

Markus Klute

Planck 2017 Plenary - 5/23/2017

BSM Physics around the corner

➡ Often heard: BSM (new) Physics must be around the corner

- At higher mass scales or with smaller couplings (or both)?
- Or did we simply miss the signatures due to trigger or backgrounds?
- Many good ideas, but limited theoretical guidance
- Only way to find out: keep exploring
- Driving principle: What is the origins of phenomena not explained by the Standard Model?

Strategy at collider experiments

- Searches for the imprint of new physics on neutrino and flavor physics, W, Z, top quark, and the Higgs boson
- Direct searches for new states
- BSM physics searches in collider experiments can succeed through larger energies, larger intensity (more or better data), or new ideas

Roadmap for Collider Experiments

⇒Run 2

- recording first collisions in 2017
- 2 years of data taking ahead

➡ Long Shutdown 2

- substantial upgrades for ALICE and LHCb
- Phase-1 upgrades for ATLAS and CMS

➡ 2023 marks the end of the original LHC project

Roadmap for Collider Experiments

➡ Long Shutdown 3: 2024-26

- HL-LHC installation
- Phase-2 upgrades for ATLAS and CMS

⇒ Run 4 - ...

```
• 5x10<sup>34</sup> cm<sup>-2</sup> s leveled
```

- 3000 fb by 2035
- ➡ More than 20 years and a factor of ~100 times more data ahead of us

Roadmap for Collider Experiments

HL-LHC Challenges

- Detectors have to operate in extreme environment
- In 2025 the detectors will be running (radiated) for 15 years. Severe aging effects.
- ATLAS and CMS will undergo significant upgrades

HL-LHC Challenges

Expect

- <µ>≅140 at 5x10³⁴cm⁻²s⁻¹
- <µ>≈200 at 7x10³⁴cm⁻²s⁻¹

HL-LHC Baseline

 $\sigma_{lum} = 5 \text{cm r.m.s.}$ $\sigma_{lum} = 160 \text{ps r.m.s.}$

Tracking

- High granularity and thin active region to reduce hit occupancy
- Increase the number of tracking layers

➡ Calorimetry

- Fit pulse shapes to extract in-time energy deposition
- Upgrade readout electronics
- Combine in-time energy measurements with tracking information using particle flow techniques

Precision timing

- Reduce in-time pileup using the time distribution of collisions within the same bunch crossing
- Interaction time of a bunch crossing has rms of ~160ps
- ATLAS and CMS calorimeter timing resolution insufficient for significant rejection of PU
- CMS just extended its Phase-II upgrade scope to include an precision timing layer

➡ Pointing

 Reduce in-time pileup directional information for neutral particles

HL-LHC Physics Program

➡ Higgs case at the start of the LHC was exceptional

- something to built on, not the reference
- SM is self-consistent theory that can be extrapolated to exponentially higher energies
- Goal for the future LHC and HL-LHC program
 - Explore the energy frontier
 - Precision measurements of SM parameters (including the Higgs boson)
 - Sensitivity to rare SM & rare BSM processes
 - Extension of discovery reach in high-mass region
 - Determination of BSM parameter

Roadmap for Particle Physics

Higgs Prospects

CMS Projection

Coupling precision 2-10 % factor ~2 improvement from HL-LHC

Key question is the evolution systematic uncertainty

Assumptions made on cross section uncertainties already superseded

Rare-decays

	-	-						The Party of the State of the S	and the second
$L (fb^{-1})$	κ_{γ}	κ _W	κ_Z	κ _g	κ _b	κ _t	κτ	κ _{Zγ}	κμ
300	[5,7]	[4,6]	[4,6]	[6,8]	[10,13]	[14,15]	[6,8]	[41,41]	[23,23]
3000	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]
orViv:1207 7125									

arXiv:1307.7135

Higgs Prospects

\Rightarrow H \rightarrow µµ

- 2nd generation fermion coupling
- e search for narrow resonance with huge DY background
- expect ~5% uncertainty second generation Higgs coupling

Higgs Prospects

Lepton Collider allow model independent coupling measurements at sub-percent level precision

Parameter	Current*	HL-LHC*	FCC-ee	
	7+8+13 TeV	$14 { m TeV}$	Baseline	
	${\cal O} (70 \; { m fb}^{-1})$	(3 ab^{-1})	(10 yrs)	
$\sigma(\mathrm{HZ})$	_	-	0.4%	
\mathbf{g}_{zz}	10%	2 - 4%	0.15%	
g_{WW}	11%	2–5%	0.2%	
\mathbf{g}_{bb}	24%	5 - 7%	0.4%	
g _{cc}	_	_	0.7%	
$g_{\tau\tau}$	15%	5 - 8%	0.5%	
$g_{t\bar{t}}$	16%	6–9%	13%	
$\mathbf{g}_{\mu\mu}$	_	8%	6.2%	
$g_{e^+e^-}$	_	_	<100%	
g_{gg}	_	3 - 5%	0.8%	
$\mathbf{g}_{\gamma\gamma}$	10%	2–5%	1.5%	
$g_{z_{\gamma}}$	_	10 - 12%	(
$\Delta m_{_{ m H}}$	$200 { m MeV}$	$50 { m MeV}$	11 MeV	
$\Gamma_{_{ m H}}$	$<\!26 \text{ MeV}$	5 - 8%	1.0%	
$\Gamma_{\rm inv}$	<24%	$<\!\!6-\!8\%$	< 0.45%	

Comparison with (HL-LHC)
 Model dependent fit

Factor >10 improvement for most couplings

Sensitivity to new physics at multi-TeV scale

arXiv:1701.02663

Triple-Higgs Coupling

13

- Probing triple-Higgs coupling with double Higgs production
 - Consistency of check of EWSB
 - Reconstructing the Higgs potential
 - Sensitivity through yields and kinematics
 - Large enhancement through BSM possible
 - Exhaustive program at the (HL-)LHC

Triple-Higgs Coupling

- Demonstrate Phase-II detector capabilities
 - b-tagging, photon, and tau-Id
 - case for the track trigger
- Sensitivity per experiment
 - ~10 signal events in $bb\gamma\gamma$
 - $\sim 2\sigma$ per experiment

- Further improvements
 - additional channels (bbbb)
 - improved pixel detector (b-tagging)
 - improved resolutions (regression)
 - analysis strategies

Triple-Higgs Coupling

Prospect dramatically improved with FCC-hh

L

• 100 TeV pp collider

1

Total program 20ab⁻¹ per detector

Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies

Editors:

R. Contino^{1,2}, D. Curtin³, A. Katz^{1,4}, M. L. Mangano¹, G. Panico⁵, M. J. Ramsey-Musolf^{6,7}, G. Zanderighl¹

Contributors:

C. Anastasiou⁸, W. Astill⁹, J. K. Behr^{10,11}, W. Bizon⁹, P. S. Bhapal Dev¹², D. Bortoletto¹⁰,
Q.-H. Cao^{13,14,15}, F. Caola¹, J. Chakrabortty¹⁶, C.-Y. Chen^{17,18,19}, S.-L. Chen^{15,20}, F. Dulat⁸,
G. Bambhaniya²¹, D. Buttazzo²² D. de Florian²³, C. Englert²⁴, J. A. Frost¹⁰, B. Fuks²⁵,
T. Gherghetta²⁶, G. Giudice¹, J. Gluza²⁷, N. Greiner²⁸, H. Gray²⁹, N. P. Hartland⁴⁰, C. Issever³⁰,
T. Jeliński²⁷, A. Karlberg⁹, J. H. Kim^{30,31,32}, F. Kling³³, A. Lazopoulos⁸, S. J. Lee^{34,35}, Y. Liu¹³,
G. Luisoni¹, J. Mazzitelli^{23,36}, B. Mistiberger¹, P. Monn⁹, K. Nikolopoulos³⁷, R. N. Mohapatra³,
A. Papaefstathiou¹, M. Perelstein³⁸, F. Petriello³⁰, T. Plehn⁴⁰, P. Reimitz⁴⁰, J. Ren⁴¹, J. Rojo¹⁰,
K. Sakurai⁴², T. Scheil⁴⁰, F. Sala⁴³, M. Selvaggi¹⁴, H.-S. Shao¹, M. Son³⁰, M. Spannowsky⁴², T. Srivantava¹⁶, S.-F. Su³³, R. Szafron⁴⁵, T. Tait⁴⁶, A. Tesi¹⁷, A. Thamm⁴⁸, P. Torrielli⁴⁹,
F. Tramontano⁵⁰, J. Winter⁵¹, A. Wulzer⁵², Q.-S. Yan^{53,54,55}, W. M. Yao⁵⁶, Y.-C. Zhang⁵⁷, X. Zhao⁵³,

√s[TeV]

process	precision on σ_{SM}	precision on Higgs self-couplings	Z. Zhao ^{53,58}	YM. Zhong ⁵⁹	, p.c. m. ,		Loung , A. Loui	
$HH ightarrow b\overline{b}\gamma\gamma$	2%	$\lambda_3 \in [0.97, 1.03]$						
$HH \to b\overline{b}b\overline{b}$	5%	$\lambda_3 \in [0.9, 1.5]$						
$HH ightarrow b\overline{b}4\ell$	$\sim 25\%$	$\lambda_3 \in [\sim 0.6, \sim 1.4]$	10 ⁴ HH pr	oduction at pp col	lliders at NLO ir	n QCD		-
$HH \to b\overline{b}\ell^+\ell^-$	$\sim 15\%$	$\lambda_3 \in [\sim 0.8, \sim 1.2]$	10 ³ M _H =125	GeV, MSTW2008 NL	.O pdf (68%cl)			-
$HH \to b\overline{b}\ell^+\ell^-\gamma$	—	_	10 ²	p-→HH (EFT loop-improv	(80)			
$HHH \to b \bar{b} b \bar{b} \gamma \gamma$	$\sim 100\%$	$\lambda_4 \in [\sim -4, \sim +16]$	10 ⁰ 10 ⁰	PP-+HHI (VBF) PP-+IHH P	P→WHH			1
			10-1	PD-+UHH	p-+2H1			5 aMCBH
			10-2					adGraph
			10 ⁻³	1314	25 33	50	75	* 100

Vector Boson Scattering

- Assess VBS sensitivity using same-sign WW and WZ
 - CMS made first observation of same-sign W pair production public last week (CMS-SMP-17-004)
 - utilizing unique event topology
 - Iongitudinal scattering cross section
 - anomalous couplings
 - input to Higgs couplings
 - ${\scriptstyle \bullet}$ HL-LHC has ~3 σ sensitivity for V_V scattering

Supersymmetry

Strong motivation for SUSY

- discovery of the Higgs gives new urgency to find "natural" explanation for gauge hierarchy
- HL-LHC expands discovery reach or allows to investigate SUSY spectrum
- requires all capabilities of ATLAS & CMS

Supersymmetry

CMS explored five phenomenological models motivated by naturalness

- models vary nature of the LSP (bino-, higgsino-like), EWK-inos, and sleptons hierarchies
- STC (stau) and STOC) co-annihilation models satisfy dark matter constraints

Supersymmetry

Explored:

- 9 different experimental signatures.
- 5 different types of SUSY models.

Different types of SUSY models lead to different patterns of discoveries in different final states after different amounts of data

Analysis	Luminosity	Model				
-	(fb^{-1})	NM1	NM2	NM3	STC	STOC
all-hadronic (HT-MHT) search	300					
	3000					
all-hadronic (MT2) search	300					
	3000					
all-hadronic \tilde{b}_1 search	300					
	3000					
1-lepton \tilde{t}_1 search	300					
	3000					
monojet \tilde{t}_1 search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					

HL-LHC measurements can be crucial to illuminate a Run 3 discovery, and thus answer fundamental questions about gauge hierarchy or dark matter

Electroweak SUSY Production

Chargino mass 5 model	σ discovery, simplified	300 fb ⁻¹	3000 fb ⁻¹
WZ (3l analysis)	[ATLAS]	Up to 560 GeV	Up to 820 GeV
WZ (3l analysis)	[CMS]	Up to 600 GeV	Up to 900 GeV
WH (3l analysis)	[ATLAS]	(<5ơ reach)	Up to 650 GeV
WH (bb analysis)	[ATLAS]	(<5ơ reach)	Up to 800 GeV
WH (bb analysis)	[CMS]	350-460 GeV	Up to 950 GeV

arXiv:1603.09549

Heavy New States

Window to new physics beyond SUSY

- heavy gauge boson search and properties
- odark matter
- highly ionizing particle
- displaced vertices
- ~20% increase in mass reach with factor 10 in data

Heavy New States

top anti-top resonance searches

- using top-color Z' model as benchmark
- top quark reconstructed in one fat-jet
- HL-LHC extents mass reach from 3 to 4 TeV
- Ourrent limit 2.1 TeV (JHEP 08(2015) 053)

Heavy New States

➡ FCC-hh extents mass reach for direct discovery by factor ~5

Conclusion

- HL-LHC enables a 20+ years research program with large discovery potential
 - ATLAS & CMS upgrades required to fully exploit the (HL-)LHC
- ➡ Physics case is based on the large dataset (selected examples shown)
 - Precision measurements of SM parameters (including the Higgs boson)
 - Sensitivity to rare SM & (weakly produced) BSM processes
 - Extension of discovery reach in high-mass region
 - Determination of BSM parameter
- Studied physics channels only scratch the surface of possibility
- Future Lepton and Hadron Collider projects enhance discovery potential significantly and are complementary
- ➡ Goal: Exploring the energy frontier