}-w_{2}^{2}\right)=0$, i. e., in addition:

$$
\lambda_{4}=0 \text { or } w_{2}= \pm \sqrt{3} w_{1} \text {, or else } w_{2}=0
$$

SSB, real vacua, residual symmetries

Derman, Tsao Phys. Rev. D20 (1979) 1207:
($\mathrm{x}, \mathrm{x}, \mathrm{x}$) S_{3};
($\mathrm{x}, \mathrm{x}, \mathrm{y}$) S_{2};
$(x, y, z)=(x,-x, 0) S_{2}$
$\lambda_{4} \neq 0$

Translation into doublet singlet notation

$$
\begin{aligned}
& \left.(\mathrm{x}, \mathrm{x}, \mathrm{x}) \quad \rightarrow \quad\left(0,0, \omega_{S}\right) \quad w_{1}=0 \text { (also verifies } w_{1}= \pm \sqrt{3} w_{2}\right) \\
& (\mathbf{x},-\mathbf{x}, 0) \rightarrow\left(\omega_{1}, 0,0\right) \quad w_{S}=0 \text { together with } w_{2}=0 . \\
& (x, 0,-\mathbf{x}) \quad \rightarrow \quad\left(\omega_{1}, \omega_{2}, 0\right) \quad w_{S}=0 \text { together } w_{2}=\sqrt{3} w_{1} \\
& (0, \mathrm{x},-\mathrm{x}) \quad \rightarrow \quad\left(\omega_{1}, \omega_{2}, 0\right) \quad w_{S}=0 \text { together with } w_{2}=-\sqrt{3} w_{1}
\end{aligned}
$$

(x, x, y) translates into $\left(0, w_{2}, w_{S}\right)$; consistency condition: $w_{1}=0$.
(x, y, x) translates into $\left(w_{1},-\frac{1}{\sqrt{3}} w_{1}, w_{S}\right)$; consistency condition: $w_{1}=-\sqrt{3} w_{2}$
(y, x, x) translates into $\left(w_{1}, \frac{1}{\sqrt{3}} w_{1}, w_{S}\right)$; consistency condition: $w_{1}=\sqrt{3} w_{2}$

For $\quad \lambda_{4}=0 \quad \mathrm{SO}(2)$ symmetry implies $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ possible solution

$$
\begin{aligned}
\lambda_{a} & =\lambda_{5}+\lambda_{6}+2 \lambda_{7}, \\
\lambda_{b} & =\lambda_{5}+\lambda_{6}-2 \lambda_{7} .
\end{aligned}
$$

Complex vacua

Table 2: Complex vacua. Notation: $\epsilon=1$ and -1 for C-III-d and C-III-e, respectively; $\xi=\sqrt{-3 \sin 2 \rho_{1} / \sin 2 \rho_{2}}, \psi=\sqrt{\left[3+3 \cos \left(\rho_{2}-2 \rho_{1}\right)\right] /\left(2 \cos \rho_{2}\right)}$. With the constraints of Table 4 the vacua labelled with an asterisk $\left(^{*}\right)$ are in fact real.

	IRF (Irreducible Rep.)	RRF (Reducible Rep.)
	w_{1}, w_{2}, w_{S}	$\rho_{1}, \rho_{2}, \rho_{3}$
C-I-a	$\hat{w}_{1}, \pm i \hat{w}_{1}, 0$	$x, x e^{ \pm \frac{2 \pi i}{3}}, x e^{\mp \frac{2 \pi i}{3}}$
C-III-a	$0, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$y, y, x e^{i \tau}$
C-III-b	$\pm i \hat{w}_{1}, 0, \hat{w}_{S}$	$x+i y, x-i y, x$
C-III-c	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0$	$x e^{i \rho}-\frac{y}{2},-x e^{i \rho}-\frac{y}{2}, y$
C-III-d, e	$\pm i \hat{w}_{1}, \epsilon \hat{w}_{2}, \hat{w}_{S}$	$x e^{i \tau}, x e^{-i \tau}, y$
C-III-f	$\pm i \hat{w}_{1}, i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho} \pm i x, r e^{i \rho} \mp i x, \frac{3}{2} r e^{-i \rho}-\frac{1}{2} r e^{i \rho}$
C-III-g	$\pm i \hat{w}_{1},-i \hat{w}_{2}, \hat{w}_{S}$	$r e^{-i \rho} \pm i x, r e^{-i \rho} \mp i x, \frac{3}{2} r e^{i \rho}-\frac{1}{2} r e^{-i \rho}$
C-III-h	$\sqrt{3} \hat{w}_{2} e^{i \sigma_{2}}, \pm \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$\begin{aligned} & x e^{i \tau}, y, y \\ & y, x e^{i \tau}, y \end{aligned}$
C-III-i	$\begin{aligned} & \sqrt{\frac{3\left(1+\tan ^{2} \sigma_{1}\right)}{1+9 \tan ^{2} \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \pm & \hat{w}_{2} e^{-i \arctan \left(3 \tan \sigma_{1}\right)}, \hat{w}_{S} \end{aligned}$	$\begin{aligned} & x, y e^{i \tau}, y e^{-i \tau} \\ & y e^{i \tau}, x, y e^{-i \tau} \end{aligned}$
C-IV-a*	$\hat{w}_{1} e^{i \sigma_{1}}, 0, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{i \rho}+x, x$
C-IV-b	$\hat{w}_{1}, \pm i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{-i \rho}+x,-r e^{i \rho}+r e^{-i \rho}+x$
C-IV-c	$\begin{gathered} \sqrt{1+2 \cos ^{2} \sigma_{2}} \hat{w}_{2} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \\ \hline \end{gathered}$	$\begin{gathered} r e^{i \rho}+r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x \\ r e^{i \rho}-r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x,-2 r e^{i \rho}+x \end{gathered}$
C-IV-d*	$\hat{w}_{1} e^{i \sigma_{1}}, \pm \hat{w}_{2} e^{i \sigma_{1}}, \hat{w}_{S}$	$r_{1} e^{i \rho}+x,\left(r_{2}-r_{1}\right) e^{i \rho}+x,-r_{2} e^{i \rho}+x$
C-IV-e	$\begin{gathered} \sqrt{-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{2}}+r e^{i \rho_{1}} \xi+x, r e^{i \rho_{2}}-r e^{i \rho_{1}} \xi+x \\ -2 r e^{i \rho_{2}}+x \end{gathered}$
C-IV-f	$\begin{gathered} \sqrt{2+\frac{\cos \left(\sigma_{1}-2 \sigma_{2}\right)}{\cos \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}}, \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{1}}+r e^{i \rho_{2}} \psi+x \\ r e^{i \rho_{1}}-r e^{i \rho_{2}} \psi+x,-2 r e^{i \rho_{1}}+x \end{gathered}$
C-V*	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$x e^{i \tau_{1}}, y e^{i \tau_{2}}, z$

Constraints

Vacuum	Constraints
C-I-a	$\mu_{1}^{2}=-2\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{1}^{2}$
C-III-a	$\begin{gathered} \hline \hline \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=\frac{4 \cos \sigma_{2} \hat{w}_{S}}{\hat{w}_{2}} \lambda_{7} \\ \hline \end{gathered}$
C-III-b	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \\ \lambda_{4}=0 \end{gathered}$
C-III-c	$\begin{gathered} \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right), \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0 \end{gathered}$
C-III-d,e	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{S}^{2}}-\epsilon \lambda_{4} \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)\left(\hat{w}_{1}^{2}-3 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2} \hat{w}_{S}} \\ -\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\epsilon \lambda_{4} \frac{\hat{w}_{S}\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)}{4 \hat{w}_{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{7}=\frac{\hat{w}_{1}^{2}-\hat{w}_{2}^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right)-\epsilon \frac{\left(\hat{w}_{1}^{2}-5 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2} \hat{w}_{S}} \lambda_{4} \end{gathered}$
C-III-f,g	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b}\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \lambda_{4}=0 \end{gathered}$
C-III-h	$\begin{gathered} \mu_{0}^{2}=-2 \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-4\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=\mp \frac{2 \cos \sigma_{2} \hat{w}_{S}}{\hat{w}_{2}} \lambda_{7} \end{gathered}$
C-III-i	

Vacuum	Constraints
C-IV-a*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{(}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$
C-IV-b	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{2}^{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2},\right. \\ \lambda_{4}=0, \lambda_{7}=-\frac{\left(\hat{w}_{1}^{1}-\hat{w}_{2}^{2}\right)}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-c	$\begin{gathered} \mu_{0}^{2}=2 \cos ^{2} \sigma_{2}\left(1+\cos ^{2} \sigma_{2}\right)\left(\lambda_{2}+\lambda_{3}\right) \frac{\hat{w}_{2}^{4}}{\hat{w}_{2}^{2}} \\ -\left(1+\cos ^{2} \sigma_{2}\right)\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left[2\left(1+\cos ^{2} \sigma_{2}\right) \lambda_{1}-\left(2+3 \cos ^{2} \sigma_{2}\right) \lambda_{2}-\cos ^{2} \sigma_{2} \lambda_{3}\right] \hat{w}_{2}^{2} \\ -\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2} \cos ^{2} \sigma_{2} \hat{w}_{2}^{2} \\ \lambda_{4}=-\frac{2 \cos _{2} \sigma_{2} \hat{w}_{2}}{\hat{w}_{S}}\left(\lambda_{2}+\lambda_{3}\right), \lambda_{7}=\frac{\cos ^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}\right) \end{gathered}$
C-IV-d*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$
C-IV-e	$\begin{gathered} \mu_{0}^{2}=\frac{\sin ^{2}\left(2\left(\sigma_{1}-\sigma_{2}\right)\right)}{\sin 2}\left(\lambda_{2}+\lambda_{3}\right) \frac{\hat{w}_{2}^{4}}{\hat{w}_{S}^{2}} \\ -\frac{1}{2}\left(1-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{2}}\left(\sigma_{1}\right)\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2},\right. \\ \mu_{1}^{2}=-\left(1-\frac{\sin 2 \sigma_{1}}{\sin \sigma_{2} \sigma_{1}}\right)\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=-\frac{\sin \left(2\left(\sigma_{1}-\sigma_{2}\right)\right) \hat{w}_{2}^{2}}{\sin 2 \sigma_{1}\left(\hat{w}_{S}^{2}\right.}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-f	$\begin{gathered} \mu_{0}^{2}=-\frac{\left(\cos \left(\sigma_{1}-2 \sigma_{2}\right)+3 \cos \sigma_{1}\right) \cos \left(\sigma_{2}-\sigma_{1}\right)}{2 \cos)_{4}} \lambda_{4} \hat{w}_{2}^{3} \\ -\frac{\cos \left(\sigma_{1}-2 \sigma_{2}\right)+3 \cos \sigma_{1}}{\hat{w}_{S}}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \left.\mu_{1}^{2}=-\cos \sigma_{1}-2 \sigma_{1}-2 \sigma_{2}\right)+3 \cos \sigma_{1} \\ \left.\cos \sigma_{1}+\lambda_{3}\right) \hat{w}_{2}^{2} \\ -\frac{3 \cos 2 \sigma_{1}+2 \cos \left(2\left(\sigma_{1}-\sigma_{2}\right)+\cos 2 \sigma_{2}+4\right.}{4 \cos \left(\sigma_{1}-\sigma_{2}\right) \cos \sigma_{1} \hat{\sigma}_{S}} \lambda_{4} \hat{w}_{2} \hat{w}_{S}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{2}+\lambda_{3}=-\frac{\cos \sigma_{1}}{2 \cos \left(\sigma_{2}-\sigma_{1}\right) \hat{w}_{2}} \lambda_{4}, \lambda_{7}=-\frac{\cos \left(\sigma_{2}-\sigma_{1}\right) \hat{w}_{2}}{2 \cos \sigma_{1} \hat{w}_{S}} \lambda_{4} \end{gathered}$
C-V*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{1}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \omega_{S} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$

The case of $\lambda_{4}=0$

Potential has additional continuous $\mathbf{S O}(2)$ symmetry

$$
\lambda_{4}=4 A-2(C+\bar{C}+D)-E_{1}-E_{2}+E_{4}=0
$$

Derman (1979), "unnatural"
Spontaneous breaking of this SO(2) symmetry leads to massless particles

Possible solution: break the symmetry softly, the most general quadratic potential can be written:

$$
\begin{aligned}
V & =\mu_{0}^{2} h_{S}^{\dagger} h_{S}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)+\mu_{2}^{2}\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\frac{1}{2} \nu^{2}\left(h_{2}^{\dagger} h_{1}+h_{1}^{\dagger} h_{2}\right) \\
& +\mu_{3}^{2}\left(h_{S}^{\dagger} h_{1}+h_{1}^{\dagger} h_{S}\right)+\mu_{4}^{2}\left(h_{S}^{\dagger} h_{2}+h_{2}^{\dagger} h_{S}\right)
\end{aligned}
$$

Complex vacua, Spontaneous CP Violation

Table 1: Spontaneous CP violation

Vacuum	λ_{4}	SCPV	Vacuum	λ_{4}	SCPV	Vacuum	λ_{4}	SCPV
C-I-a	X	no	C-III-f,g	0	no	C-IV-c	X	yes
C-III-a	X	yes	C-III-h	X	yes	C-IV-d	0	no
C-III-b	0	no	C-III-i	X	no	C-IV-e	0	no
C-III-c	0	no	C-IV-a	0	no	C-IV-f	X	yes
C-III-d,e	X	no	C-IV-b	0	no	C-V	0	no

Next we present a few illustrative examples. Important tool:
most general CP transformation

$$
\Phi_{i} \xrightarrow{\mathrm{CP}} U_{i j} \Phi_{j}^{*}
$$

together with assumption that vacuum is invariant

$$
\mathrm{CP}|0\rangle=|0\rangle
$$

leads to the following condition
$\mathcal{L}(U \phi)=\mathcal{L}(\phi)$

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle
$$

Vacuum C-I-a

$$
x, x e^{\frac{2 \pi i}{3}}, x e^{-\frac{2 \pi i}{3}}
$$

calculable non-trivial phases, fixed by symmetry of V , no explicit dependence on parameters of the potential

$$
\begin{gathered}
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle \\
U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

CP is conserved
For new models with geometrical phases and the possibility of having CP violation with geometrical phases see Ivo de Medeiros Varzielas, JHEP 1208 (2012) 055

Vacuum C-III-c

$\hat{w}_{1} e^{\imath \sigma_{1}}, \hat{w}_{2} e^{\imath \sigma_{2}}, 0 \quad \lambda_{4}=0$
$\mathrm{SO}(2)$ rotation

$$
\begin{gathered}
\binom{h_{1}^{\prime}}{h_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \tan 2 \theta=\frac{\hat{w}_{1}^{2}-\hat{w}_{2}^{2}}{2 \hat{w}_{1} \hat{w}_{2} \cos \sigma} . \\
\left(a e^{i \delta_{1}}, a e^{i \delta_{2}}, 0\right)
\end{gathered}
$$

followed by overall phase rotation

$$
\left(a e^{i \delta}, a e^{-i \delta}, 0\right) \quad U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle
$$

symmetry for interchange: $\quad h_{1}^{\prime} \leftrightarrow h_{2}^{\prime}$

$$
\begin{gathered}
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a e^{i \delta} \\
a e^{-i \delta} \\
0
\end{array}\right)=\left(\begin{array}{c}
a e^{i \delta} \\
a e^{-i \delta} \\
0
\end{array}\right) \quad \mathbf{C P} \text { is conserved } \\
U=e^{i\left(\delta_{1}+\delta_{2}\right)}\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle
$$

Very simple and powerful relation. However, in some cases construction of matrix U may not be obvious
 Simple Alternative Test

- Go to a basis where only one Higgs field acquires a vev different fro zero and real
- If the coefficients of scalar potential can be made real by rephasing the fields with zero vev, there is no CP violation
- Notice that there is still the freedom of using a $\mathrm{U}(\mathrm{n}-1)$ transformation acting on the fields with zero vev

Inspect the potential

C-III-c vacuum

$$
\left(\begin{array}{c}
h_{1}^{\prime} \\
h_{2}^{\prime} \\
h_{S}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{N_{1}}\left(\hat{w}_{1}\right. & \hat{w}_{2} & \left.\hat{w}_{S}\right) \\
\frac{1}{N_{2}}\left(\hat{w}_{2}\right. & -\hat{w}_{1} & 0) \\
\frac{1}{N_{3}}\left(\hat{w}_{1}\right. & \hat{w}_{2} & X)
\end{array}\right)\left(\begin{array}{ccc}
e^{-i \sigma_{1}} & 0 & 0 \\
0 & e^{-i \sigma_{2}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{S}
\end{array}\right)
$$

A CP-conserving multi-Higgs Model with irremovable complex coefficients

I.P. Ivanov and J.P. Silva, Phys. Rev. D 93, 095014 (2016) [arXiv:1512.09276],

The IS potential can be written in the following way

$$
\begin{aligned}
\mathcal{V}_{\mathrm{IS}}= & \mathcal{V}_{\mathrm{RIDM}}+Z_{3}^{\prime}\left(H_{2}^{\dagger} H_{2}\right)\left(H_{3}^{\dagger} H_{3}\right)+Z_{4}^{\prime}\left(H_{2}^{\dagger} H_{3}\right)\left(H_{3}^{\dagger} H_{2}\right) \\
& +\left[Z_{8}\left(H_{2}^{\dagger} H_{3}\right)^{2}+Z_{9}\left(H_{2}^{\dagger} H_{3}\right)\left(H_{2}^{\dagger} H_{2}-H_{3}^{\dagger} H_{3}\right)+\text { h.c. }\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{V}_{\mathrm{RIDM}}= & Y_{1} H_{1}^{\dagger} H_{1}+Y_{2}\left(H_{2}^{\dagger} H_{2}+H_{3}^{\dagger} H_{3}\right)+\frac{1}{2} Z_{1}\left(H_{1}^{\dagger} H_{1}\right)^{2}+\frac{1}{2} Z_{2}\left(H_{2}^{\dagger} H_{2}+H_{3}^{\dagger} H_{3}\right)^{2} \\
& +Z_{3}\left(H_{1}^{\dagger} H_{1}\right)\left(H_{2}^{\dagger} H_{2}+H_{3}^{\dagger} H_{3}\right)+Z_{4}\left[\left(H_{1}^{\dagger} H_{2}\right)\left(H_{2}^{\dagger} H_{1}\right)+\left(H_{1}^{\dagger} H_{3}\right)\left(H_{3}^{\dagger} H_{1}\right)\right] \\
& +\frac{1}{2} Z_{5}\left\{\left(H_{1}^{\dagger} H_{2}\right)^{2}+\left(H_{2}^{\dagger} H_{1}\right)^{2}+\left(H_{1}^{\dagger} H_{3}\right)^{2}+\left(H_{3}^{\dagger} H_{1}\right)^{2}\right\} .
\end{aligned}
$$

Z_{8} and Z_{9} are potentially complex

Whenever all the coefficients of the potential are real CP is conserved with a simple CP transformation where U the unitary matrix can be chosen as the identity

If Z_{8} and/or Z_{9} are complex CP is conserved:

$$
H_{i} \rightarrow X_{i j} H_{j}^{\dagger} \quad X=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

This was called a CP4 symmetry by Ivanov and Silva since it must be applied four times in order to yield the identity

There is no CP2 symmetry in this case since there is no possible change of basis in which all scalar potential parameters are real

This symmetry is responsible for the degeneracies in the IS model

$$
H_{1}=\binom{G^{+}}{\frac{1}{\sqrt{2}}\left[v+h_{\mathrm{SM}}+i G^{0}\right]}, \quad H_{2}=\binom{H^{+}}{\frac{1}{\sqrt{2}}[H+i A]}, \quad H_{3}=\binom{h^{+}}{\frac{1}{\sqrt{2}}[h+i a]}
$$

These are already the physical fields and there is pairwise degeneracy among the fields of the second and third doublets

It is convenient to re-express the neutral scalar fields in terms of complex fields P and Q and their conjugates:

$$
P \equiv \frac{H+i h}{\sqrt{2}}, \quad Q \equiv \frac{A-i a}{\sqrt{2}}, \quad P^{\dagger} \equiv \frac{H-i h}{\sqrt{2}}, \quad Q^{\dagger} \equiv \frac{A+i a}{\sqrt{2}}
$$

the fields P, Q and the corresponding conjugate fields P^{\dagger} and Q^{\dagger} are each eigenstates of CP4.
In particular, under a CP4 transformation, $P \rightarrow i P, Q \rightarrow i Q, P^{\dagger} \rightarrow-i P^{\dagger}$, and $Q^{\dagger} \rightarrow-i Q^{\dagger}$
P and the corresponding conjugate state P^{\dagger} are mass-degenerate, but are otherwise unrelated fields (and similarly for Q and Q^{\dagger})

An Observable distinction between CP2 and CP4

The presence of the terms:

$$
\begin{aligned}
\delta \mathscr{L}_{4 h} \ni & \frac{1}{2} \operatorname{Im} Z_{8}\left[\left(P Q-P^{\dagger} Q^{\dagger}\right)\left(P^{2}-Q^{2}-P^{\dagger 2}+Q^{\dagger 2}\right)\right] \\
& +\frac{1}{2} i \operatorname{Im} Z_{9}\left[\left(P Q-P^{\dagger} Q^{\dagger}\right)\left(P^{2}+Q^{2}+P^{\dagger 2}+Q^{\dagger 2}\right)\right]
\end{aligned}
$$

signals a CP4 symmetric IS scalar potential that does not respect a CP2 symmetry
The \mathbf{Z} coupling to the \mathbf{P} and \mathbf{Q} fields is of the form:

$$
\frac{g}{2 c_{W}} Z^{\mu}\left(Q \overleftrightarrow{\partial}_{\mu} P+Q^{\dagger} \overleftrightarrow{\partial}_{\mu} P^{\dagger}\right)
$$

this ZPQ interaction would permit the decay, if kinematically available:

$$
Z \rightarrow P Q, P^{*} Q^{*}
$$

suppose that $M_{Q}<\frac{1}{4} m_{Z}<M_{P}$ In this example P and P^{*} would be virtual One possible decay of the virtual $\quad P$ or P^{*} makes use of the existence of the four scalar interaction given above. If this interaction is present, the decay

$$
Z \rightarrow Q Q Q Q^{*}, Q^{*} Q^{*} Q^{*} Q
$$

is allowed and provides unambiguous evidence that either Z_{8} and/or Z_{9} possesses a nonzero imaginary part

An Observable distinction between CP2 and CP4 (cont)

Figure 2: Feynman diagrams for $Z \rightarrow Q Q Q Q^{*}$

CONCLUSIONS

Symmetries play an important rôle in multi-Higgs models

- reduction of the number of free parameters
- experimental predictions

Connections can be established between Symmetries and:

- mass degeneracies
- CP violation

