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Two Higgs Doublet Models

Several motivations

- New sources of CP violation
SM cannot account for BAU

- Possibility of having spontaneous CP violation
EW symmetry breaking and CP violation same footing
T. D. Lee 1973, Kobayashi and Maskawa 1973 

- Strong CP Problem, Peccei-Quinn

- Supersymmetry

LHC important role



Motivation for three Higgs doublets
Three fermion generations may suggest three doublets
Interesting scenario for dark matter

Rich phenomenology

       Possibility of having a discrete symmetry and still having
spontaneous CP violation  

Motivation for imposing discrete symmetries
Symmetries reduce the number of free parameters 

leading to (testable) predictions 

Symmetries are needed to stabilise dark matter

Symmetries help to control HFCNC

Example: NFC, no HFCNC due to Z2 symmetry(ies)

Example: MFV suppression of HFCNC, BGL models



Inert Higgs
Initial proposal: 2 Higgs doublets, Unbroken Z2 symmetry �2 ! ��2

all other Standard Model particles are invariant under Z2
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2006

, the inert Higgs, does not couple to matter and acquires no vev, NFC

Detection is difficult, but possible, and is summarized in Ref. [24].
In the general 2HDM, one has the same processes as in the MSSM, but there is now

a much larger parameter space. The quark-annihilation process has precisely the same
form as in the MSSM, but now one need no longer have a small cos(α− β), and thus the
ZhA coupling can be larger than in the MSSM. This is encouraging and leads to some
interesting possibilities. For example, in the lepton-specific model and for tan β > 2,
the dominant decay of the A is into τ+τ−, and for much of parameter space the decay
of the light Higgs is also into τ+τ−. Thus one might have four-τ events with branching
ratios as high as tens of femtobarns. This signature needs further investigation. A study
of pair production of the lightest Higgs bosons in the type II model was carried out in
Refs. [157, 158, 159]. They showed that while pair production in the Standard Model is
very difficult to observe at the LHC, it can be bigger in the type II model, and they also
show that there can be sensitivity to the quartic couplings, which could help distinguish
the model from the MSSM.

For the gluon-initiated process, triangle diagrams produce a single h/H/A, real or
virtual, which then converts into a pair of scalars. Alas, this process is proportional to
trilinear scalar couplings and, while these are known in the MSSM, they are unknown
in the general 2HDM. The box diagrams which give gluon fusion into two scalars will
be similar to those of the MSSM. Thus all one can really say is that the rate could be
substantially larger than in the MSSM, but accurate predictions are impossible.

2.3 The inert Higgs model

The inert Higgs model is a 2HDM with an unbroken Z2 symmetry under which one of the
doublets transforms non-trivially, viz. Φ2 → −Φ2, and all other SM fields are invariant.
This ‘parity’ imposes natural flavour conservation. Initially a similar model [160] was
introduced to explain neutrino masses. More recently such a model was proposed in the
context of radiative neutrino masses [161] and also to attack the naturalness problem
of the SM by allowing for a larger mass (between 400 and 600 GeV) for the SM Higgs
while keeping full consistency with electroweak precision tests [162], thus solving the ‘little
hierarchy’ problem [163]. Even more recently, an inert doublet was introduced to allow
for the possibility of several mirror families of fermions [164].

In the inert Higgs model the Higgs doublet Φ2—the inert doublet—does not couple
to matter and acquires no vacuum expectation value, leaving the Z2 symmetry unbroken.
The scalar spectrum consists of the SM-like Higgs obtained from Φ1 and one charged and
two neutral states from Φ2. Since the Z2 is unbroken the lightest inert particle will be
stable and will contribute to the dark matter density [161, 162]. This possibility has been
analysed by several authors [165, 166, 167, 168, 169, 170, 171, 172]. The early cosmological
evolution of the model has been discussed by Ginzburg et all in [173].

The scalar potential is the one in eq. (2) but with m2
12 = 0. The asymmetric phase,

where 〈
φ0
1

〉
=

v√
2

and
〈
φ0
2

〉
= 0, (25)

corresponds to a sizeable region of parameter space [161, 162] and the scalar masses are
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The Z2 symmetry is left unbroken, as a result the lightest inert particle will be 
stable and will contribute to dark matter density

Notice that this is different from going to the Higgs basis

Inert scalars can be produced at colliders through their couplings to the EW 
gauge bosons subject to Z2 constraints and participate in cubic and quartic 

Higgs couplings

E. Ma;
L.L. Honorez, E. Nezri, J. F. Oliver, M. H. G. Tytgat , 2006   



The Inert doublet model has been extended by 
several authors to include three Higgs Doublets 

B. Grzadkowski, O. M. Ogreid, P. Osland, G.M. Pruna , A. Pukhov, M. Purmohammadi

 Possibility of having  CP Violation and a stable DM 
candidate 

A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S.F. King, S. Moretti, D. Rojas, D. 
Sokołowska

Many works on Dark matter with an Inert Higgs doublet
N. Darvishi, Mikael Dhen; I. F. Ginzburg, Thomas Hambye, K. A. Kanishev, M. Krawczyk, T. 
Robens, D. Sokolowska, P. Swaczyna, B. Swiezewska,  and many more authors



Symmetries of the 2 Higgs Doublet Model
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symmetries, we can identify those that can potentially guarantee the mass degeneracy of scalar
states. By examining the consequences of these symmetries, we again confirm that the only
possible neutral scalar mass degeneracy in the 2HDM arises in the IDM as previously noted.

In section 3 we consider possible mass-degeneracies in the three Higgs doublet model. Using
the previous 2HDM analysis of mass degeneracies of the IDM, we construct a three Higgs dou-
blet model (3HDM) generalization of the IDM, which we call the replicated inert doublet model
(RIDM). In this model, two of the three Higgs doublets are inert, and four mass-degenerate
scalar pairs exist (two involving the charged scalar states from the inert doublets and two
involving the neutral scalar states from the inert doublets). We can explicitly identify the sym-
metries that are responsible for these mass degeneracies. We then investigate the possibility
of adding new terms to the scalar potential that partially break these symmetries while pre-
serving the mass degeneracies. In this way, we arrive at a model first proposed by Ivanov and
Silva [29]. The Ivanov and Silva scalar potential possesses a discrete subgroup of the continuous
symmetries that govern the RIDM, that maintains the mass degeneracies of the RIDM. This
discrete subgroup is the generalized CP symmetry, CP4, which has the property that (CP4)n

is the identity operator only for integer n values that are multiples of 4. The CP4 symmetry
is distinguished from the ordinary CP symmetry (denoted henceforth by CP2), which has the
property that (CP2)2 is the identity operator. Some properties of specialized 3HDMs have also
been analyzed recently in Ref. [30].

One of the most notable properties of the Ivanov-Silva (IS) model is that one can write
down the most general CP4-invariant scalar potential with three Higgs doublets, which has
the feature that at least one of the coe�cients of the quartic terms of the scalar potential
must be complex (with a nonvanishing imaginary part). Indeed, as demonstrated explicitly in
Appendix A, one cannot redefine the scalar fields within the family of Higgs bases such that
all the coe�cients of the scalar potential are real. In this case, we say that no real Higgs basis
exists. This means that CP2 is not a symmetry of the IS scalar potential and vacuum.

In section 4, we identify the existence of a physical observable of the IS model that is
present if no real Higgs basis exists (i.e., CP2 is violated) and is absent if the CP2 symmetry is
respected. As an example, we focus on Z decay into four inert neutral scalars (with some details
relegated to Appendix B). Nevertheless, the CP4 invariance guarantees that all CP-violating
observables involving the Higgs/gauge boson sector of the theory must be absent. For example,
we provide an instructive analysis in section 5 that shows how the CP4 symmetry of the IS
model with no real Higgs basis ensures the cancellation of the contributions to the CP-violating
form factors of the e↵ective ZZZ and ZW+W� vertices up to three-loop order. Finally, we
state our conclusions in section 6.

2 2HDM mass degeneracies

Consider the 2HDM, consisting of two hypercharge-one, doublet scalar fields, �1 and �2. The
most general gauge-invariant renormalizable scalar potential is

V = m2
11�

†
1�1 + m2

22�
†
2�2 � [m2

12�
†
1�2 + h.c.] + 1

2�1(�
†
1�1)

2 + 1
2�2(�

†
2�2)

2 + �3(�
†
1�1)(�

†
2�2)

+�4(�
†
1�2)(�

†
2�1) +

n

1
2�5(�

†
1�2)

2 +
⇥

�6(�
†
1�1) + �7(�

†
2�2)

⇤

�†
1�2 + h.c.

o

. (2.1)

3

11 independent parameters

If all the parameters are real CP is explicitly conserved: 
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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with U a unitary matrix which we can choose as the identity matrix when  
all parameters are real

However, there is still the possibility of Spontaneous Symmetry Breaking

this case there is no zero vev and all vevs have different moduli. The construction of a
matrix U satisfying the constraint of Eq. (2) follows the same steps as in the case C-III-c.
However, in this case there is no freedom to apply an overall phase rotation to transform
the relative phase of w1 and w2 into two symmetric phases, since this would make wS

complex. It turns out that this vacuum is more constrained than case C-III-c, requiring
four relations among the coefficients of the potential to be obeyed. As a result, the SO(2)
rotation transforming it into (beiγ1 , beiγ2 , ŵS) automatically leads to γ1 + γ2 = 0. Once
again building the matrix U requires special insight. The necessary SO(2) rotation will
be a function of the ŵi and σi, for i = 1, 2 and is similar to the one of case C-III-c [10]
being given by tan 2θ = (ŵ2

1 − ŵ2
2)/(2ŵ1ŵ2 cos(σ1 − σ2)). The alternative procedure of

going directly to the Higgs basis is also, in this case, the easiest and most straightforward
way of checking for CP conservation where now a possible rotation is:

⎛

⎝

h′
1

h′
2

h′
S

⎞

⎠ =

⎛

⎝

1
N1

(ŵ1 ŵ2 ŵS)
1
N2

(ŵ2 −ŵ1 0)
1
N3

(ŵ1 ŵ2 X)

⎞

⎠

⎛

⎝

e−iσ1 0 0
0 e−iσ2 0
0 0 1

⎞

⎠

⎛

⎝

h1

h2

hS

⎞

⎠ (10)

where 1/Ni are normalisation factors and the X is chosen in such a way that rows 1 and
3 are also orthogonal. With this transformation only h′

1 acquires a non-zero vev and the
coefficients of the potential can all be made real using the freedom to rephase the fields
with zero vevs.

Examples C-III-c and C-IV-e show that searching for a matrix U satisfying the constraint
of Eq. (2) may not always be the easiest path to check for CP conservation. In particular,
as the complexity grows, it may be more convenient to inspect the potential directly by
going to the Higgs basis.

The T. D. Lee Model
So far we have shown how to use the Higgs basis to prove that CP is not spontaneously
broken. In T. D. Lee’s two-Higgs-doublet model [1] the potential has the most general
form with real coefficients:

V (φ) = −λ1φ
†
1φ1 − λ2φ

†
2φ2

+ A(φ†
1φ1)

2 +B(φ†
2φ2)

2 + C(φ†
1φ1)(φ

†
2φ2) + C̄(φ†

1φ2)(φ
†
2φ1)

+
1

2
[(φ†

1φ2)(Dφ†
1φ2 + Eφ†

1φ1 + Fφ†
2φ2) + h.c.]. (11)

CP is violated spontaneously by vevs of the form (ρ1eiθ, ρ2), in the region of parameters
of the potential where ρ1 and ρ2 are different from zero and eiθ ̸= 1. The transformation
to the Higgs basis is given by

(

φ′
1

φ′
2

)

=
1

v

(

1 0
0 eiχ

)(

ρ1 ρ2
−ρ2 ρ1

)(

e−iθ 0
0 1

)(

φ1

φ2

)

(12)

with v2 = ρ21 + ρ22. The potential acquires a new form under this transformation. The
bilinear part of the potential is only real if sinχ = 0 or λ1 = λ2. In either case requiring
the quartic part of the potential to be real leads to special conditions on the parameters
of the potential and therefore, does not hold in general.
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going to the Higgs basis.

The T. D. Lee Model
So far we have shown how to use the Higgs basis to prove that CP is not spontaneously
broken. In T. D. Lee’s two-Higgs-doublet model [1] the potential has the most general
form with real coefficients:
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CP is violated spontaneously by vevs of the form (ρ1eiθ, ρ2), in the region of parameters
of the potential where ρ1 and ρ2 are different from zero and eiθ ̸= 1. The transformation
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with v2 = ρ21 + ρ22. The potential acquires a new form under this transformation. The
bilinear part of the potential is only real if sinχ = 0 or λ1 = λ2. In either case requiring
the quartic part of the potential to be real leads to special conditions on the parameters
of the potential and therefore, does not hold in general.
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(ŵ1 ŵ2 ŵS)
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(ŵ2 −ŵ1 0)
1
N3
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The above equation together with the assumption that the vacuum is CP invariant leads to
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£(Uc~) = £(q~), (3) 

then that would be a sure indication that there is spon- 
taneous T violation. 

It  has been emphasized some time ago [ 1 ] that in 
the framework of an SU(2) X U(1) gauge theory with 
scalar doublets, a minimum of two scalar multiplets 
are required in order to obtain spontaneous T viola- 
tion. In the case of  two scalar doublets, the most gen- 
eral Higgs potential can be written 

V(~I, ~2) = VO + [;kl ( ~ q ~ 2 ) ( ~ 2 )  + ~ 2 ( ~  ~ 2 ) ( ~  ~1) 

+ X3(¢I~2)(~t24~2) + h .c . l ,  (4) 

where V 0 denotes the part of the potential without 
any phase dependence. Since we are interested in 
spontaneously broken T invariance, we will always 
assume real coupling constants. For an appropriate 
finite range of  the parameters of  the scalar potential, 
the minimum is at: 

COS 0 = --(4XlOlO2)-l()t202 + X302), (5) 

where (014~010) --- v i =Ioil exp(i0i) and 0 = 02 - 01. 
In eq. (5), the above mentioned dependence of 0 on 
the coupling constants of  the scalar potential is illu- 
strated. In this case, it is easily seen that Tis  sponta- 
neously broken. Indeed in this example, there is no 
matrix satisfying simultaneously eqs. (2), (3). This is 
clearly the simplest example of spontaneous T viola- 
tion. However, the phase 0 is not a "calculable" quan- 
tity. In this note a "calculable phase" refers to a 
phase whose value is independent of  the coupling 
constants of  the scalar potential and therefore stable 
against radiative corrections [5]. In the case of  two 
Higgs doublets, the only way of  having a calculable 
phase in the sense defined above, is by setting X 2 = X 3 
= 0, thus implying 0 = rr/2. Assuming these coupling 
constants equal to zero is natural in the technical 
sense, since then the potential acquires an extra sym- 
metry under which: 

(ki ~ Gi/c~l" , (6) 

where 

o:(; 2) 
This transformation G, needed in order to implement 
a calculable 0 phase, supplies us with the T transfor- 

mation defined in eq. (4) * 1 : 

( l  i([011 ( [o  11 

- 1  !\1o21 exp(irr/2)) = \1o21 exp(irr/2) ) '  (8) 

and therefore implies a T-conserving solution. From 
the previous considerations, we conclude that more 
than two scalar doublets have to be introduced in 
order to achieve both calculability and spontaneous 
T violation * 1. It is also clear that calculability re- 
quires the presence of an extra symmetry in the scalar 
potential. This requirement was necessary in the case 
of  two scalar doublets and it applies a for t ior i  to the 
case of  more than two scalar doublets. 

Let us consider first the case where the scalar po- 
tential is invariant under an abelian group. We will 
show that then calculable phases always correspond 
to T conservation. In the case of  an abelian group, we 
can always choose a special basis where each scalar 
doublet ~j (] = 1 ... . .  n) transforms as a one-dimension- 
al representation of  the group. Then the unitary matrix 

fexp(-2i01) )/  
U = " . .  , (9) 

exp( -2 i0  n 

obviously satisfies eq. (2) and, as we will see, it corre- 
sponds to a symmetry of the potential. In order to 
achieve calculability, each individual term I s of  the 
scalar potential, together with its hermitian conjugate, 
has to be minimized separately with respect to the 
0 i phases. The minimization of  each function .2 
cos [0(Io)], where 0(I~) denotes the linear combina- 
tion of Oi's associated with the fields occurring in I s, 
trivially gives O(Ic~ ) -- 0, 7. In this case the transforma- 
tion (9) corresponds to a symmetry of the scalar po- 
tential and the vacuum is Tinvariant. 

In view of the previous result, we consider next the 
case of  non-abelian symmetries. In the following, we 
will confine ourselves to three Higgs doublets and for 
simplicity we first analyse the case of an S 3 symmetry,  
with the scalar doublets transforming as a three-dimen- 
sional reducible representation. The most  general re- 
normalizable scalar potential can be written [6] as, 

,1 We assume that the scalar potential has no (discrete or 
continuous) accidental symmetries. 

,2 The fact that only functions of this type appear is a conse- 
quence of having assumed real coupling constants. 
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.

22

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
2
3
P
_
0
1
1
6
 
v
1

8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.

22

T. D. Lee 1973 

G. C. Branco, J. M. Gerard and W. Grimus 1984  



List of all possible Symmetries of the 2HDM
The complete list of such symmetries is known:

Deshpande and Ma 1978, Ivanov 2007, Ferreira, Haber and Silva 2009, Ferreira,  
Haber, Maniatis, Nachtmann and Silva 2011, Battye, Brawn, Pilaftsis 2011,  
Pilaftsis 2011

There are three possible Higgs family symmetries (first three rows) and three  
classes of CP symmetries with different U matrices (next three rows) 
There are seven additional accidental symmetries of the 2HDM scalar  

potential Battye, Brawn, Pilaftsis 2011, Pilaftsis 2012
which are not exact symmetries since they are violated by the U(1) gauge  
kinetic term of the scalar potential, as well as by the Yukawa couplings,  
therefore, not considered here.

symmetry transformation law

Z2 �1 ! �1 �2 ! ��2

U(1) �1 ! �1 �2 ! e2i✓�2

SO(3) �a ! Uab�b U 2 U(2)/U(1)Y (for a, b = 1, 2 )
GCP1 �1 ! �⇤

1 �2 ! �⇤
2

GCP2 �1 ! �⇤
2 �2 ! ��⇤

1

GCP3 �1 ! �⇤
1 cos ✓ + �⇤

2 sin ✓ �2 ! ��⇤
1 sin ✓ + �⇤

2 cos ✓ (for 0 < ✓ < 1
2⇡)

⇧2 �1 ! �2 �2 ! �1

1



List of all possible Symmetries of the 2HDM (cont.)
Starting from a generic scalar potential given by Eq. (2.1) if the  
scalar potential respects one of the symmetries listed in Table 1, the  
coefficients of the scalar potential are constrained according to Table 2,  
in the basis where the symmetry  is manifest
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symmetry m2
11 m2

22 m2
12 �1 �2 �3 �4 Re �5 Im �5 �6 �7

Z2 - - 0 - - - - - - 0 0
U(1) - - 0 - - - - 0 0 0 0
SO(3) - m2

11 0 - �1 - �1 � �3 0 0 0 0
GCP1 - - real - - - - - 0 real real
GCP2 - m2

11 0 - �1 - - - - - ��6

GCP3 - m2
11 0 - �1 - - �1 � �3 � �4 0 0 0

⇧2 - m2
11 real - �1 - - - 0 - �⇤

6

Z2 � ⇧2 - m2
11 0 - �1 - - - 0 0 0

U(1)�⇧2 - m2
11 0 - �1 - - 0 0 0 0

Table 2: Impact of the symmetries defined in Table 1 on the coe�cients of the 2HDM scalar poten-
tial [cf. Eq. (2.1)] in a basis where the symmetry is manifest. A short dash indicates the absence of
a constraint. Note that a scalar potential that is simultaneously invariant under Z2 and ⇧2 is also
invariant under GCP2 in another scalar field basis [55]. Likewise, a scalar potential that is simultane-
ously invariant under U(1) and ⇧2 is also invariant under GCP3 in another scalar field basis [55]. The
symbol � is being used above to indicate that two symmetries are enforced simultaneously within the
same scalar field basis.

when mH± = mA [23–26]. However, this class of symmetries is violated by the U(1)Y gauge
kinetic term of the scalar potential (as well as by the Yukawa couplings that are responsible
for mass di↵erences between up and down-type fermions). Hence, any exact mass degeneracies
arising from these seven accidental symmetries will be spoiled, in the absence of an artificial
fine tuning of the Higgs scalar potential parameters.15

Possible natural mass degeneracy of the 2HDM must be the consequence of one of the
symmetries listed in Table 1. Starting from a generic scalar potential given by Eq. (2.1), if the
scalar potential respects one of the symmetries listed in Table 1, then a scalar basis is picked
out in which the symmetry is manifest. In this basis, the coe�cients of the scalar potential
are constrained according to Table 2.16 It is straightforward to check that the possible discrete
symmetries of the 2HDM, namely Z2, GCP1, GCP2 (or equivalently, Z2 � ⇧2), do not yield
scalar potentials that lead to scalar mass degeneracies. Thus, we henceforth focus on U(1),
SO(3) and GCP3 (and the related U(1)�⇧2 symmetry).

Given a 2HDM scalar potential with a Peccei-Quinn [U(1)PQ] symmetry [59] (or equivalently
the U(1) transformation specified in Table 117) that is spontaneously broken by the vacuum,
the scalar sector will contain a massless CP-odd (Goldstone) scalar [60, 61]. In such cases, no

15In cases of accidental symmetries, i.e. symmetries of the scalar potential that are not respected by the full
theory, the would-be mass degeneracies are only approximate, with calculable mass splittings. The possibility
of such approximate mass degeneracies, although technically natural, is not the subject of this paper.

16It can be shown that for each of the symmetries listed in Table 2, a scalar field basis exists in which all
scalar potential parameters and the neutral scalar field vacuum expectation values are simultaneously real, in
which case CP (as defined by GCP1 in Table 1) is conserved by the scalar sector Lagrangian and vacuum.

17In Ref. [59], a U(1)PQ transformation of the 2HDM scalar fields is given by �1 ! e�i✓�1 and �2 ! ei✓�2.
The U(1) transformation specified in Table 1 corresponds to a combining the U(1)PQ transformation with a
hypercharge U(1)Y transformation, �i ! ei✓�i (for i = 1, 2).

10

In all these cases the imposed symmetry leads to explicit CP is conservation
In all cases GCP1, and also 2 and 3 there is invariance under hermitian  
conjugation Ferreira, Haber and Silva  2009

Branco and MNR 1985
Possibility of spontaneous CP violation with Z_2 softly broken



Natural 2HDM mass degeneracies
Analysis of explicit expressions of the neutral scalar masses

Consider all possible symmetries of the 2HDM
or

Mass degenerate neutral scalars can only arise naturally in the 2HDM  
in the case of the IDM with Z_5 = 0

Natural scalar mass degeneracies in the 2HDM

Consider the 2HDM with two hypercharge-one, doublet scalar fields. It is

convenient to work in the Higgs basis in which the two Higgs doublet fields,

denoted by H1 and H2, satisfy ⟨H0
1⟩ = v/

√
2 and ⟨H0

2⟩ = 0 (i.e., the vacuum

expectation value, v = 246 GeV, resides entirely in the neutral component of

the Higgs basis field H1.)

We can immediately identify the physical charged Higgs field, H+ ≡ H+
2 , and

the neutral and charged Goldstone fields, G0 =
√
2 ImH0

1 and G+ ≡ H+
1 . In

the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}
,

where Y1, Y2 and Z1,2,3,4 are real, whereas Y3, Z5,6,7 are potentially complex.

After minimizing the scalar potential, Y1 = −1
2Z1v2 and Y3 = −1

2Z6v2.

Specializing to the Inert doublet model (IDM)

Suppose that the Higgs basis of the 2HDM exhibits an exact Z2 symmetry,

H1 → +H1 and H2 → −H2. This symmetry is also preserved by the vacuum.

It then follows that Y3 = Z6 = Z7 = 0. The one remaining complex parameter,

Z5 can be chosen real by rephasing the Higgs basis field H2. Thus, the IDM

scalar potential is CP-conserving.

The Higgs basis doublet fields are also mass eigenstate fields,

H1 =

(

G+

1√
2

[

v + h + iG0]

)

, H2 =

(

H+

1√
2

[

H + iA
]

)

,

where G± and G0 are the Goldstone bosons that provide the longitudinal

degrees of freedom of the massive W± and Z0 gauge bosons. The tree-level

properties of the scalar h are precisely those of the SM Higgs boson. The

physical scalar mass spectrum is,

m2
h = Z1v

2 , m2
H± = Y2 + 1

2Z3v
2 ,

m2
A = m2

H± + 1
2(Z4 − Z5)v
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H = m2

A + Z5v
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It then follows that Y3 = Z6 = Z7 = 0. The one remaining complex parameter,

Z5 can be chosen real by rephasing the Higgs basis field H2. Thus, the IDM

scalar potential is CP-conserving.

The Higgs basis doublet fields are also mass eigenstate fields,

H1 =
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2
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v + h + iG0]

)

, H2 =

(

H+

1√
2

[

H + iA
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,

where G± and G0 are the Goldstone bosons that provide the longitudinal

degrees of freedom of the massive W± and Z0 gauge bosons. The tree-level

properties of the scalar h are precisely those of the SM Higgs boson. The

physical scalar mass spectrum is,

m2
h = Z1v

2 , m2
H± = Y2 + 1

2Z3v
2 ,

m2
A = m2

H± + 1
2(Z4 − Z5)v
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A natural mass degeneracy of the IDM

mH = mA, due to Z5 = 0.

This mass degeneracy is due to an exact continuous U(1) symmetry, H1 → H1

and H2 → eiθH2, which is preserved by the vacuum. One can now define

eigenstates of U(1) charge (not to be confused with electric charge),

φ± =
1√
2

[
H ± iA

]
.

The physical scalar mass spectrum of the mass-degenerate IDM is,

m2
h = Z1v

2 ,

m2
H± = Y2 +

1
2Z3v

2 ,

m2
φ± = Y2 +

1
2(Z3 + Z4)v

2 .

Remark: If Z4 = 0, then the H± are degenerate in mass with the φ± at

tree-level. But, this mass-degeneracy is broken by radiative corrections (due to

the interactions with gauge bosons).
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Natural 2HDM mass degeneracies (cont.)

The relevant interaction terms of φ± are
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Although φ± are mass degenerate states, they can be physically distinguished

on an event by event basis.

For example, Drell-Yan production via a virtual s-channel W+ exchange can

produce H+ in association with φ−, whereas virtual s-channel W− exchange

can produce H− in association with φ+. Thus, the sign of the charged Higgs

boson reveals the U(1)-charge of the produced neutral scalar. The origin of

this correlation lies in the fact that, by construction, H+ and φ+ both reside

in H2, whereas H− and φ− both reside in H†
2.
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Models with three Higgs doublets

There is not yet a full study of all possible symmetries 

Two Particular Scenarios will be briefly discussed in what follows  

Three Higgs doublet models with S3 Symmetry
(extended to flavour)

many works aiming at explaining neutrino masses and  
leptonic mixing

a lot of work already done analysing the Higgs potential

inert dark matter candidates from S3 3HDM considered 

 Interesting open questions still remain!

Despite

Ma, Koide, Kubo, Mondragon, Rodriguez-Jauregui, Chen, Wolfenstein, Mohapatra, Nasri,
Yu, Harrison, Scott, Frigerio, Grimus, Lavoura, Branco, Silva-Marcos…  

Derman, Tsao, Pakvasa, Sugawra, Wyler, Branco, Gerard, Grimus, Das, Dey, Bhattacharyya, Leser, 
Pas, Ivanov, Nishi…  

Fortes, Machado, Montano, Pleitez…  

Harari, Haut, Weyers, Meloni, Teshima, Melic, Canales, S Salazar, Velasco-Sevilla ,…  

several works addressing masses and mixing in the quark sector 

A CP-conserving multi-Higgs Model with irremovable 
complex coefficients    

Ivanov and Silva 2015

e.g. Ivanov et al
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The Scalar potential
S3 is the permutation group involving three objects, 

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

remains invariant, it splits into two irreducible representations, 
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The scalar potential in terms of fields from irreducible representations
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2.3 The potential in terms of the S3 singlet and doublet

In terms of the S
3

singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]
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The vacuum conditions give µ2
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The two equations (2.21b) and (2.21c) are not automatically consistent.
For the charged sector, the mass-squared matrix is given by

M2

11

= 1

2

[�
5
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� ṽ2
2

) + 2µ2

1

],

M2

22

= 1

2

[�
5
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6

ṽS + 2�
7

ṽS),

M2

2S = 1

2

[�
4

(ṽ2
1

� ṽ2
2

) + �
6

ṽ
2

ṽS + 2�
7

ṽ
2

ṽS]. (2.22)

For the CP-odd sector, the mass-squared matrix is given by

M2

11

= 1

2

[(�
5

+ �
6

� 2�
7

)ṽ2S + 2�
1

(ṽ2
1

+ ṽ2
2

)� 4�
2

ṽ2
2

+ 2�
4

ṽ
2

ṽS + 2�
3

(ṽ2
1

� ṽ2
2

) + 2µ2

1

],

M2

22

= 1

2

[(�
5

+ �
6

� 2�
7

)ṽ2S + 2�
1

(ṽ2
1

+ ṽ2
2

)� 4�
2

ṽ2
1

� 2�
4

ṽ
2

ṽS � 2�
3

(ṽ2
1

� ṽ2
2

) + 2µ2

1

],

M2

SS = 1

2

[2�
8

ṽ2S + (�
5

+ �
6

� 2�
7

)(ṽ2
1

+ ṽ2
2

) + 2µ2

0

],

M2

12

= ṽ
1

[2(�
2

+ �
3

)ṽ
2

+ �
4

ṽS],

M2

1S = ṽ
1

(�
4

ṽ
2

+ 2�
7

ṽS),

M2

2S = 1

2

[�
4

(ṽ2
1

� ṽ2
2

) + 4�
7

ṽ
2

ṽS]. (2.23)
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no symmetry under the interchange of 

however there is symmetry for  

equivalent doublet representation

Das and Dey

h1 and h2

h1 ! �h1

2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :

1 : �3 =
1p
3
(�a + �b + �c) , (1a)

2 :

✓

�1

�2

◆

=

 

1p
2
(�a � �b)

1p
6
(�a + �b � 2�c)

!

. (1b)

The elements of S3 for this particular doublet representation are given by :
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆

,

✓

cos ✓ sin ✓
sin ✓ � cos ✓

◆

, for

✓

✓ = 0,±2⇡

3

◆

. (2)

The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:

V (�) = V2(�) + V4(�) , (3a)

where, V2(�) = µ2
1(�

†
1�1 + �†

2�2) + µ2
3�

†
3�3 , (3b)

V4(�) = �1(�
†
1�1 + �†

2�2)
2 + �2(�

†
1�2 � �†

2�1)
2 + �3

n

(�†
1�2 + �†

2�1)
2 + (�†

1�1 � �†
2�2)

2
o

+�4

n

(�†
3�1)(�

†
1�2 + �†

2�1) + (�†
3�2)(�

†
1�1 � �†

2�2) + h.c.
o

+�5(�
†
3�3)(�

†
1�1 + �†

2�2) + �6

n

(�†
3�1)(�

†
1�3) + (�†

3�2)(�
†
2�3)

o

+�7

n

(�†
3�1)(�

†
3�1) + (�†

3�2)(�
†
3�2) + h.c.

o

+ �8(�
†
3�3)

2 . (3c)

In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :

�1 > 0 , (4a)

�8 > 0 , (4b)

�1 + �3 > 0 , (4c)

2�1 + (�3 � �2) > |�2 + �3| , (4d)

�5 + 2
p

�8(�1 + �3) > 0 , (4e)

�5 + �6 + 2
p

�8(�1 + �3) > 2|�7| , (4f)

�1 + �3 + �5 + �6 + 2�7 + �8 > 2|�4| . (4g)

To avoid confusion, we wish to mention that an equivalent doublet representation,
✓

�1

�2

◆

=
1p
2

✓

i 1
�i 1

◆✓

�1

�2

◆

, (5)

has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:

V4 =
�1

2

⇣

�†
1�1 + �†

2�2

⌘2
+

�2

2

⇣

�†
1�1 � �†

2�2

⌘2
+ �3(�

†
1�2)(�

†
2�1) +

�4

2
(�†

3�3)
2

2

✓
h1

h2

◆

now there is symmetry for 

In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 

m2
1+ = �

⇢

2�3 sin
2 � +

1

2
(�6 + 2�7) cos

2 �

�

v2 , (13b)

with, tan� =

p

v21 + v22
v3

. (13c)

The second charged Higgs (H+
2 ) along with the massless Goldstone (!+), which will appear as the longitudinal

component of the W -boson, can be obtained by diagonalizing the remaining 2⇥ 2 block :
✓

H+
2

!+

◆

=

✓

cos� � sin�
sin� cos�

◆✓

w0+
2

w+
3

◆

with, w0+
2 = sin � w+

1 + cos � w+
2 . (14)

The mass of the second charged Higgs is given by :

m2
2+ = �1

2
(�6 + 2�7)v

2 . (15)

Similar considerations for the pseudoscalar part gives :

XM2
PX

T =

0

@

1
2m

2
A1 0 0
0 �v23�7 v3

p

v21 + v22�7

0 v3
p

v21 + v22�7 �(v21 + v22)�7

1

A , (16)

where, the pseudoscalar state (A1) with mass eigenvalue mA1 is defined as :

A1 = cos � z1 � sin � z2 , (17a)

m2
A1 = �2

�

(�2 + �3) sin
2 � + �7 cos

2 �
 

v2 , (17b)

where, tan� has already been defined in Eq. (13c). Similar to the charged part, here also the second pseudoscalar
(A2) along with the massless Goldstone (⇣) can be obtained as follows :

✓

A2

⇣

◆

=

✓

cos� � sin�
sin� cos�

◆✓

z02
z3

◆

with, z02 = sin � z1 + cos � z2 , (18a)

and, m2
A2 = �2�7v

2 . (18b)

Finally, for the CP-even part we have :

XM2
SX

T =

0

@

0 0 0
0 A0

S �B0
S

0 �B0
S C 0

S

1

A , (19a)

where, A0
S = (�1 + �3)(v

2
1 + v22) , (19b)

B0
S = �1

2
v3

q

v21 + v22(�5 + �6 + 2�7) , (19c)

C 0
S = �8v

2
3 . (19d)

The massless state (h0), as also noted in [36], is given by :

h0 = cos � h1 � sin � h2 . (20)

But we wish to add here that the appearance of a massless scalar is not surprising. One can easily verify that
the potential of Eq. (3) has the following SO(2) symmetry for �4 = 0 :

✓

�0
1

�0
2

◆

=

✓

cos ✓ � sin ✓
sin ✓ cos ✓

◆✓

�1

�2

◆

(21)

Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
physical scalars are obtained as follows :

✓

h
H

◆

=

✓

cos↵ � sin↵
sin↵ cos↵

◆✓

h0
2

h3

◆

with, h0
2 = sin � h1 + cos � h2 , (22a)
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✓
h1

h2

◆✓
h0
1

h0
2

◆
= Danger: massless scalar!



Constraining the potential by the vevs

Possibility of SCPV - real parameters

Let us start with real vacua (no CP violation)

Three minimisation conditions:

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
2
3
P
_
0
1
1
6
 
v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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N
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T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
2
3
P
_
0
1
1
6
 
v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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Eqs (4.2b) and (4.2c) obtained dividing by 

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
2
3
P
_
0
1
1
6
 
v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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and

Consistency requires:
- for 
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v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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i. e., 
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1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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or
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(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2
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See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �

4

= 0 corresponds to 4A�2(C+C+D)�E
1

+E
2

+E
3

+E
4

= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �

4

6= 0 there were only
three possible real solutions [46]:

• (x, x, x) leaving S
3

unbroken and translating into the doublet-singlet notation as (0, 0, wS);
consistency condition: w

1

= 0 (also verifies w
1

= ±
p
3w

2

).

• (x, x, y) leaving a residual S
2

symmetry. In terms of the reducible representation any
ordering of the vevs is equivalent, however, in the definition of the doublet of S

3

a special
direction is chosen. As a result, di↵erent orderings correspond to di↵erent translations:
(x, x, y) translates into (0, w

2
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w
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.
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2

.

• (x, y, z) = (x,�x, 0) leaving a residual S
2

symmetry. This is the only possible real solution
with all three vevs di↵erent from each other, unless one imposes 4A� 2(C +C +D)�E
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
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consistency condition: w
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
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was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �
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6= 0 there were only
three possible real solutions [46]:
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consistency condition: w
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• (x, x, y) leaving a residual S
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symmetry. In terms of the reducible representation any
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
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= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �
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6= 0 there were only
three possible real solutions [46]:

• (x, x, x) leaving S
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unbroken and translating into the doublet-singlet notation as (0, 0, wS);
consistency condition: w
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).

• (x, x, y) leaving a residual S
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symmetry. In terms of the reducible representation any
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �

4

= 0 corresponds to 4A�2(C+C+D)�E
1

+E
2

+E
3

+E
4

= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
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Table 1 summarises all the possible real solutions together with the constraints imposed on the
parameters of the potential. The following abbreviation was introduced:

�a = �
5

+ �
6

+ 2�
7

. (11)

Table 2. Complex vacua. Notation: ✏ = 1 and �1 for C-III-d and C-III-e, respectively;
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ŵ
2
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2.3. Complex vacuum solutions

In the discussion of possible complex vacua we now adopt a convention where wS is real and
non-negative and take

w
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= ŵ
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ei�1 , w
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= ŵ
2

ei�2 , (12)

with the ŵi also real and non-negative. With this convention wS is also denoted by ŵS . A
systematic analysis of possible solutions was performed in [35]. The results are summarised in
Table 2. The list of the constraints on the potential that are consistent with each solution is not
given here, it can be found in Ref. [35].

Several solutions require �
4

= 0. This is not a new feature, it also happened in the context
of real solutions. For �

4

= 0 the potential acquires a continuous SO(2) symmetry which can be

Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �

4

= 0 corresponds to 4A�2(C+C+D)�E
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3

+E
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= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �
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6= 0 there were only
three possible real solutions [46]:
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unbroken and translating into the doublet-singlet notation as (0, 0, wS);
consistency condition: w
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= 0 (also verifies w
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).
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symmetry. In terms of the reducible representation any
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• (x, y, z) = (x,�x, 0) leaving a residual S
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symmetry. This is the only possible real solution
with all three vevs di↵erent from each other, unless one imposes 4A� 2(C +C +D)�E
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notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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SSB, real vacua, residual symmetries
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For �4 = 0 SO(2) symmetry implies (x, y, z) possible solution
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(x, y, x)

(y, x, x)

For �4 = 0 SO(2) symmetry implies (x, y, z) possible solution
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The different solutions can be summarised as given in Table 1, where the descriptions
in terms of both the reducible- and irreducible-representation frameworks are given. For
the purpose of making this table as well as the corresponding one for complex vacua more
compact, we introduce the abbreviations

λa = λ5 + λ6 + 2λ7, (4.5a)

λb = λ5 + λ6 − 2λ7. (4.5b)

Table 1: Possible real vacua (partly after Derman and Tsao [21]). The classification of
vacua uses the notation R-X-y, where R means that the vacuum is real. The roman
numeral X is the number of constraints on the parameters of the potential that arise from
solving the stationary-point equations. The letter y is used for distinguishing different
vev’s that have the same X, and λa is defined in Eq. (4.5).

Vacuum ρ1, ρ2, ρ3 w1, w2, wS Comment

R-0 0, 0, 0 0, 0, 0 Not interesting

R-I-1 x, x, x 0, 0, wS µ2
0 = −λ8w2

S

R-I-2a x,−x, 0 w, 0, 0 µ2
1 = − (λ1 + λ3)w2

1

R-I-2b x, 0,−x w,
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-I-2c 0, x,−x w,−
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-II-1a x, x, y 0, w, wS µ2
0 =

1
2λ4

w3
2

wS
− 1

2λaw
2
2 − λ8w2

S,
µ2
1 = − (λ1 + λ3)w2

2 +
3
2λ4w2wS − 1

2λaw
2
S

R-II-1b x, y, x w,−w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-1c y, x, x w,w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-2 x, x,−2x 0, w, 0 µ2
1 = − (λ1 + λ3)w2

2, λ4 = 0
R-II-3 x, y,−x− y w1, w2, 0 µ2

1 = − (λ1 + λ3) (w2
1 + w2

2),λ4 = 0

R-III ρ1, ρ2, ρ3 w1, w2, wS µ2
0 = −1

2λa(w
2
1 + w2

2)− λ8w2
S,

µ2
1 = − (λ1 + λ3) (w2

1 + w2
2)− 1

2λaw
2
S,

λ4 = 0

One should note that

• Vacuum R-I-1 is a special case of Vacuum R-II-1. In this case, the vacuum value x
is determined by

λ− γ = x2[A+ C + C +D + 2E1 + E2 + E3 + E4]. (4.6)

• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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√
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Table 4 the vacua labelled with an asterisk (∗) are in fact real.
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C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
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Table 3: Constraints on complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e,
respectively. Where two possible signs (± or ∓) are given, they correspond to those of
Table 2. Here, λb is defined in Eq. (4.5).

Vacuum Constraints

C-I-a µ2
1 = −2 (λ1 − λ2) ŵ2

1

C-III-a µ2
0 = −1

2λbŵ
2
2 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 =

4 cosσ2ŵS

ŵ2
λ7

C-III-b µ2
0 = −1

2λbŵ
2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2λbŵ

2
S,

λ4 = 0
C-III-c µ2

1 = −(λ1 + λ3)(ŵ2
1 + ŵ2

2),
λ2 + λ3 = 0,λ4 = 0

C-III-d,e µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2
)2

ŵ2
S

− ϵλ4
(ŵ2

1
−ŵ2

2
)(ŵ2

1
−3ŵ2

2
)

4ŵ2ŵS

−1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− ϵλ4

ŵS(ŵ2
1
−ŵ2

2
)

4ŵ2
− 1

2 (λ5 + λ6) ŵ2
S,

λ7 =
ŵ2

1
−ŵ2

2

ŵ2
S

(λ2 + λ3)− ϵ (ŵ
2
1
−5ŵ2

2
)

4ŵ2ŵS
λ4

C-III-f,g µ2
0 = −1

2λb (ŵ
2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2λbŵ
2
S,λ4 = 0

C-III-h µ2
0 = −2λbŵ2

2 − λ8ŵ2
S,

µ2
1 = −4 (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 = ∓2 cosσ2ŵS

ŵ2
λ7

C-III-i µ2
0 =

16(1−3 tan2 σ1)2
(1+9 tan2 σ1)2

(λ2 + λ3)
ŵ4

2

ŵ2
S

± 6(1−tan2 σ1)(1−3 tan2 σ1)

(1+9 tan2 σ1)
3
2

λ4
ŵ3

2

ŵS

−2(1+3 tan2 σ1)
1+9 tan2 σ1

(λ5 + λ6)ŵ2
2 − λ8ŵ2

S,

µ2
1 = −4(1+3 tan2 σ1)

1+9 tan2 σ1
(λ1 − λ2)ŵ2

2 ∓
(1−3 tan2 σ1)
2
√

1+9 tan2 σ1

λ4ŵ2ŵS

−1
2(λ5 + λ6)ŵ2

S,

λ7 = −4(1−3 tan2 σ1)ŵ2
2

(1+9 tan2 σ1)ŵ2
S

(λ2 + λ3)∓
(5−3 tan2 σ1)ŵ2

2
√

1+9 tan2 σ1ŵS

λ4

h2 would allow to remove the phase of λ7, rendering all coefficients of the potential real.
Another way of achieving the same result would be by rephasing hS alone. Neither of
these transformations alters the specifications of the vacuum corresponding to this case.

Cases C-IV-a, C-IV-d and C-V are listed in Table 2 for completeness and to allow
for an enlightening discussion. Once one takes into consideration the constraints given in
Table 4 they become real.

Solution C-IV-d is more general than solution C-IV-a and reduces to C-IV-a once we
fix w2 = 0, so it suffices to discuss C-IV-d. Both of these require λ4 = 0 and λ7 = 0,
and as a result the potential acquires symmetry for the transformation of h1, h2 and hS

under a unitary transformation of the form U = diag(eiτ , eiτ , 1) which allows to remove
the phase σ1 from the vacuum, making it real.

At first glance case C-V looks like the most general case, however we are assuming
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Table 4: Constraints on complex vacua, continued. The vacua labelled with an asterisk
(∗) are in fact real.

Vacuum Constraints

C-IV-a∗ µ2
0 = −1

2 (λ5 + λ6) ŵ2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2 (λ5 + λ6) ŵ2

S,
λ4 = 0,λ7 = 0

C-IV-b µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2)2
ŵ2

S

− 1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = −(ŵ2
1
−ŵ2

2)
ŵ2

S

(λ2 + λ3)

C-IV-c µ2
0 = 2 cos2 σ2 (1 + cos2 σ2) (λ2 + λ3)

ŵ4
2

ŵ2
S

− (1 + cos2 σ2) (λ5 + λ6) ŵ2
2 − λ8ŵ2

S,
µ2
1 = − [2 (1 + cos2 σ2)λ1 − (2 + 3 cos2 σ2)λ2 − cos2 σ2λ3] ŵ2

2

−1
2 (λ5 + λ6) ŵ2

S,

λ4 = −2 cosσ2ŵ2

ŵS
(λ2 + λ3) ,λ7 =

cos2 σ2ŵ2
2

ŵ2
S

(λ2 + λ3)

C-IV-d∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = 0

C-IV-e µ2
0 =

sin2(2(σ1−σ2))
sin2(2σ1)

(λ2 + λ3)
ŵ4

2

ŵ2
S

−1
2

(

1− sin 2σ2

sin 2σ1

)

(λ5 + λ6) ŵ2
2 − λ8ŵ2

S,

µ2
1 = −

(

1− sin 2σ2

sin 2σ1

)

(λ1 − λ2) ŵ2
2 − 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = − sin(2(σ1−σ2))ŵ2
2

sin 2σ1ŵ2
S

(λ2 + λ3)

C-IV-f µ2
0 = − (cos(σ1−2σ2)+3 cosσ1) cos(σ2−σ1)

2 cos2 σ1
λ4

ŵ3
2

ŵS

− cos(σ1−2σ2)+3 cosσ1

2 cosσ1
(λ5 + λ6) ŵ2

2 − λ8ŵ2
S,

µ2
1 = − cos(σ1−2σ2)+3 cosσ1

cosσ1
(λ1 + λ3) ŵ2

2

−3 cos 2σ1+2 cos(2(σ1−σ2))+cos 2σ2+4
4 cos(σ1−σ2) cosσ1

λ4ŵ2ŵS − 1
2 (λ5 + λ6) ŵ2

S,

λ2 + λ3 = − cosσ1ŵS

2 cos(σ2−σ1)ŵ2
λ4,λ7 = − cos(σ2−σ1)ŵ2

2 cosσ1ŵS
λ4

C-V∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ2 + λ3 = 0,λ4 = 0,λ7 = 0

that it does not fall into any of the previous cases, so, as a result, full generality requires
λ2 + λ3 = 0, λ4 = 0 and λ7 = 0 and there is no term in the potential sensitive to
independent rephasing of each of the h fields. As a result any phase in the vevs can be
rotated away. Under these circumstances, it is equivalent to a real set of vacua.

There are, in particular, two possible complex vacua that have been discussed previ-
ously in the literature. One of them is:

ŵeiσ, ŵe−iσ, ŵS, (5.10)

by Pakvasa and Sugawara [18]. We shall refer to this as the PS vacuum, assuming ŵ ̸= 0
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The question of relating complex vacua to real ones is relevant for the discussion of global
minima [28, 29] as well as to understand the possible correlations of different parameters
of the potential.

7 The case of λ4 = 0

As mentioned in section 2.3, in the case of λ4 = 0 the potential has an additional,
continuous SO(2) symmetry. This case was dismissed by Derman [20], as being “un-
natural”. This was due to the fact that this condition, when expressed in terms of the
parameters of the potential written by Derman, given by Eqs. (2.9), acquires the form
given by Eq. (4.10), which is not instructive and the resulting symmetry is not apparent.
Spontaneous breaking of this SO(2) symmetry leads to massless particles. In this case,
one way to promote this to a viable model is to break this symmetry softly, by adding a
term to the bilinear part of the potential:

V = V2 + V ′
2 + V4, (7.1)

with V2 and V4 as defined by equations (2.10), and

V ′
2 =

1

2
ν2(h†

2h1 + h†
1h2). (7.2)

The minimisation conditions (3.3)–(3.5) will now become
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4
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1w
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Sλ7 = 0, (7.4)
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1

2
w1ν
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1

2
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2
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2
1 + w2

2)λ3 +
1

4
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1

2
w∗

2w
2
Sλ7 = 0. (7.5)

With these new conditions there will be some changes in the solutions. In particular,
the new term will bring new sources of CP violation, and spontaneous CP violation may
be easier to achieve. Notice that such a term also softly breaks some types of discrete
symmetries of the S3 doublet h1 and h2 that might otherwise be present. This feature
was exploited long ago in the context of two-Higgs-doublet models [30]. Soft breaking
of the S3 symmetry of the scalar potential has been applied in [31] in order to obtain a
special relation among the vevs of the three doublets that would allow to account for the
observed charged lepton masses.

An important implication of the type of vacuum solution and of the corresponding
allowed region of parameter space is the resulting different possible spectra for the physical
scalars.
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Potential has additional continuous SO(2) symmetry

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

Derman (1979), “unnatural”

Spontaneous breaking of this SO(2) symmetry leads to massless 
particles

Possible solution: break the symmetry softly, the 
most general quadratic potential can be written:

Consider the following quadratic potential:

V = µ2
0h

†
ShS + µ2

1(h
†
1h1 + h†

2h2) + µ2
2(h

†
1h1 � h†

2h2) +
1

2
⌫2(h†

2h1 + h†
1h2)

+ µ2
3(h

†
Sh1 + h†

1hS) + µ2
4(h

†
Sh2 + h†

2hS) (0.1)

along with the vacuum (w1ei�, w2, 0). The quartic part of the potential has the most
general form with S3 symmetry. We need to treat the cases of � = ±⇡/2 and/or w1 = w2

separately. Working out the minimization conditions for the four distinct cases, we find:

1 Four distinct possible VEVs

1.1 (±iw1, w1, 0)

⌫2 = 0,

µ2
1 = �v2(�1 � �2),

µ2
2 = 0,

µ2
3 = 0,

µ2
4 = 0. (1.2)
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µ2
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µ2
2 = �(w2

1 � w2
2)(�2 + �3),

µ2
3 = 0,

µ2
4 = �1

2
(w2

1 � w2
2)�4. (1.3)

1.3 (w1ei�, w1, 0)

⌫2 = �2v2 cos �(�2 + �3),

µ2
1 = �v2(�1 � �2),

µ2
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µ2
3 = �1

2
v2 cos ��4,

µ2
4 = 0. (1.4)

1.4 (w1ei�, w2, 0)

⌫2 = �4w1w2 cos �(�2 + �3),

µ2
1 = �v2(�1 � �2),
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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Next we present a few illustrative examples. Important tool:
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The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
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We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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together with assumption that vacuum is invariant
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The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.

22

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
2
3
P
_
0
1
1
6
 
v
1

8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =
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0 0 1
0 1 0

⎞
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4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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£(Uc~) = £(q~), (3) 

then that would be a sure indication that there is spon- 
taneous T violation. 

It  has been emphasized some time ago [ 1 ] that in 
the framework of an SU(2) X U(1) gauge theory with 
scalar doublets, a minimum of two scalar multiplets 
are required in order to obtain spontaneous T viola- 
tion. In the case of  two scalar doublets, the most gen- 
eral Higgs potential can be written 

V(~I, ~2) = VO + [;kl ( ~ q ~ 2 ) ( ~ 2 )  + ~ 2 ( ~  ~ 2 ) ( ~  ~1) 

+ X3(¢I~2)(~t24~2) + h .c . l ,  (4) 

where V 0 denotes the part of the potential without 
any phase dependence. Since we are interested in 
spontaneously broken T invariance, we will always 
assume real coupling constants. For an appropriate 
finite range of  the parameters of  the scalar potential, 
the minimum is at: 

COS 0 = --(4XlOlO2)-l()t202 + X302), (5) 

where (014~010) --- v i =Ioil exp(i0i) and 0 = 02 - 01. 
In eq. (5), the above mentioned dependence of 0 on 
the coupling constants of  the scalar potential is illu- 
strated. In this case, it is easily seen that Tis  sponta- 
neously broken. Indeed in this example, there is no 
matrix satisfying simultaneously eqs. (2), (3). This is 
clearly the simplest example of spontaneous T viola- 
tion. However, the phase 0 is not a "calculable" quan- 
tity. In this note a "calculable phase" refers to a 
phase whose value is independent of  the coupling 
constants of  the scalar potential and therefore stable 
against radiative corrections [5]. In the case of  two 
Higgs doublets, the only way of  having a calculable 
phase in the sense defined above, is by setting X 2 = X 3 
= 0, thus implying 0 = rr/2. Assuming these coupling 
constants equal to zero is natural in the technical 
sense, since then the potential acquires an extra sym- 
metry under which: 

(ki ~ Gi/c~l" , (6) 

where 

o:(; 2) 
This transformation G, needed in order to implement 
a calculable 0 phase, supplies us with the T transfor- 

mation defined in eq. (4) * 1 : 

( l  i([011 ( [o  11 

- 1  !\1o21 exp(irr/2)) = \1o21 exp(irr/2) ) '  (8) 

and therefore implies a T-conserving solution. From 
the previous considerations, we conclude that more 
than two scalar doublets have to be introduced in 
order to achieve both calculability and spontaneous 
T violation * 1. It is also clear that calculability re- 
quires the presence of an extra symmetry in the scalar 
potential. This requirement was necessary in the case 
of  two scalar doublets and it applies a for t ior i  to the 
case of  more than two scalar doublets. 

Let us consider first the case where the scalar po- 
tential is invariant under an abelian group. We will 
show that then calculable phases always correspond 
to T conservation. In the case of  an abelian group, we 
can always choose a special basis where each scalar 
doublet ~j (] = 1 ... . .  n) transforms as a one-dimension- 
al representation of  the group. Then the unitary matrix 

fexp(-2i01) )/  
U = " . .  , (9) 

exp( -2 i0  n 

obviously satisfies eq. (2) and, as we will see, it corre- 
sponds to a symmetry of the potential. In order to 
achieve calculability, each individual term I s of  the 
scalar potential, together with its hermitian conjugate, 
has to be minimized separately with respect to the 
0 i phases. The minimization of  each function .2 
cos [0(Io)], where 0(I~) denotes the linear combina- 
tion of Oi's associated with the fields occurring in I s, 
trivially gives O(Ic~ ) -- 0, 7. In this case the transforma- 
tion (9) corresponds to a symmetry of the scalar po- 
tential and the vacuum is Tinvariant. 

In view of the previous result, we consider next the 
case of  non-abelian symmetries. In the following, we 
will confine ourselves to three Higgs doublets and for 
simplicity we first analyse the case of an S 3 symmetry,  
with the scalar doublets transforming as a three-dimen- 
sional reducible representation. The most  general re- 
normalizable scalar potential can be written [6] as, 

,1 We assume that the scalar potential has no (discrete or 
continuous) accidental symmetries. 

,2 The fact that only functions of this type appear is a conse- 
quence of having assumed real coupling constants. 
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Table 1: Spontaneous CP violation

Vacuum �4 SCPV Vacuum �4 SCPV Vacuum �4 SCPV

C-I-a X no C-III-f,g 0 no C-IV-c X yes

C-III-a X yes C-III-h X yes C-IV-d 0 no

C-III-b 0 no C-III-i X no C-IV-e 0 no

C-III-c 0 no C-IV-a 0 no C-IV-f X yes

C-III-d,e X no C-IV-b 0 no C-V 0 no

C-I-a

h2 $ �h2

�2 $ �3

h1 $ �h1

ej HjZZ, HjHjZ

qj HjH
+H�

(w1, w2, wS) = (v, 0, 0) (6)

Uijh0|�j|0i⇤ = h0|�i|0i, (7)

(ŵ1e
i�1 , ŵ2e

i�2 , wS) ! (aei�, ae�i�, wS) (8)

h1 $ h2 (9)

(ŵ1e
i�1 , ŵ2e

i�2 , 0) ! (aei�1 , aei�2 , 0) (10)

(aei�1 , aei�2 , 0) ! (aei�, ae�i�, 0) (11)

U =

0

@
0 1 0

1 0 0

0 0 1

1

A
(12)
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x, xe
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, xe
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3 geometrical phases

CP is conserved

calculable non-trivial phases,  fixed by symmetry of V, 
no explicit dependence on parameters of the potential 

Spontaneous CP Violation
Models with more than one Higgs doublet allow for the possibility of having spontaneous
CP violation. The idea of spontaneous T (hence CP) violation was first proposed by T. D.
Lee [1] in the context of two-Higgs-doublet models. CP can only be spontaneously violated
if the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation leaving both the Lagrangian and the
vacuum invariant. In the Standard Model there is only one Higgs doublet and the scalar
potential necessarily conserves CP.

Under a CP transformation a single Higgs doublet, Φ, transforms into its complex
conjugate. In the presence of more than one doublet the most general CP transformation
[2] allows for mixing of the scalar doublets under an arbitrary unitary matrix, U :

Φi
CP
−→ UijΦ

∗
j (1)

This transformation combines the CP transformation of each Higgs doublet with a Higgs
basis transformation. Higgs basis transformations do not change the physical content of
the model. If the potential is invariant under such a transformation there is explicit CP
conservation. At this stage U applied to the Φj fields is not required to be a symmetry of
the Lagrangian. It is trivial to see that when all the coefficients of the potential are real
the above condition is verified by a matrix U equal to the identity and CP is not violated
explicitly.

In multi-Higgs models it may not be trivial to check whether CP is violated explicitly
or not in the scalar sector due to the freedom one has to make Higgs basis transformations.
These transformations change the quadratic and quartic couplings and in particular cou-
plings that are complex in one basis may become real in another, and vice versa. This fact
has motivated the study of conditions for CP invariance expressed in terms of CP-odd
Higgs-basis invariants [3, 4].

Once it is established that the potential does not violate CP explicitly the question
remains of whether or not there is spontaneous CP violation. It has been shown [5]
that the vacuum is CP invariant if the following relation is verified with a matrix U
corresponding to a symmetry of the Lagrangian:

Uij⟨0|Φj|0⟩
∗ = ⟨0|Φi|0⟩ (2)

This is a very powerful relation. It is stated in Ref. [5] that: given a particular set of
vacuum expectation values (vevs) the simplest way of proving that they do not break CP
is to construct a unitary matrix U which satisfies Eq. (2) and which corresponds at the
same time to a symmetry of the Lagrangian. This prescription is rigorous but in some
cases the construction of this matrix may not be obvious.

If such a difficulty arises we propose a simple test which proves useful in identifying
CP-conserving cases. Once the set of vevs is determined, we go to the so-called “Higgs
basis” defined as the basis where only one of the Higgs doublets acquires a vev different
from zero and chosen to be real [6, 7]. It is straightforward to build the transformation
that takes the fields to this special basis. If the coefficients of the scalar potential in this
particular basis can be made real by means of the rephasing freedom that is still left for
the doublets with zero vevs, we may conclude that CP is not spontaneously broken. Ob-
viously, in this case, once in the Higgs basis, we may define a CP transformation given by

1

Eq. (1) that verifies the relation given by Eq. (2) by simply choosing the matrix U to be
diagonal. If on the contrary it proves impossible to make the scalar potential real in the
Higgs basis by rephasing the doublets with zero vev we must make sure that we are not
in one of the special cases of CP conservation with irremovable complex coefficients [8]
before concluding that CP is violated. On the other hand, this procedure complemented
with the use of CP-odd invariant conditions [3, 4, 9] may also prove useful to confirm the
existence of CP violation since in this case it must be possible to find CP-odd invariants
that are non-zero.

Special cases in the framework of three-Higgs-doublet models with S3 symmetry.
CP conserving scalar potentials with irremovable phases are very special and rare. Im-
posing explicit CP conservation in the S3-symmetric three-Higgs-doublet model by taking
all parameters of the potential real does not lead to loss of generality [8] and was adopted
in Ref. [10] where a detailed study of the possible vacua of the S3-symmetric three-Higgs-
doublet potential is performed with emphasis on the cases in which the CP symmetry can
be spontaneously broken. Different vacuum solutions correspond to different regions of
parameter space which are identified in Ref. [10].

First, we illustrate some of the features of the Higgs basis by analysing a special
complex solution for the vevs of the scalar potential written in terms of the S3 defining
representation, i.e., three Higgs doublets such that the potential is invariant under any
permutation of these fields. This representation is known to be reducible. The scalar
potential (V = V2 + V4) acquires the following form [11]:

V2 = −λ
∑

i

φ†
iφi +

1

2
γ
∑

i<j

[φ†
iφj + h.c.], (3a)

V4 = A
∑

i

(φ†
iφi)

2 +
∑

i<j

{C(φ†
iφi)(φ

†
jφj) + C(φ†

iφj)(φ
†
jφi) +

1

2
D[(φ†

iφj)
2 + h.c.]}

+
1

2
E1

∑

i ̸=j

[(φ†
iφi)(φ

†
iφj) + h.c.] +

∑

i ̸=j ̸=k ̸=i,j<k

{
1

2
E2[(φ

†
iφj)(φ

†
kφi) + h.c.]

+
1

2
E3[(φ

†
iφi)(φ

†
kφj) + h.c.] +

1

2
E4[(φ

†
iφj)(φ

†
iφk) + h.c.]}. (3b)

It was pointed out long ago [12] that a possible complex vacuum solution is given by
(x, xe±

2πi

3 , xe∓
2πi

3 ). This solution was discussed in [5]. It has the remarkable feature of
corresponding to a set of vevs with calculable non-trivial phases assuming geometrical
values, i.e., fixed values that are not expressed as functions of the parameters of the
potential, and which are entirely determined by the symmetry of the scalar potential.
These phases cannot be removed by a simple rephasing of the Higgs fields, while at the
same time keeping the coefficients of the Higgs potential real. However they do not lead to
spontaneous CP violation [5] since there is a matrix U satisfying the constraint of Eq. (2),
namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (4)

which is at the same time a symmetry of the potential. It looks, in fact, as if we are in
the presence of irremovable CP conserving phases. However, there is a nontrivial unitary
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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The question of relating complex vacua to real ones is relevant for the discussion of global
minima [28, 29] as well as to understand the possible correlations of different parameters
of the potential.

7 The case of λ4 = 0

As mentioned in section 2.3, in the case of λ4 = 0 the potential has an additional,
continuous SO(2) symmetry. This case was dismissed by Derman [20], as being “un-
natural”. This was due to the fact that this condition, when expressed in terms of the
parameters of the potential written by Derman, given by Eqs. (2.9), acquires the form
given by Eq. (4.10), which is not instructive and the resulting symmetry is not apparent.
Spontaneous breaking of this SO(2) symmetry leads to massless particles. In this case,
one way to promote this to a viable model is to break this symmetry softly, by adding a
term to the bilinear part of the potential:

V = V2 + V ′
2 + V4, (7.1)

with V2 and V4 as defined by equations (2.10), and

V ′
2 =

1

2
ν2(h†

2h1 + h†
1h2). (7.2)

The minimisation conditions (3.3)–(3.5) will now become

∂V

∂w∗
S

=
1

2
wSµ

2
0 +

1

4
wS(|w1|2 + |w2|2)(λ5 + λ6)

+
1

4
w∗

S(w
2
1 + w2

2)λ7 +
1

2
w∗

Sw
2
Sλ8 = 0, (7.3)

∂V

∂w∗
1

=
1

2
w1µ

2
1 +

1

2
w2ν

2 +
1

2
w1(|w1|2 + |w2|2)λ1 +

1

2
w2(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

1(w
2
1 + w2

2)λ3 +
1

4
w1|wS|2(λ5 + λ6) +

1

2
w∗

1w
2
Sλ7 = 0, (7.4)

∂V

∂w∗
2

=
1

2
w2µ

2
1 +

1

2
w1ν

2 +
1

2
w2(|w1|2 + |w2|2)λ1 −

1

2
w1(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

2(w
2
1 + w2

2)λ3 +
1

4
w2|wS|2(λ5 + λ6) +

1

2
w∗

2w
2
Sλ7 = 0. (7.5)

With these new conditions there will be some changes in the solutions. In particular,
the new term will bring new sources of CP violation, and spontaneous CP violation may
be easier to achieve. Notice that such a term also softly breaks some types of discrete
symmetries of the S3 doublet h1 and h2 that might otherwise be present. This feature
was exploited long ago in the context of two-Higgs-doublet models [30]. Soft breaking
of the S3 symmetry of the scalar potential has been applied in [31] in order to obtain a
special relation among the vevs of the three doublets that would allow to account for the
observed charged lepton masses.

An important implication of the type of vacuum solution and of the corresponding
allowed region of parameter space is the resulting different possible spectra for the physical
scalars.
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SO(2) rotation

shown [32] that solutions with calculable phases whose values are independent of
the coupling constants of the scalar potential do not necessarily conserve CP. Char-
acteristic features of such solutions in models with several Higgs doublets as well as
the interplay between symmetries and geometrical CP violation have been analysed
by several authors [33–39].

• Case C-III-a allows for a nontrivial phase which can be determined as a function of
�
4

, and �
7

, as shown in Table 3. This solution violates CP spontaneously.

• Reasoning analogous to that for C-I-a can be applied to cases C-III-b, C-III-d, C-
III-e where again the matrix U given above, U = diag(�1, 1, 1), satisfies Eq. (8.3) in
terms of the irreducible representation framework. On the other hand, cases C-III-f
and C-III-g require �

4

= 0 and therefore the potential acquires an additional SO(2)
symmetry. In these cases U can be chosen as U = diag(�1,�1, 1). Case C-IV-b
also requires �

4

= 0, as a result the potential is also symmetric under h
2

! �h
2

and one can choose U = diag(1,�1, 1).

• Case C-III-c is a very interesting one. At first sight it looks as if it may violate
CP spontaneously, however, this is not the case. In order to prove that case C-III-
c does not violate CP spontaneously we start from the corresponding set of vevs
(ŵ

1

ei�, ŵ
2

, 0) and perform a Higgs basis transformation on the Higgs doublets h
1

and h
2

by an SO(2) rotation into:
✓
h0
1

h0
2

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
h
1

h
2

◆
(8.5)

such that the vevs of the new S
3

doublet fields now have the same modulus and are
of the form (aei�1 , aei�2 , 0). This requires

tan 2✓ =
ŵ2

1

� ŵ2

2

2ŵ
1

ŵ
2

cos �
. (8.6)

Obviously the Lagrangian remains invariant. Next we perform an overall phase
rotation of the three Higgs doublets with the phase factor exp[�i(�

1

+�
2

)/2], leading
now to the following vevs: (aei�, ae�i�, 0). Making use of the symmetry for the
interchange h0

1

$ h0
2

we can verify Eq. (8.3) in the following way:
0

@
0 1 0
1 0 0
0 0 1

1

A

0

@
aei�

ae�i�

0

1

A
⇤

=

0

@
aei�

ae�i�

0

1

A . (8.7)

In terms of the initial vevs, this equation translates into

ei(�1+�2)

0

@
cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

A

0

@
0 1 0
1 0 0
0 0 1

1

A

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A

0

@
ŵ

1

ei�

ŵ
2

0

1

A
⇤

=

0

@
ŵ

1

ei�

ŵ
2

0

1

A ,

(8.8)
or

ei(�1+�2)

0

@
sin 2✓ cos 2✓ 0
cos 2✓ � sin 2✓ 0
0 0 1

1

A

0

@
ŵ

1

ei�

ŵ
2

0

1

A
⇤

=

0

@
ŵ

1

ei�

ŵ
2

0

1

A . (8.9)

23

shown [32] that solutions with calculable phases whose values are independent of
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terms of the irreducible representation framework. On the other hand, cases C-III-f
and C-III-g require �

4

= 0 and therefore the potential acquires an additional SO(2)
symmetry. In these cases U can be chosen as U = diag(�1,�1, 1). Case C-IV-b
also requires �

4

= 0, as a result the potential is also symmetric under h
2

! �h
2

and one can choose U = diag(1,�1, 1).

• Case C-III-c is a very interesting one. At first sight it looks as if it may violate
CP spontaneously, however, this is not the case. In order to prove that case C-III-
c does not violate CP spontaneously we start from the corresponding set of vevs
(ŵ
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followed by overall phase rotation

shown [32] that solutions with calculable phases whose values are independent of
the coupling constants of the scalar potential do not necessarily conserve CP. Char-
acteristic features of such solutions in models with several Higgs doublets as well as
the interplay between symmetries and geometrical CP violation have been analysed
by several authors [33–39].
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ŵ
2

0

1

A
⇤

=

0

@
ŵ
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ŵ

1

ei�

ŵ
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ŵ
2

0

1

A ,

(8.8)
or

ei(�1+�2)

0

@
sin 2✓ cos 2✓ 0
cos 2✓ � sin 2✓ 0
0 0 1

1

A

0

@
ŵ
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CP is conserved

A particularly interesting vacuum is the one identified as case C-III-c, which in terms
of the irreducible representations is of the form (ŵ1eiσ, ŵ2, 0). This complex vacuum
requires that three constraints among the coefficients of the potential be verified, one of
them being λ4 = 0. At first sight it looks as if it violates CP spontaneously, due to the
fact that the moduli of w1 and of w2 are different. Clearly, there is no obvious simple
form for the matrix U satisfying the constraint of Eq. (2). Therefore, the easiest and
most straightforward way of checking for CP conservation is to look at the potential in
the Higgs basis, which can be reached via the simple transformation:

⎛

⎝

h′
1

h′
2

h′
S

⎞

⎠ =
1

v

⎛

⎝

ŵ1 ŵ2 0
ŵ2 −ŵ1 0
0 0 v

⎞

⎠

⎛

⎝

e−iσ 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝

h1

h2

hS

⎞

⎠ (8)

with v2 = (ŵ1
2 + ŵ1

2) and confirming by inspection that the coefficients of the potential
remain real, while now all vevs are real. Notice that in the Higgs basis there is freedom
to rephase h′

2 and h′
S.

The construction of the matrix U satisfying the constraint of Eq. (2) was presented in
Ref. [10] and makes use of the additional SO(2) symmetry resulting from having λ4 = 0:

U = ei(δ1+δ2)

⎛

⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠

⎛

⎝

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠ (9)

where the angle θ is such that the matrix on the righthand side of Eq. (9) rotates
(ŵ1eiσ, ŵ2, 0) into vevs of the form (aeiδ1 , aeiδ2 , 0), where the two nonzero entries have
the same modulus. This is possible due to the additional SO(2) symmetry and requires
tan 2θ = (ŵ2

1 − ŵ2
2)/(2ŵ1ŵ2 cosσ). An overall rotation by the phase factor exp[−i(δ1 +

δ2)/2] leads then to vevs of the form (aeiδ, ae−iδ, 0). The matrix U also makes use of the
symmetry under the interchange h′

1 ↔ h′
2, as can be seen from the matrix in the middle.

Equations (8) and (9) have in common the fact that both rotations depend on the vevs of
the Higgs doublets. Once the vevs are known a rotation to the Higgs basis can be easily
determined. However building the matrix U requires insight and therefore there is the
possibility of missing it in cases where in fact CP is conserved since there is no well-defined
prescription to build it. On the other hand, once CP conservation is established it follows
that the matrix U of Eq. (2), corresponding to a symmetry of the Lagrangian, must exist.

As mentioned above, in the case of λ4 = 0 the S3-symmetric potential acquires an ad-
ditional SO(2) symmetry. Spontaneous breaking of this symmetry leads to a massless
scalar field, which is ruled out by experiment. This problem can be avoided by adding
soft breaking terms to the potential. Soft breaking terms of the form (h†

Shi + h.c.) are
only consistent, once the minimisation conditions are imposed, if their coefficients are
proportional to λ4, therefore, in this case, we are only left with the possibility of adding
terms of the form µ2

2(h
†
1h1 − h†

2h2) +
1
2ν

2(h†
2h1 + h†

1h2). It has been checked that the
potential with these additional terms still allows for vevs of the form C-III-c and that the
transformation to the Higgs basis together with rephasing of the fields with zero vevs can
lead to a new potential with only real coefficients.

The only other complex vacuum with λ4 = 0 having non trivial phases, i.e., phases

differing from ±i is case C-IV-e which has the form (
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , ŵ2eiσ2 , ŵS). In

4

Spontaneous CP Violation
Models with more than one Higgs doublet allow for the possibility of having spontaneous
CP violation. The idea of spontaneous T (hence CP) violation was first proposed by T. D.
Lee [1] in the context of two-Higgs-doublet models. CP can only be spontaneously violated
if the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation leaving both the Lagrangian and the
vacuum invariant. In the Standard Model there is only one Higgs doublet and the scalar
potential necessarily conserves CP.

Under a CP transformation a single Higgs doublet, Φ, transforms into its complex
conjugate. In the presence of more than one doublet the most general CP transformation
[2] allows for mixing of the scalar doublets under an arbitrary unitary matrix, U :

Φi
CP
−→ UijΦ

∗
j (1)

This transformation combines the CP transformation of each Higgs doublet with a Higgs
basis transformation. Higgs basis transformations do not change the physical content of
the model. If the potential is invariant under such a transformation there is explicit CP
conservation. At this stage U applied to the Φj fields is not required to be a symmetry of
the Lagrangian. It is trivial to see that when all the coefficients of the potential are real
the above condition is verified by a matrix U equal to the identity and CP is not violated
explicitly.

In multi-Higgs models it may not be trivial to check whether CP is violated explicitly
or not in the scalar sector due to the freedom one has to make Higgs basis transformations.
These transformations change the quadratic and quartic couplings and in particular cou-
plings that are complex in one basis may become real in another, and vice versa. This fact
has motivated the study of conditions for CP invariance expressed in terms of CP-odd
Higgs-basis invariants [3, 4].

Once it is established that the potential does not violate CP explicitly the question
remains of whether or not there is spontaneous CP violation. It has been shown [5]
that the vacuum is CP invariant if the following relation is verified with a matrix U
corresponding to a symmetry of the Lagrangian:

Uij⟨0|Φj|0⟩
∗ = ⟨0|Φi|0⟩ (2)

This is a very powerful relation. It is stated in Ref. [5] that: given a particular set of
vacuum expectation values (vevs) the simplest way of proving that they do not break CP
is to construct a unitary matrix U which satisfies Eq. (2) and which corresponds at the
same time to a symmetry of the Lagrangian. This prescription is rigorous but in some
cases the construction of this matrix may not be obvious.

If such a difficulty arises we propose a simple test which proves useful in identifying
CP-conserving cases. Once the set of vevs is determined, we go to the so-called “Higgs
basis” defined as the basis where only one of the Higgs doublets acquires a vev different
from zero and chosen to be real [6, 7]. It is straightforward to build the transformation
that takes the fields to this special basis. If the coefficients of the scalar potential in this
particular basis can be made real by means of the rephasing freedom that is still left for
the doublets with zero vevs, we may conclude that CP is not spontaneously broken. Ob-
viously, in this case, once in the Higgs basis, we may define a CP transformation given by

1
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Very simple and powerful relation. However, in some

Simple Alternative Test
cases construction of matrix U may not be obvious

- Go to a basis where only one Higgs field acquires a vev different from 
zero and real

 - If the coefficients of scalar potential can be made real by rephasing the 
fields with zero vev, there is no CP violation

this case there is no zero vev and all vevs have different moduli. The construction of a
matrix U satisfying the constraint of Eq. (2) follows the same steps as in the case C-III-c.
However, in this case there is no freedom to apply an overall phase rotation to transform
the relative phase of w1 and w2 into two symmetric phases, since this would make wS

complex. It turns out that this vacuum is more constrained than case C-III-c, requiring
four relations among the coefficients of the potential to be obeyed. As a result, the SO(2)
rotation transforming it into (beiγ1 , beiγ2 , ŵS) automatically leads to γ1 + γ2 = 0. Once
again building the matrix U requires special insight. The necessary SO(2) rotation will
be a function of the ŵi and σi, for i = 1, 2 and is similar to the one of case C-III-c [10]
being given by tan 2θ = (ŵ2

1 − ŵ2
2)/(2ŵ1ŵ2 cos(σ1 − σ2)). The alternative procedure of

going directly to the Higgs basis is also, in this case, the easiest and most straightforward
way of checking for CP conservation where now a possible rotation is:

⎛

⎝

h′
1

h′
2

h′
S

⎞

⎠ =

⎛

⎝

1
N1

(ŵ1 ŵ2 ŵS)
1
N2

(ŵ2 −ŵ1 0)
1
N3

(ŵ1 ŵ2 X)

⎞

⎠

⎛

⎝

e−iσ1 0 0
0 e−iσ2 0
0 0 1

⎞

⎠

⎛

⎝

h1

h2

hS

⎞

⎠ (10)

where 1/Ni are normalisation factors and the X is chosen in such a way that rows 1 and
3 are also orthogonal. With this transformation only h′

1 acquires a non-zero vev and the
coefficients of the potential can all be made real using the freedom to rephase the fields
with zero vevs.

Examples C-III-c and C-IV-e show that searching for a matrix U satisfying the constraint
of Eq. (2) may not always be the easiest path to check for CP conservation. In particular,
as the complexity grows, it may be more convenient to inspect the potential directly by
going to the Higgs basis.

The T. D. Lee Model
So far we have shown how to use the Higgs basis to prove that CP is not spontaneously
broken. In T. D. Lee’s two-Higgs-doublet model [1] the potential has the most general
form with real coefficients:

V (φ) = −λ1φ
†
1φ1 − λ2φ

†
2φ2

+ A(φ†
1φ1)

2 +B(φ†
2φ2)

2 + C(φ†
1φ1)(φ

†
2φ2) + C̄(φ†

1φ2)(φ
†
2φ1)

+
1

2
[(φ†

1φ2)(Dφ†
1φ2 + Eφ†

1φ1 + Fφ†
2φ2) + h.c.]. (11)

CP is violated spontaneously by vevs of the form (ρ1eiθ, ρ2), in the region of parameters
of the potential where ρ1 and ρ2 are different from zero and eiθ ̸= 1. The transformation
to the Higgs basis is given by

(

φ′
1

φ′
2

)

=
1

v

(

1 0
0 eiχ

)(

ρ1 ρ2
−ρ2 ρ1

)(

e−iθ 0
0 1

)(

φ1

φ2

)

(12)

with v2 = ρ21 + ρ22. The potential acquires a new form under this transformation. The
bilinear part of the potential is only real if sinχ = 0 or λ1 = λ2. In either case requiring
the quartic part of the potential to be real leads to special conditions on the parameters
of the potential and therefore, does not hold in general.

5

Inspect the potential
C-III-c vacuum

- Notice that there is still the freedom of using a U(n-1) transformation 
acting on the fields with zero vev



A CP-conserving multi-Higgs Model with irremovable 
complex coefficients    

The Ivanov-Silva Model

Ivanov and Silva (IS) introduced a particular 3HDM model with some curious
properties.∗ In the Higgs basis of the 3HDM, we are free to make an arbitrary

U(2) rotation to define the Higgs basis fields, H2 and H3. We have made use
of this freedom to make a minor alteration of the IS scalar potential,
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where VRIDM is the replicated IDM scalar potential, and Z8 and Z9 are

potentially complex.

The IS model still yields mass-degenerate inert doublets, since none of the extra

terms involve the Higgs basis field H1. Hence, these terms do not contribute

to the tree-level scalar squared-mass matrices.
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where 

New features of mass degenerate scalars in the 3HDM

In the 3HDM, one can now consider mass-degenerate charged Higgs pairs, as

well as mass-degenerate neutral scalars. I will focus on two special 3HDMs

where mass degeneracies occur.

The replicated IDM (RIDM)

We begin with a replicated IDM, in which two inert doublets are mass-
degenerate. Consider the following 3HDM scalar potential in the Higgs basis,
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Without loss of generality, we have chosen Z5 real, so that VRIDM is CP-

conserving. There is a continuous symmetry that is responsible for the

mass-degeneracy of the inert Higgs doublets H2 and H3.
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Whenever all the coefficients of the potential are real CP is 
conserved with a simple CP transformation where U the 

unitary matrix can be chosen as the identity

Either discrete symmetry (family or GCP) can be invoked to explain the

observed mass degeneracies of the IS model with real Z8 and Z9. Moreover, the

conventional CP, called CP2 [since (CP2)2 = I], corresponding to Hi → H†
i ,

is a symmetry since all scalar potential parameters are real.

Case 2: Z8 and/or Z9 are complex.

In this case, the symmetry transformation,(
H2

H3

)

→
(
0 −1

1 0

)(
H2

H3

)

,

is no longer respected by VIS. The remaining unbroken family symmetry is

Z2 = {I,−I}, which protects the inertness of H2 and H3 but cannot enforce

the mass degeneracies of the IS model.

Nevertheless, the CP4 symmetry remains intact and is ultimately responsible

for the IS model mass degeneracies. Note that there is no CP2 symmetry in

this case, since there is no possible change of basis in which all scalar potential

parameters are real.

If CP is conserved: 

where VRIDM is given by Eq. (3.1), with Z8 and Z9 potentially complex and all other scalar
potential parameters real. Eq. (A.19) is the version of the IS scalar potential employed in
section 3.3. To make contact with the previous notation used above, we note that

Y1 = �m2
11 , Y2 = �m2

22 , Z1 = 2�1 , Z2 = 2�̄2 , Z3 = �3 , Z4 = �4

Z 0
3 = �̄03 � 2�̄2 , Z 0

4 = �̄04 , Z5 = �̄6 , Z8 = ��̄8 , Z9 = �i�̄9 . (A.20)

The corresponding CP4 symmetry transformation now takes the form

Hi ! XijH
†
j , where X = eUW eUT =

0

@

1 0 0
0 0 �1
0 1 0

1

A , (A.21)

as indicated in Eq. (3.35).

A.3 Non-existence of a real Higgs basis

Consider the IS scalar potential [cf. Eq. (A.19) with VRIDM given by Eq. (3.1)] expressed in
terms of the Higgs basis of scalar doublet fields, {H1, H2, H3}, where hH0

1 i 6= 0 and the vevs of
the other two doublet fields vanish. The coe�cients Z8 and Z9 are potentially complex and all
other scalar potential parameters are real. Recall that the Higgs basis is unique only up to an
arbitrary U(2) transformation of {H2, H3}. Is it possible to transform to a new Higgs basis in
which all the IS scalar potential parameters are real? Such a Higgs basis, if it exists, is called
a real Higgs basis.

The most general basis transformation that preserves the general class of Higgs bases is
given (in block diagonal form) by,

✓

H̄1

H̄23

◆

=

✓

1 0

0 eV

◆✓

H1

H23

◆

, (A.22)

where

H23 ⌘

✓

H2

H3

◆

, H̄23 ⌘

✓

H̄2

H̄3

◆

, (A.23)

and eV is the most general U(2) matrix,
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, (A.24)

where 0  � < ⇡, �⇡ <   ⇡, 0  ↵  ⇡ and 0  �  ⇡. Applying Eq. (A.22) to the IS
scalar potential given in Eq. (A.19) yields
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This was called a CP4 symmetry by Ivanov and Silva since 

it must be applied four times in order  to yield the identity

There is no CP2 symmetry in this case since there is no 

possible change of basis in which all scalar potential 

parameters are real

This symmetry is responsible for the degeneracies in the 

IS model 



and H3, with hH2i = hH3i = 0, and a scalar potential given by,

VRIDM = Y1H
†
1H1 + Y2

⇣

H†
2H2 + H†

3H3

⌘

+ 1
2Z1(H

†
1H1)

2 + 1
2Z2(H

†
2H2 + H†

3H3)
2

+Z3(H
†
1H1)
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2H2 + H†

3H3

⌘
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(H†
1H2)(H

†
2H1) + (H†

1H3)(H
†
3H1)

i
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2Z5

n

(H†
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2 + (H†
2H1)

2 + (H†
1H3)

2 + (H†
3H1)

2
o

. (3.1)

It is always possible to rephase the fields H2 and H3 such that all the scalar potential parameters
in Eq. (3.1) are real. Hence, without loss of generality, we have chosen Z5 real and non-negative
in Eq. (3.1), which implies that the bosonic sector of the RIDM is CP-conserving.

The charged and neutral components of the Higgs basis doublet fields of the RIDM are also
mass eigenstate fields,

H1 =

✓

G+

1p
2

⇥

v + hSM + iG0
⇤

◆

, H2 =

✓

H+

1p
2

⇥

H + iA
⇤

◆

, H3 =

✓

h+

1p
2

⇥

h + ia
⇤

◆

, (3.2)

with a minor change of notation from the IDM. The corresponding squared masses of the
neutral and charged scalars are given by,

m2
H± = m2

h± = Y2 + 1
2Z3v

2 , m2
H = m2

h = Y2 + 1
2(Z3 + Z4 + Z5)v

2 ,

m2
A = m2

a = Y2 + 1
2(Z3 + Z4 � Z5)v

2 . (3.3)

By assumption, Z5 � 0, in which case mH = mh � mA = ma.21 Thus, the RIDM possesses
four mass-degenerate scalar pairs: (H±, h±), (H, h) and (A, a). These mass degeneracies can
be understood as a consequence of a continuous global Higgs flavor symmetry (where Higgs
flavor corresponds to the multiplicity of Higgs doublets).

In order to explicitly exhibit the relevant symmetries, it is convenient to focus on the neutral
scalar states of the doublet fields H2 and H3, denoted henceforth by the complex fields,

H0
⌘

H + iA
p

2
, h0

⌘

h + ia
p

2
, (3.4)

respectively. Let us first focus on the kinetic energy terms and the terms in Eq. (3.1) in the
absence of the term proportional to Z5. Then, one can check that the neutral complex scalar
fields H0 and h0 appear only in the combination H0 †H0 +h0 †h0 = 1

2(H
2 +h2 +A2 +a2). Thus,

excluding Z5, the scalar Lagrangian possesses an O(4) global symmetry, that is responsible for
four mass-degenerate neutral scalar states.

It is instructive to see how this symmetry arises when employing the complex basis 'i =
{H0, h0

} (for i = 1, 2). Noting that '† i'i = H0 †H0 + h0 †h0 (the sum over the repeated index
i is implicit), it is clear that the scalar Lagrangian (in the absence of Z5) is invariant under
a U(2) global symmetry, 'i ! Ui

j'j, with U 2 U(2). However, the corresponding symmetry
group is in fact larger than U(2). Working in the complex basis, it is straightforward to verify
that the quantity '† i'i is invariant with respect to

'i ! Ui
j'j + (V ⇤)ij'

† j , (3.5)

21In particular, note that if Z5 = 0 then there is an enhanced mass degeneracy in which mH = mh = mA = ma.
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These are already the physical fields and there is 

pairwise degeneracy among the fields of the second 

and third doublets
It is convenient to re-express the neutral scalar fields in 

terms of complex fields P and Q and their conjugates:

In the RIDM, there is no experimental measurement that can physically distinguish the de-
generate scalars, (H±, h±), (H, h) and (A, a). However, a multiplicity factor will appear after
summing over final mass-degenerate states, e.g., Z ! HA, ha doubles the rate into a pair of
neutral scalars.

3.2 An alternative basis choice for the RIDM

So far, our discussion has employed the {H1, H2, H3} basis of doublet scalar fields. This is one
choice among a family of Higgs bases defined such that hH0

1 i = v/
p

2 and hH0
2 i = hH0

3 i = 0.
Indeed, the Higgs basis is unique only up to an arbitrary U(2) transformation of the doublet
fields H2 and H3. In the following, we shall denote the {H1, H2, H3} basis as the H23-basis,
since the scalar potential of Eq. (3.1) provides a simple 3HDM extension of the inert 2HDM.

It will prove useful to consider another choice of scalar field basis that is related to the
H23-basis as follows,25

R ⌘

1
p

2

�

H2 + iH3

�

=

✓

R†

1p
2

�

P + iQ†�
◆

,

S ⌘

1
p

2

�

H2 � iH3

�

=

✓

S†

1p
2

�

P † + iQ
�

◆

. (3.17)

This defines the {H1, R, S} basis of doublet scalar field, henceforth denoted as the RS-basis.
Note that since the real neutral fields (H, h) and (A, a) are mass-degenerate pairs, respectively,
one can combine the mass-degenerate real fields into complex fields,

P ⌘

H + ih
p

2
, Q ⌘

A � ia
p

2
, (3.18)

where MP � MQ (in our convention where Z5 � 0).26 The corresponding conjugate fields are

P †
⌘

H � ih
p

2
, Q†

⌘

A + ia
p

2
, (3.19)

Likewise, since H± and h± are mass-degenerate charged fields, one is free to define,

R =
H�

� ih�
p

2
, S =

H� + ih�
p

2
, (3.20)

R† =
H+ + ih+

p

2
, S† =

H+
� ih+

p

2
, (3.21)

where R and S are negatively charged mass-degenerate scalars and the corresponding conjugate
fields, R† and S†, are positively charged mass-degenerate scalars.

25Further details are provided in Appendix A.5.
26The relative minus sign in the definition of the imaginary parts of P and Q has been introduced for later

convenience.
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p

2 and hH0
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3 i = 0.
Indeed, the Higgs basis is unique only up to an arbitrary U(2) transformation of the doublet
fields H2 and H3. In the following, we shall denote the {H1, H2, H3} basis as the H23-basis,
since the scalar potential of Eq. (3.1) provides a simple 3HDM extension of the inert 2HDM.
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This defines the {H1, R, S} basis of doublet scalar field, henceforth denoted as the RS-basis.
Note that since the real neutral fields (H, h) and (A, a) are mass-degenerate pairs, respectively,
one can combine the mass-degenerate real fields into complex fields,
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p

2
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p

2
, (3.18)

where MP � MQ (in our convention where Z5 � 0).26 The corresponding conjugate fields are
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2
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p

2
, (3.19)

Likewise, since H± and h± are mass-degenerate charged fields, one is free to define,
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p
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p

2
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where R and S are negatively charged mass-degenerate scalars and the corresponding conjugate
fields, R† and S†, are positively charged mass-degenerate scalars.

25Further details are provided in Appendix A.5.
26The relative minus sign in the definition of the imaginary parts of P and Q has been introduced for later
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It is instructive to consider the Higgs couplings of the IS model. Only the quartic Higgs
couplings of the RIDM are modified as follows,
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It is convenient to re-express the neutral scalar fields appearing in Eq. (3.36) in terms of the
complex neutral fields P and Q and their conjugates introduced in Eqs. (3.18) and (3.19), and
the charged fields R and S and their conjugates defined in Eqs. (3.20) and (3.21). Note that
the fields P , Q and the corresponding conjugate fields P † and Q† are each eigenstates of CP4.31

In particular, under a CP4 transformation, P ! iP , Q ! iQ, P †
! �iP †, and Q†

! �iQ†.
Likewise, under a CP4 transformation, R ! �iS†, R†

! iS, S ! iR† and S†
! �iR. Note

that these transformation properties are consistent with the requirement that (CP4)4 = 1.
We can evaluate the the four-scalar interaction Lagrangian directly in the RS-basis. We

first must rewrite Eq. (3.31) in the RS-basis,
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where VRIDM�RS is given by Eq. (3.22). The relations between the unbarred and barred param-
eters are derived in Appendix A.5,
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The quartic interactions given in Eq. (3.26) are then modified by employing the new definition
of Z̄2 given in Eq. (3.38) and adding the following terms,
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We now consider the possible e↵ects of the Yukawa interactions. It is remarkable that it
is possible to construct a CP4-invariant Yukawa interaction Lagrangian where the fermions
transform nontrivially under a CP4 transformation [65, 69, 70]. In such a model, the mass

31This means that each of the four states, P , Q, P † and Q†, are CP4-self conjugate (they are their own
antiparticles). Moreover, P and the corresponding conjugate state P † are mass-degenerate, but are otherwise
unrelated fields (and similarly for Q and Q†).
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complex neutral fields P and Q and their conjugates introduced in Eqs. (3.18) and (3.19), and
the charged fields R and S and their conjugates defined in Eqs. (3.20) and (3.21). Note that
the fields P , Q and the corresponding conjugate fields P † and Q† are each eigenstates of CP4.31

In particular, under a CP4 transformation, P ! iP , Q ! iQ, P †
! �iP †, and Q†

! �iQ†.
Likewise, under a CP4 transformation, R ! �iS†, R†

! iS, S ! iR† and S†
! �iR. Note

that these transformation properties are consistent with the requirement that (CP4)4 = 1.
We can evaluate the the four-scalar interaction Lagrangian directly in the RS-basis. We

first must rewrite Eq. (3.31) in the RS-basis,
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where VRIDM�RS is given by Eq. (3.22). The relations between the unbarred and barred param-
eters are derived in Appendix A.5,
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eters are derived in Appendix A.5,

Z̄2 = Z2 + 1
2(Z

0
3 + Z 0

4 � 2 Re Z8) , Z̄ 0
3 = �Z 0

4 + 2 Re Z8 , (3.38)

Z̄ 0
4 = 1

2(Z
0
4 � Z 0

3 + 2 Re Z8) , Z̄ 0
5 = Z5 , (3.39)

Z̄8 = �

1
4(Z

0
3 + Z 0

4 + 2 Re Z8) + i Re Z9 , Z̄9 = Im Z9 + i Im Z8 . (3.40)

The quartic interactions given in Eq. (3.26) are then modified by employing the new definition
of Z̄2 given in Eq. (3.38) and adding the following terms,

�L4h = �

1
4Z̄

0
3

⇥

|P |

2 + |Q|

2 + 2|R|

2
� i(PQ � P †Q†)

⇤⇥

|P |

2 + |Q|

2 + 2|S|

2 + i(PQ � P †Q†)
⇤

�

1
4Z̄

0
4

�

P 2 + Q† 2 + 2R†S
��

P † 2 + Q2 + 2S†R
�

�

1
4Z̄8(P

† 2 + Q2 + 2S†R)2 �

1
4Z̄

⇤
8(P

2 + Q† 2 + 2R†S)2

+1
2

⇥

i(PQ � P †Q†) � R†R + S†S
⇤⇥

Z̄9(P
† 2 + Q2 + 2S†R) + Z̄⇤

9(P
2 + Q† 2 + 2R†S)

⇤

.

(3.41)

We now consider the possible e↵ects of the Yukawa interactions. It is remarkable that it
is possible to construct a CP4-invariant Yukawa interaction Lagrangian where the fermions
transform nontrivially under a CP4 transformation [65, 69, 70]. In such a model, the mass

31This means that each of the four states, P , Q, P † and Q†, are CP4-self conjugate (they are their own
antiparticles). Moreover, P and the corresponding conjugate state P † are mass-degenerate, but are otherwise
unrelated fields (and similarly for Q and Q†).

21

It is instructive to consider the Higgs couplings of the IS model. Only the quartic Higgs
couplings of the RIDM are modified as follows,

�L4h = �

1
4(Z

0
3 + Z 0

4)
⇥

(H2 + A2)(h2 + a2) + 4H+H�h+h�⇤
�

1
2Z

0
3

⇥

(H2 + A2)h+h� + (h2 + a2)H+H�⇤

�

1
2Z

0
4

⇥�

Hh + Aa + i(Ha � hA)
�

H+h� +
�

Hh + Aa � i(Ha � hA)
�

h+H�⇤

�

1
4Z8

⇥

Hh + Aa + i(Ha � hA) + 2h+H�⇤2
�

1
4Z

⇤
8

⇥

Hh + Aa � i(Ha � hA) + 2H+h�⇤2

�

1
4Z9

�

H2 + A2
� h2

� a2 + 2H+H�
� 2h+h��⇥Hh + Aa + i(Ha � hA) + 2h+H�⇤

�

1
4Z

⇤
9

�

H2 + A2
� h2

� a2 + 2H+H�
� 2h+h��⇥Hh + Aa � i(Ha � hA) + 2H+h�⇤ . (3.36)

It is convenient to re-express the neutral scalar fields appearing in Eq. (3.36) in terms of the
complex neutral fields P and Q and their conjugates introduced in Eqs. (3.18) and (3.19), and
the charged fields R and S and their conjugates defined in Eqs. (3.20) and (3.21). Note that
the fields P , Q and the corresponding conjugate fields P † and Q† are each eigenstates of CP4.31

In particular, under a CP4 transformation, P ! iP , Q ! iQ, P †
! �iP †, and Q†

! �iQ†.
Likewise, under a CP4 transformation, R ! �iS†, R†

! iS, S ! iR† and S†
! �iR. Note

that these transformation properties are consistent with the requirement that (CP4)4 = 1.
We can evaluate the the four-scalar interaction Lagrangian directly in the RS-basis. We

first must rewrite Eq. (3.31) in the RS-basis,

VIS�RS = VRIDM�RS+Z̄ 0
3(R

†
R)(S†

S)+Z̄ 0
4(R

†
S)(S†

R)+
⇥

Z̄8(R
†
S)2+Z̄9(R

†
S)(R†

R�S

†
S)+h.c.

⇤

,
(3.37)

where VRIDM�RS is given by Eq. (3.22). The relations between the unbarred and barred param-
eters are derived in Appendix A.5,

Z̄2 = Z2 + 1
2(Z

0
3 + Z 0

4 � 2 Re Z8) , Z̄ 0
3 = �Z 0

4 + 2 Re Z8 , (3.38)

Z̄ 0
4 = 1

2(Z
0
4 � Z 0

3 + 2 Re Z8) , Z̄ 0
5 = Z5 , (3.39)

Z̄8 = �

1
4(Z

0
3 + Z 0

4 + 2 Re Z8) + i Re Z9 , Z̄9 = Im Z9 + i Im Z8 . (3.40)

The quartic interactions given in Eq. (3.26) are then modified by employing the new definition
of Z̄2 given in Eq. (3.38) and adding the following terms,

�L4h = �

1
4Z̄

0
3

⇥

|P |

2 + |Q|

2 + 2|R|

2
� i(PQ � P †Q†)

⇤⇥

|P |

2 + |Q|

2 + 2|S|

2 + i(PQ � P †Q†)
⇤

�

1
4Z̄

0
4

�

P 2 + Q† 2 + 2R†S
��

P † 2 + Q2 + 2S†R
�

�

1
4Z̄8(P

† 2 + Q2 + 2S†R)2 �

1
4Z̄

⇤
8(P

2 + Q† 2 + 2R†S)2

+1
2

⇥

i(PQ � P †Q†) � R†R + S†S
⇤⇥

Z̄9(P
† 2 + Q2 + 2S†R) + Z̄⇤

9(P
2 + Q† 2 + 2R†S)

⇤

.

(3.41)

We now consider the possible e↵ects of the Yukawa interactions. It is remarkable that it
is possible to construct a CP4-invariant Yukawa interaction Lagrangian where the fermions
transform nontrivially under a CP4 transformation [65, 69, 70]. In such a model, the mass

31This means that each of the four states, P , Q, P † and Q†, are CP4-self conjugate (they are their own
antiparticles). Moreover, P and the corresponding conjugate state P † are mass-degenerate, but are otherwise
unrelated fields (and similarly for Q and Q†).

21



An Observable distinction between CP2 and CP4

The presence of the terms:

A physical distinction between the CP2 and CP4 symmetry

Ivanov and Silva asked: is there an experiment that can determine the order of

the CP symmetry of the IS scalar sector? The answer is affirmative. It relies

on the existence of a particular four scalar coupling of the IS model,

δL4h ∋ 1
2 ImZ8

[
(PQ− P †Q†)(P 2 −Q2 − P † 2 +Q† 2)

]

+1
2i ImZ9

[
(PQ− P †Q†)(P 2 +Q2 + P † 2 +Q† 2)

]
.

Self-interaction terms of this type are absent if Z8 and Z9 are both real. As

an example, consider the case where MQ ≪ mZ and MP ≫ mZ. In this case,

the four-scalar interactions above mediate the four body Z decay,

Z → QQQQ∗ , QQ∗Q∗Q∗ .

These two final states are experimentally indistinguishable, so we must sum

incoherently the squared amplitudes of both channels. Observation of such

decays would be consistent with the presence of a CP4 symmetry and would

force us to conclude that it is impossible to define CP as a CP2 symmetry.

signals a CP4 symmetric IS scalar potential that does not respect a CP2 symmetry 

The Z coupling to the P and Q fields is of the form:

In the RS-basis, the scalar potential is given by
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where Z̄2 = Z2 and Z̄ 0
5 = Z5.27 One can then rewrite the RIDM couplings given in Eqs. (3.13)–

(3.16) in terms of the neutral scalar fields P and Q and the charged scalar fields R and S (and
the corresponding conjugated fields),
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3.3 Mass degeneracies beyond the RIDM

In this section, we add additional terms to the RIDM scalar potential while preserving the
mass degeneracies of the model. Naively, one can add to the RIDM scalar potential any gauge
invariant quartic term involving the doublet fields H2 and H3 without upsetting the mass
degeneracies of Eq. (3.3). However, the resulting tree-level mass degeneracies will be unnatural
unless they are a consequence of a symmetry.

The simplest possible modification of the RIDM is to remove the (H†
2H2)(H

†
3H3) term

entirely from the scalar potential. That is, we can define a RIDM0 scalar potential as,

VRIDM0 = VRIDM � Z2(H
†
2H2)(H

†
3H3) . (3.27)

Note that the term in VRIDM0 that is proportional to Z2 is now given by 1
2

⇥

(H†
2H2)2 +(H†

3H3)2
⇤

.
Indeed, one can argue that Eq. (3.27) provides the simplest 3HDM generalization of the IDM.
In the case of the RIDM0, the tree-level mass degeneracies are no longer a consequence of a
continuous symmetry, which is now explicitly broken by the presence of the explicit term in
Eq. (3.27) that is proportional to (H†

2H2)(H
†
3H3). Indeed, this term is invariant only under a

27The reason for introducing the notation Z̄2 and Z̄ 0

5 in Eq. (3.22) is clarified in section 3.3.
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this ZPQ interaction  would permit the decay, if kinematically available: 

degeneracies identified above that are a consequence of the CP4 symmetry are of course main-
tained. Alternatively, if the fermions couple exclusively to the Higgs basis field H1 (as in the
case of the IDM), then the Yukawa interactions are invariant with respect to the Z2 discrete
symmetry defined below Eq. (3.34),32 under which the inert doublet fields, H2 and H3, are
odd and all other fields of the model (H1, gauge bosons and fermions) are even. However,
the CP4 symmetry is no longer a symmetry of the complete model. That is, if we define the
CP4 transformation to be the conventional CP transformation when acting on the fermions
and gauge fields, then the CP4 symmetry of the model will be violated by the presence of
the unremovable CP-violating phase in the CKM mixing matrix. Nevertheless, it is not clear
whether this violation is su�cient to remove the scalar mass degeneracies of the IS model that
were protected by the (now accidental) CP4 symmetry of the scalar potential. This is an open
question that we hope to revisit in a future work.

Finally, it is instructive to note that the scalar mass degeneracies of the CP4-invariant
3HDM is just the simplest example of a larger class of multi-Higgs models with degenerate
scalars that are a consequence of a generalized CP symmetry. In Ref. [71], Ivanov and Laletin
demonstrate how to construct N Higgs doublet models with a generalized CP symmetry of
order 2k (denoted by CP2k) with positive integer k. Nontrivial cases arise only for 2k = 2p

with integer p � 1. The simplest nontrivial models of this type (CP8 and CP16) require at
least N = 5 Higgs doublets. Such models necessarily have mass-degenerate neutral scalars and
mass-degenerate charged Higgs pairs. A further exploration of models of this type is beyond
the scope of this work.

4 An observable distinction between CP2 and CP4 sym-

metries

The distinction between the IS scalar potential in the H23-basis with Z8 and Z9 real or complex
is physical.33 To demonstrate this assertion, we focus on the neutral scalar self-interactions in
�L4h that are linear in the fields P or Q (or their complex conjugates),

�L4h 3

1
2 Im Z8

⇥

(PQ�P †Q†)(P 2
�Q2

�P † 2+Q† 2)
⇤

+1
2i Im Z9

⇥

(PQ�P †Q†)(P 2+Q2+P † 2+Q† 2)
⇤

,
(4.1)

where we have used Eq. (3.40) to re-express Z̄9 [which appears in Eq. (3.41)] in terms of the
H23-basis parameters, Im Z8 and Im Z9. Self-interaction terms of this type are absent if Z8 and
Z9 are both real. Hence, the presence of these terms signals a CP4-symmetric IS scalar potential
that does not respect the ordinary CP symmetry, denoted henceforth by CP2.34 Here we provide
two specific examples. First, Eq. (3.24) shows the existence of a ZPQ interaction, which would
permit the decay Z ! PQ, P ⇤Q⇤, if kinematically available. Since MQ  MP , let us further
suppose that MQ < 1

4mZ < MP . In this case, the P and P ⇤ would be virtual. One possible
decay of the virtual P or P ⇤ makes use of the existence of the four-scalar interaction given in

32Note that this Z2 symmetry is isomorphic to (CP4)2, which remains an exact symmetry of the model.
33This statement implicitly assumes that Z5 6= 0, which we shall assume here. The case of Z5 = 0, which is

special due to the enhanced mass degeneracy noted in footnote 21, will be treated at the end of this section.
34If a scalar basis exists such that the scalar potential is invariant under Hi ! H†

i , the we say that the scalar
potential is CP2-symmetric. The notation CP2 derives from the property, (CP2)2 = 1.
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Z9 are both real. Hence, the presence of these terms signals a CP4-symmetric IS scalar potential
that does not respect the ordinary CP symmetry, denoted henceforth by CP2.26 Here we provide
two specific examples. First, Eq. (3.24) shows the existence of a ZPQ interaction, which would
permit the decay Z ! PQ, P ⇤Q⇤, if kinematically available. Since MQ  MP , let us further
suppose that MQ < 1

4mZ < MP . In this case, the P and P ⇤ would be virtual. One possible
decay of the virtual P or P ⇤ makes use of the existence of the four-scalar interaction given in
Eq. (4.1). If this interaction is present, the the decay Z ! QQQQ⇤, Q⇤Q⇤Q⇤Q is allowed and
provides unambiguous evidence that either Z8 and/or Z9 possesses a nonzero imaginary part.
A second example makes use of the W+H�P , W+h�P , W+H�Q, and W+h�Q interactions of
Eq. (3.24). In this case, we can consider the decay of a charged W into a charged Higgs boson
and P (or P ⇤). We can now make use of Eq. (4.1) to decay the virtual P or P ⇤ into QQQ,
QQQ⇤, QQ⇤Q⇤, Q⇤Q⇤Q⇤. Note that in each of the two cases above, there are multiple four-
scalar final states involving mass-degenerate scalars. In computing the experimentally observed
rates, one must compute the squared amplitude for each of the possible final states, and then
multiply the final result by a multiplicity factor that counts the number of possible final states.

In contrast, suppose that Eq. (3.31) were a symmetry of the IS scalar potential. In this
case, one can check that the corresponding transformation properties of the scalar fields are,
P ! iP , Q ! �iQ, P †

! �iP †, Q†
! iQ†, H±

! �h±, and h±
! H±. One would then

immediately conclude that Z8 = Z⇤
8 and Z9 = Z⇤

9 , as expected. In particular, Eq. (4.1) is not
invariant under Eq. (3.31), and thus the four scalar decay modes listed above would necessarily
be absent.

As an exercise, we have evaluated the decay rate for Z ! QQQQ⇤, QQ⇤Q⇤Q⇤, in an
approximation where MQ = 0 and MP � mZ . The computation is presented in Appendix B.
The end result is

�(Z ! QQQQ⇤, QQ⇤Q⇤Q⇤)

�(Z ! ⌫⌫̄)
=

(Im Z8)2 + (Im Z9)2

3 · 5 · 28 ⇡4

✓

mZ

MP

◆4

. (4.2)

This result implies that the quantity (Im Z8)2+(Im Z9)2 must be a physical quantity, and hence
invariant with respect to scalar basis changes that are consistent with the form of the IS scalar
potential given by Eq. (3.27) in the H23 basis. However, the family of Higgs bases is larger
than the set of scalar field bases in which the IS scalar potential has the form of Eq. (3.27).
Nevertheless, as shown in Appendix A.3, one can prove that if (Im Z8)2 + (Im Z9)2 6= 0 in the
H23 basis, then no Higgs basis exists in which the coe�cients of the IS scalar potential are all
real and vice versa. This is another way to see that there is a physical distinction between the
CP4 symmetric IS scalar potential that either preserves or does not preserve a CP2 symmetry.

In Appendix A.4, we demonstrate explicitly that if Z5 6= 0, then there exists a ratio of two
basis-invariant quantities, which when evaluated in the H23 basis yields (Im Z8)2 + (Im Z9)2.
Moreover, if Z5 = 0, then it is possible to change the basis of scalar fields of the IS model, in
which the form of the IS potential is still given by Eq. (3.27) but ImZ8 = Im Z9 = 0. This
result appears to be in contradiction to the result of Eq. (4.2). The resolution of this apparent
paradox can be obtained by noting that if Z5 = 0, then MP = MQ. Since Eq. (4.2) was derived
under the assumption that MQ = 0 and MP � mZ , Eq. (4.2) no longer applies if Z5 = 0. But,

26If a scalar basis exists such that the scalar potential is invariant under Hi ! H†
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In this example

Z9 are both real. Hence, the presence of these terms signals a CP4-symmetric IS scalar potential
that does not respect the ordinary CP symmetry, denoted henceforth by CP2.26 Here we provide
two specific examples. First, Eq. (3.24) shows the existence of a ZPQ interaction, which would
permit the decay Z ! PQ, P ⇤Q⇤, if kinematically available. Since MQ  MP , let us further
suppose that MQ < 1

4mZ < MP . In this case, the P and P ⇤ would be virtual. One possible
decay of the virtual P or P ⇤ makes use of the existence of the four-scalar interaction given in
Eq. (4.1). If this interaction is present, the the decay Z ! QQQQ⇤, Q⇤Q⇤Q⇤Q is allowed and
provides unambiguous evidence that either Z8 and/or Z9 possesses a nonzero imaginary part.
A second example makes use of the W+H�P , W+h�P , W+H�Q, and W+h�Q interactions of
Eq. (3.24). In this case, we can consider the decay of a charged W into a charged Higgs boson
and P (or P ⇤). We can now make use of Eq. (4.1) to decay the virtual P or P ⇤ into QQQ,
QQQ⇤, QQ⇤Q⇤, Q⇤Q⇤Q⇤. Note that in each of the two cases above, there are multiple four-
scalar final states involving mass-degenerate scalars. In computing the experimentally observed
rates, one must compute the squared amplitude for each of the possible final states, and then
multiply the final result by a multiplicity factor that counts the number of possible final states.

In contrast, suppose that Eq. (3.31) were a symmetry of the IS scalar potential. In this
case, one can check that the corresponding transformation properties of the scalar fields are,
P ! iP , Q ! �iQ, P †

! �iP †, Q†
! iQ†, H±

! �h±, and h±
! H±. One would then

immediately conclude that Z8 = Z⇤
8 and Z9 = Z⇤

9 , as expected. In particular, Eq. (4.1) is not
invariant under Eq. (3.31), and thus the four scalar decay modes listed above would necessarily
be absent.

As an exercise, we have evaluated the decay rate for Z ! QQQQ⇤, QQ⇤Q⇤Q⇤, in an
approximation where MQ = 0 and MP � mZ . The computation is presented in Appendix B.
The end result is

�(Z ! QQQQ⇤, QQ⇤Q⇤Q⇤)

�(Z ! ⌫⌫̄)
=

(Im Z8)2 + (Im Z9)2

3 · 5 · 28 ⇡4

✓

mZ

MP

◆4

. (4.2)

This result implies that the quantity (Im Z8)2+(Im Z9)2 must be a physical quantity, and hence
invariant with respect to scalar basis changes that are consistent with the form of the IS scalar
potential given by Eq. (3.27) in the H23 basis. However, the family of Higgs bases is larger
than the set of scalar field bases in which the IS scalar potential has the form of Eq. (3.27).
Nevertheless, as shown in Appendix A.3, one can prove that if (Im Z8)2 + (Im Z9)2 6= 0 in the
H23 basis, then no Higgs basis exists in which the coe�cients of the IS scalar potential are all
real and vice versa. This is another way to see that there is a physical distinction between the
CP4 symmetric IS scalar potential that either preserves or does not preserve a CP2 symmetry.

In Appendix A.4, we demonstrate explicitly that if Z5 6= 0, then there exists a ratio of two
basis-invariant quantities, which when evaluated in the H23 basis yields (Im Z8)2 + (Im Z9)2.
Moreover, if Z5 = 0, then it is possible to change the basis of scalar fields of the IS model, in
which the form of the IS potential is still given by Eq. (3.27) but ImZ8 = Im Z9 = 0. This
result appears to be in contradiction to the result of Eq. (4.2). The resolution of this apparent
paradox can be obtained by noting that if Z5 = 0, then MP = MQ. Since Eq. (4.2) was derived
under the assumption that MQ = 0 and MP � mZ , Eq. (4.2) no longer applies if Z5 = 0. But,
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One possible decay of the virtual 

Z9 are both real. Hence, the presence of these terms signals a CP4-symmetric IS scalar potential
that does not respect the ordinary CP symmetry, denoted henceforth by CP2.26 Here we provide
two specific examples. First, Eq. (3.24) shows the existence of a ZPQ interaction, which would
permit the decay Z ! PQ, P ⇤Q⇤, if kinematically available. Since MQ  MP , let us further
suppose that MQ < 1

4mZ < MP . In this case, the P and P ⇤ would be virtual. One possible
decay of the virtual P or P ⇤ makes use of the existence of the four-scalar interaction given in
Eq. (4.1). If this interaction is present, the the decay Z ! QQQQ⇤, Q⇤Q⇤Q⇤Q is allowed and
provides unambiguous evidence that either Z8 and/or Z9 possesses a nonzero imaginary part.
A second example makes use of the W+H�P , W+h�P , W+H�Q, and W+h�Q interactions of
Eq. (3.24). In this case, we can consider the decay of a charged W into a charged Higgs boson
and P (or P ⇤). We can now make use of Eq. (4.1) to decay the virtual P or P ⇤ into QQQ,
QQQ⇤, QQ⇤Q⇤, Q⇤Q⇤Q⇤. Note that in each of the two cases above, there are multiple four-
scalar final states involving mass-degenerate scalars. In computing the experimentally observed
rates, one must compute the squared amplitude for each of the possible final states, and then
multiply the final result by a multiplicity factor that counts the number of possible final states.

In contrast, suppose that Eq. (3.31) were a symmetry of the IS scalar potential. In this
case, one can check that the corresponding transformation properties of the scalar fields are,
P ! iP , Q ! �iQ, P †

! �iP †, Q†
! iQ†, H±

! �h±, and h±
! H±. One would then

immediately conclude that Z8 = Z⇤
8 and Z9 = Z⇤

9 , as expected. In particular, Eq. (4.1) is not
invariant under Eq. (3.31), and thus the four scalar decay modes listed above would necessarily
be absent.

As an exercise, we have evaluated the decay rate for Z ! QQQQ⇤, QQ⇤Q⇤Q⇤, in an
approximation where MQ = 0 and MP � mZ . The computation is presented in Appendix B.
The end result is

�(Z ! QQQQ⇤, QQ⇤Q⇤Q⇤)

�(Z ! ⌫⌫̄)
=

(Im Z8)2 + (Im Z9)2

3 · 5 · 28 ⇡4

✓

mZ

MP

◆4

. (4.2)

This result implies that the quantity (Im Z8)2+(Im Z9)2 must be a physical quantity, and hence
invariant with respect to scalar basis changes that are consistent with the form of the IS scalar
potential given by Eq. (3.27) in the H23 basis. However, the family of Higgs bases is larger
than the set of scalar field bases in which the IS scalar potential has the form of Eq. (3.27).
Nevertheless, as shown in Appendix A.3, one can prove that if (Im Z8)2 + (Im Z9)2 6= 0 in the
H23 basis, then no Higgs basis exists in which the coe�cients of the IS scalar potential are all
real and vice versa. This is another way to see that there is a physical distinction between the
CP4 symmetric IS scalar potential that either preserves or does not preserve a CP2 symmetry.

In Appendix A.4, we demonstrate explicitly that if Z5 6= 0, then there exists a ratio of two
basis-invariant quantities, which when evaluated in the H23 basis yields (Im Z8)2 + (Im Z9)2.
Moreover, if Z5 = 0, then it is possible to change the basis of scalar fields of the IS model, in
which the form of the IS potential is still given by Eq. (3.27) but ImZ8 = Im Z9 = 0. This
result appears to be in contradiction to the result of Eq. (4.2). The resolution of this apparent
paradox can be obtained by noting that if Z5 = 0, then MP = MQ. Since Eq. (4.2) was derived
under the assumption that MQ = 0 and MP � mZ , Eq. (4.2) no longer applies if Z5 = 0. But,

26If a scalar basis exists such that the scalar potential is invariant under Hi ! H†

i , the we say that the scalar
potential is CP2-symmetric. The notation CP2 derives from the property, (CP2)2 = 1.

21

makes use of the existence of the 
four scalar interaction given above. If this interaction is present, the decay 

Z9 are both real. Hence, the presence of these terms signals a CP4-symmetric IS scalar potential
that does not respect the ordinary CP symmetry, denoted henceforth by CP2.26 Here we provide
two specific examples. First, Eq. (3.24) shows the existence of a ZPQ interaction, which would
permit the decay Z ! PQ, P ⇤Q⇤, if kinematically available. Since MQ  MP , let us further
suppose that MQ < 1

4mZ < MP . In this case, the P and P ⇤ would be virtual. One possible
decay of the virtual P or P ⇤ makes use of the existence of the four-scalar interaction given in
Eq. (4.1). If this interaction is present, the the decay Z ! QQQQ⇤, Q⇤Q⇤Q⇤Q is allowed and
provides unambiguous evidence that either Z8 and/or Z9 possesses a nonzero imaginary part.
A second example makes use of the W+H�P , W+h�P , W+H�Q, and W+h�Q interactions of
Eq. (3.24). In this case, we can consider the decay of a charged W into a charged Higgs boson
and P (or P ⇤). We can now make use of Eq. (4.1) to decay the virtual P or P ⇤ into QQQ,
QQQ⇤, QQ⇤Q⇤, Q⇤Q⇤Q⇤. Note that in each of the two cases above, there are multiple four-
scalar final states involving mass-degenerate scalars. In computing the experimentally observed
rates, one must compute the squared amplitude for each of the possible final states, and then
multiply the final result by a multiplicity factor that counts the number of possible final states.

In contrast, suppose that Eq. (3.31) were a symmetry of the IS scalar potential. In this
case, one can check that the corresponding transformation properties of the scalar fields are,
P ! iP , Q ! �iQ, P †

! �iP †, Q†
! iQ†, H±

! �h±, and h±
! H±. One would then

immediately conclude that Z8 = Z⇤
8 and Z9 = Z⇤

9 , as expected. In particular, Eq. (4.1) is not
invariant under Eq. (3.31), and thus the four scalar decay modes listed above would necessarily
be absent.

As an exercise, we have evaluated the decay rate for Z ! QQQQ⇤, QQ⇤Q⇤Q⇤, in an
approximation where MQ = 0 and MP � mZ . The computation is presented in Appendix B.
The end result is

�(Z ! QQQQ⇤, QQ⇤Q⇤Q⇤)

�(Z ! ⌫⌫̄)
=

(Im Z8)2 + (Im Z9)2

3 · 5 · 28 ⇡4

✓

mZ

MP

◆4

. (4.2)

This result implies that the quantity (Im Z8)2+(Im Z9)2 must be a physical quantity, and hence
invariant with respect to scalar basis changes that are consistent with the form of the IS scalar
potential given by Eq. (3.27) in the H23 basis. However, the family of Higgs bases is larger
than the set of scalar field bases in which the IS scalar potential has the form of Eq. (3.27).
Nevertheless, as shown in Appendix A.3, one can prove that if (Im Z8)2 + (Im Z9)2 6= 0 in the
H23 basis, then no Higgs basis exists in which the coe�cients of the IS scalar potential are all
real and vice versa. This is another way to see that there is a physical distinction between the
CP4 symmetric IS scalar potential that either preserves or does not preserve a CP2 symmetry.

In Appendix A.4, we demonstrate explicitly that if Z5 6= 0, then there exists a ratio of two
basis-invariant quantities, which when evaluated in the H23 basis yields (Im Z8)2 + (Im Z9)2.
Moreover, if Z5 = 0, then it is possible to change the basis of scalar fields of the IS model, in
which the form of the IS potential is still given by Eq. (3.27) but ImZ8 = Im Z9 = 0. This
result appears to be in contradiction to the result of Eq. (4.2). The resolution of this apparent
paradox can be obtained by noting that if Z5 = 0, then MP = MQ. Since Eq. (4.2) was derived
under the assumption that MQ = 0 and MP � mZ , Eq. (4.2) no longer applies if Z5 = 0. But,
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is allowed and provides unambiguous evidence that either 

Z9 are both real. Hence, the presence of these terms signals a CP4-symmetric IS scalar potential
that does not respect the ordinary CP symmetry, denoted henceforth by CP2.26 Here we provide
two specific examples. First, Eq. (3.24) shows the existence of a ZPQ interaction, which would
permit the decay Z ! PQ, P ⇤Q⇤, if kinematically available. Since MQ  MP , let us further
suppose that MQ < 1

4mZ < MP . In this case, the P and P ⇤ would be virtual. One possible
decay of the virtual P or P ⇤ makes use of the existence of the four-scalar interaction given in
Eq. (4.1). If this interaction is present, the the decay Z ! QQQQ⇤, Q⇤Q⇤Q⇤Q is allowed and
provides unambiguous evidence that either Z8 and/or Z9 possesses a nonzero imaginary part.
A second example makes use of the W+H�P , W+h�P , W+H�Q, and W+h�Q interactions of
Eq. (3.24). In this case, we can consider the decay of a charged W into a charged Higgs boson
and P (or P ⇤). We can now make use of Eq. (4.1) to decay the virtual P or P ⇤ into QQQ,
QQQ⇤, QQ⇤Q⇤, Q⇤Q⇤Q⇤. Note that in each of the two cases above, there are multiple four-
scalar final states involving mass-degenerate scalars. In computing the experimentally observed
rates, one must compute the squared amplitude for each of the possible final states, and then
multiply the final result by a multiplicity factor that counts the number of possible final states.

In contrast, suppose that Eq. (3.31) were a symmetry of the IS scalar potential. In this
case, one can check that the corresponding transformation properties of the scalar fields are,
P ! iP , Q ! �iQ, P †

! �iP †, Q†
! iQ†, H±

! �h±, and h±
! H±. One would then

immediately conclude that Z8 = Z⇤
8 and Z9 = Z⇤

9 , as expected. In particular, Eq. (4.1) is not
invariant under Eq. (3.31), and thus the four scalar decay modes listed above would necessarily
be absent.

As an exercise, we have evaluated the decay rate for Z ! QQQQ⇤, QQ⇤Q⇤Q⇤, in an
approximation where MQ = 0 and MP � mZ . The computation is presented in Appendix B.
The end result is

�(Z ! QQQQ⇤, QQ⇤Q⇤Q⇤)

�(Z ! ⌫⌫̄)
=

(Im Z8)2 + (Im Z9)2

3 · 5 · 28 ⇡4
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. (4.2)

This result implies that the quantity (Im Z8)2+(Im Z9)2 must be a physical quantity, and hence
invariant with respect to scalar basis changes that are consistent with the form of the IS scalar
potential given by Eq. (3.27) in the H23 basis. However, the family of Higgs bases is larger
than the set of scalar field bases in which the IS scalar potential has the form of Eq. (3.27).
Nevertheless, as shown in Appendix A.3, one can prove that if (Im Z8)2 + (Im Z9)2 6= 0 in the
H23 basis, then no Higgs basis exists in which the coe�cients of the IS scalar potential are all
real and vice versa. This is another way to see that there is a physical distinction between the
CP4 symmetric IS scalar potential that either preserves or does not preserve a CP2 symmetry.

In Appendix A.4, we demonstrate explicitly that if Z5 6= 0, then there exists a ratio of two
basis-invariant quantities, which when evaluated in the H23 basis yields (Im Z8)2 + (Im Z9)2.
Moreover, if Z5 = 0, then it is possible to change the basis of scalar fields of the IS model, in
which the form of the IS potential is still given by Eq. (3.27) but ImZ8 = Im Z9 = 0. This
result appears to be in contradiction to the result of Eq. (4.2). The resolution of this apparent
paradox can be obtained by noting that if Z5 = 0, then MP = MQ. Since Eq. (4.2) was derived
under the assumption that MQ = 0 and MP � mZ , Eq. (4.2) no longer applies if Z5 = 0. But,
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possesses a nonzero imaginary part



An Observable distinction between CP2 and CP4 (cont)
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Figure 2: Feynman diagrams for Z ! QQQQ⇤

where we have used conservation of momentum, p = k1 + k2 + k3 + k4. It then follows after
some simplification (with p2 = m2

Z) that,

|M|

2
ave =

16g2

3m2
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2
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2 . (B.3)

The four body decay width for Z ! QQQQ⇤ is given by
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where the factor of 1/6 is due to the three identical Qs in the final state (which means we
overcount by a factor of 3! by integrating over the full phase space).

Using the above results, we obtain,
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after changing integration variables k1  ! k4.
To perform the phase space integration, we follow Ref. [82]. To integrate over d3k1d

3k2 we
use,
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8
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>
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<
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>

:

1 = 1
2⇡,

k1µ = 1
4⇡Nµ,

k1µk1⌫ = � 1
24⇡(N2gµ⌫ � 4NµN⌫),

k1µk2⌫ = 1
24⇡(N2gµ⌫ + 2NµN⌫),

(B.6)
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CONCLUSIONS

Symmetries play an important rôle in multi-Higgs  
models

- reduction of the number of free parameters

- experimental predictions

Connections can be established between Symmetries  
and:

- mass degeneracies

- CP violation


