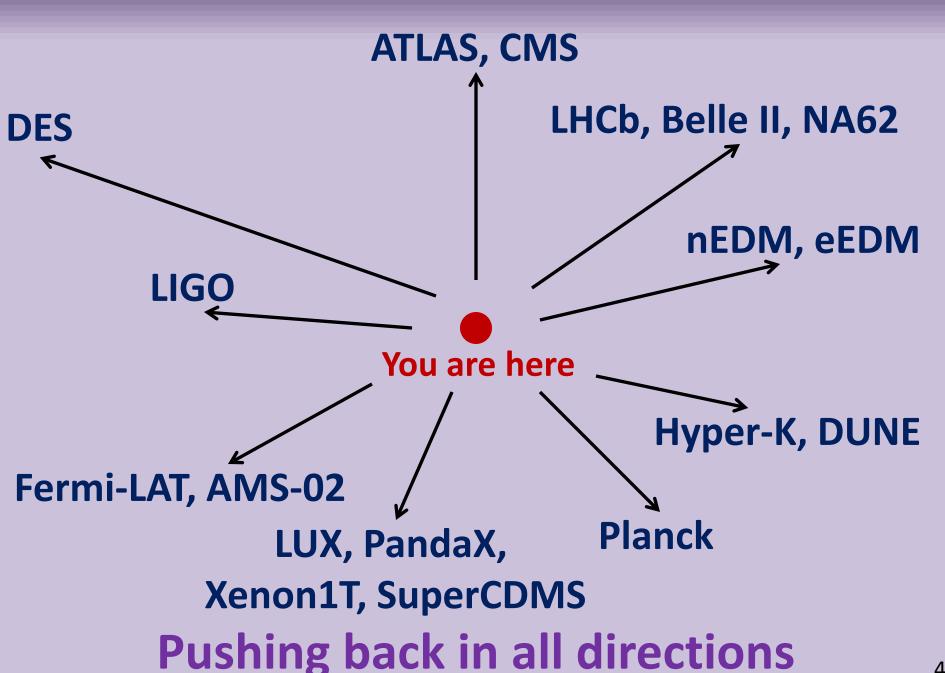
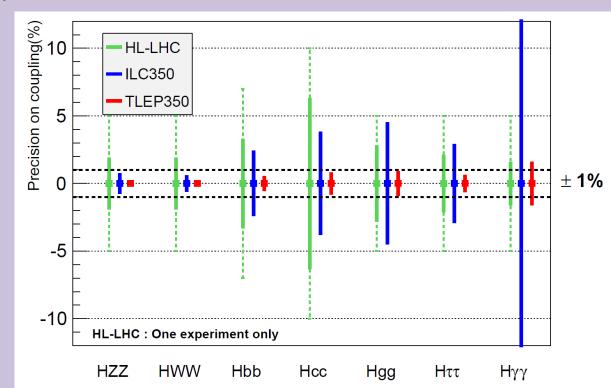

A TALE OF TWO PORTALS: LIGHT, NEW PHYSICS AT FUTURE E+ECOLLIDERS

Felix Yu
JGU Mainz


with Jia Liu, Xiao-Ping Wang [1704.00730]

Planck 2017 Warsaw University, May 24, 2017

Great challenges from all sides



Motivation

- Era of exploratory particle physics
 - Possible NP models span decades in scale and couplings
 - Strong gains to come from e⁺e⁻ precision Higgs program
 - ILC, FCC-ee, CEPC, CLIC machines under serious

consideration

Precision Higgs physics requires measuring Γ_H : afforded by recoil mass method at e⁺e⁻ machines

TLEP [1308.6176]

Motivation

- Era of exploratory particle physics
 - Possible NP models span decades in scale and couplings
 - Strong gains to come from e⁺e⁻ precision Higgs program
 - ILC, FCC-ee, CEPC, CLIC machines under serious consideration
- Missing piece of story: e⁺e⁻ collider production of new particles
 - More than a Higgs factory, but production of new, light states – especially when sensitivity exceeds possibilities at (HL-)LHC
 - Will discuss dark vector and dark scalar production and their SM and DM decays

Outline

- Theory review: Double Dark Portal
 - Simultaneous kinetic mixing and scalar Higgs portal
- Phenomenology: dark matter probes
 - Direct detection and indirect detection probes
- Phenomenology: collider signatures
 - Unique capabilities of e⁺e⁻ machine for probing dark vector, dark scalar production
- Conclusions

 $\Phi \sim +1$, $\chi \sim +1$

Kinetic mixing of *K* with hypercharge gauge boson *B*

dark Higgs Φ and SM H

$$\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{i\,\mu\nu} - \frac{1}{4} K_{\mu\nu} K^{\mu\nu} + \frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} K^{\mu\nu} \\ + |D_{\mu}H|^2 + |D_{\mu}\Phi|^2 + \mu_H^2 |H|^2 - \lambda_H |H|^4 + \mu_D^2 |\Phi|^2 - \lambda_D |\Phi|^4 - \lambda_{HP} |H|^2 |\Phi|^2 \\ + \bar{\chi} (i \not\!\!D - m_{\chi}) \chi \\ \text{U(1)}_{\text{D}} \text{ charges} \qquad \qquad \text{Scalar Higgs portal between}$$

- Two marginal operators: simultaneous vector portal and scalar portal couplings
 - Constraints driven by searches, not known from first principles (possible in UV completions)

Recipe for solving the neutral vector Lagrangian

- 1. Diagonalize gauge boson mass matrix
- 2. Remove kinetic mixing and canonically normalize
- 3. Rediagonalize mass matrix (and can expand in ε if desired)

$$\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{i\,\mu\nu} - \frac{1}{4} K_{\mu\nu} K^{\mu\nu} + \frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} K^{\mu\nu}$$

$$+ |D_{\mu}H|^2 + |D_{\mu}\Phi|^2 + \mu_H^2 |H|^2 - \lambda_H |H|^4 + \mu_D^2 |\Phi|^2 - \lambda_D |\Phi|^4 - \lambda_{HP} |H|^2 |\Phi|^2$$

$$+ \bar{\chi} (i \not\!\!D - m_{\chi}) \chi$$

Fermion bilinears experience the new currents

$$\mathcal{L} \supset gZ_{\mu, \text{ SM}}J_{Z}^{\mu} + eA_{\mu, \text{ SM}}J_{\text{em}}^{\mu} + g_{D}K_{\mu}J_{D}^{\mu}$$

$$= \tilde{Z}_{\mu} \left(gJ_{Z}^{\mu} - g_{D} \frac{m_{Z, \text{ SM}}^{2}t_{W}}{m_{Z, \text{ SM}}^{2} - m_{K}^{2}} \epsilon J_{D}^{\mu} + g \frac{m_{Z, \text{ SM}}^{2}(m_{Z, \text{ SM}}^{2} - 2m_{K}^{2})t_{W}^{2}}{2(m_{K}^{2} - m_{Z, \text{ SM}}^{2})^{2}} \epsilon^{2}J_{Z}^{\mu} - e \frac{m_{Z, \text{ SM}}^{2}t_{W}}{m_{Z, \text{ SM}}^{2} - m_{K}^{2}} \epsilon^{2}J_{\text{em}}^{\mu} \right)$$

$$+ \tilde{K}_{\mu} \left(g_{D}J_{D}^{\mu} + g \frac{m_{K}^{2}t_{W}}{m_{Z, \text{ SM}}^{2} - m_{K}^{2}} \epsilon J_{Z}^{\mu} + e \epsilon J_{\text{em}}^{\mu} + g_{D} \frac{(m_{Z, \text{ SM}}^{2}c_{W}^{2} - 2m_{K}^{2}m_{Z, \text{ SM}}^{2} + m_{K}^{4})c_{W}^{-2}}{2(m_{Z, \text{ SM}}^{2} - m_{K}^{2})^{2}} \epsilon^{2}J_{D}^{\mu} \right)$$

$$+ \tilde{A}_{\mu}eJ_{\text{em}}^{\mu}$$

- $U(1)_{D}$ charged fermions pick up ε weak charge mediated by Z
- SM charged fermions pick up ϵ weak charge and ϵ electric charge mediated by dark photon
- Photon remains massless, long-range
 - (Singular behavior at $m_K = m_{Z.SM}$ is maximal mixing limit)

- Scalar boson mixing
 - Higgs portal coupling leads to mass mixing between dark
 Higgs and SM Higgs
 - Mixing angle

$$\tan 2\alpha = \frac{\lambda_{HP} v_H v_D}{\lambda_D v_D^2 - \lambda_H v_H^2}$$

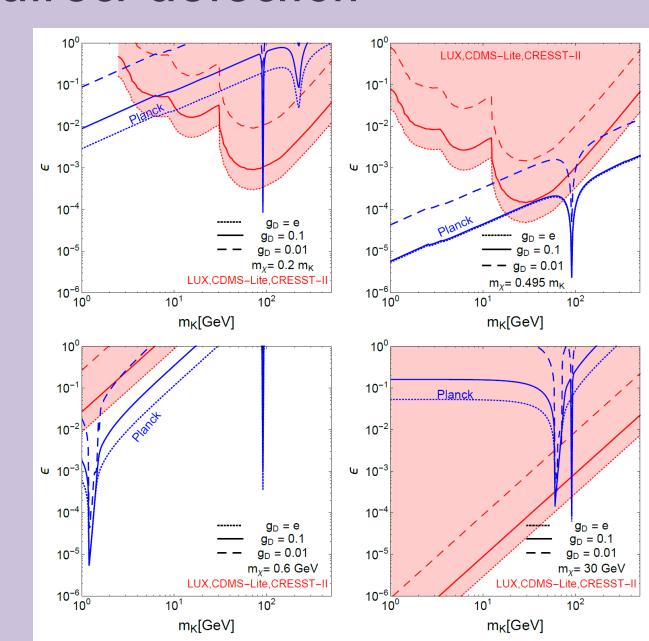
Masses

$$m_{S, H_0}^2 = \lambda_H v_H^2 + \lambda_D v_D^2 \pm \sqrt{(\lambda_H v_H^2 - \lambda_D v_D^2)^2 + \lambda_{HP} v_H^2 v_D^2}$$

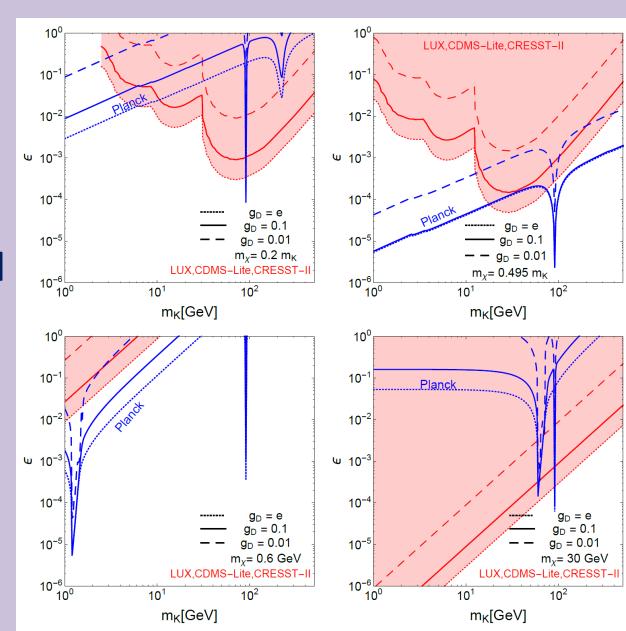
– Dominant effect is cos α -suppression of Higgs couplings to fermions, dark Higgs mass eigenstate S picks up sin α -suppressed couplings to SM fermions

- Scalar-vector-vector interactions
 - Plays a key role in e⁺e⁻ studies

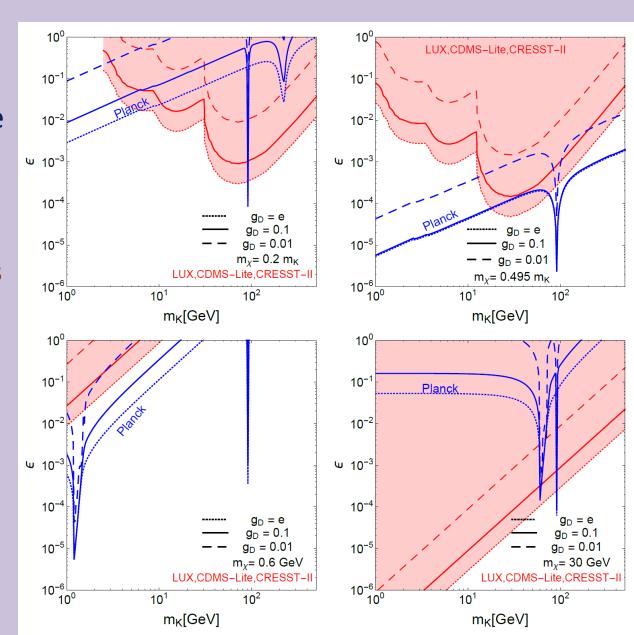
$$\begin{split} - \operatorname{To} \operatorname{O}(\varepsilon) & \quad \mathcal{L} \supset m_{Z,\operatorname{SM}}^2 \left(\frac{\cos \alpha}{v_H} \right) \tilde{Z}_{\mu} \tilde{Z}^{\mu} H_0 \\ & \quad + 2\epsilon t_W \frac{m_K^2 m_{Z,\operatorname{SM}}^2}{(m_{Z,\operatorname{SM}}^2 - m_K^2)} \left(\frac{\cos \alpha}{v_H} + \frac{\sin \alpha}{v_D} \right) \tilde{Z}_{\mu} \tilde{K}^{\mu} H_0 \\ & \quad + m_K^2 \left(-\frac{\sin \alpha}{v_D} \right) \tilde{K}_{\mu} \tilde{K}^{\mu} H_0 \\ & \quad + m_{Z,\operatorname{SM}}^2 \left(\frac{\sin \alpha}{v_H} \right) \tilde{Z}_{\mu} \tilde{Z}^{\mu} S \\ & \quad + 2\epsilon t_W \frac{m_K^2 m_{Z,\operatorname{SM}}^2}{(m_{Z,\operatorname{SM}}^2 - m_K^2)} \left(-\frac{\cos \alpha}{v_D} + \frac{\sin \alpha}{v_H} \right) \tilde{Z}_{\mu} \tilde{K}^{\mu} S \\ & \quad + m_K^2 \left(\frac{\cos \alpha}{v_D} \right) \tilde{K}_{\mu} \tilde{K}^{\mu} S \end{split}$$

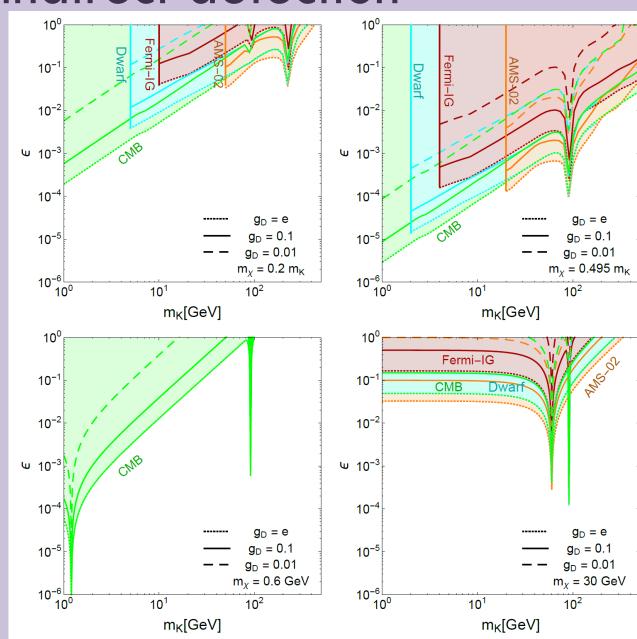

Phenomenology

- Three new states \tilde{K} , S , χ
- Many new interactions
 - Deviations in Z couplings
 - Deviations in Higgs couplings
 - New 125-GeV Higgs decays
 - Invisible, semi-visible, fully visible
 - Interactions with dark matter mediated by dark photon
- Rich phenomenology with signatures in direct detection, indirect detection, astrophysics, and colliders
 - Double Dark Portal model ties together two marginal couplings simultaneously

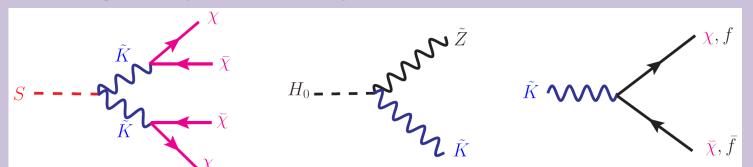

- Dark matter scattering off protons dominantly from dark photon exchange, suppressed by $(\epsilon e)^2$
 - Intrinsic cancellation between weak charged currents mediated by massive Z and K vectors (at this order in ε)
 - Dark matter does not interact with photon, hence only protons contribute to direct detection

$$\sigma_p \simeq \frac{\epsilon^2 g_D^2 e^2}{\pi} \frac{\mu_{\chi p}^2}{m_{\tilde{K}}^4} \approx 10^{-44} \text{ cm}^2 \left(\frac{g_D}{e}\right)^2 \left(\frac{\epsilon}{10^{-5}}\right)^2 \left(\frac{10 \text{ GeV}}{m_{\tilde{K}}}\right)^2$$

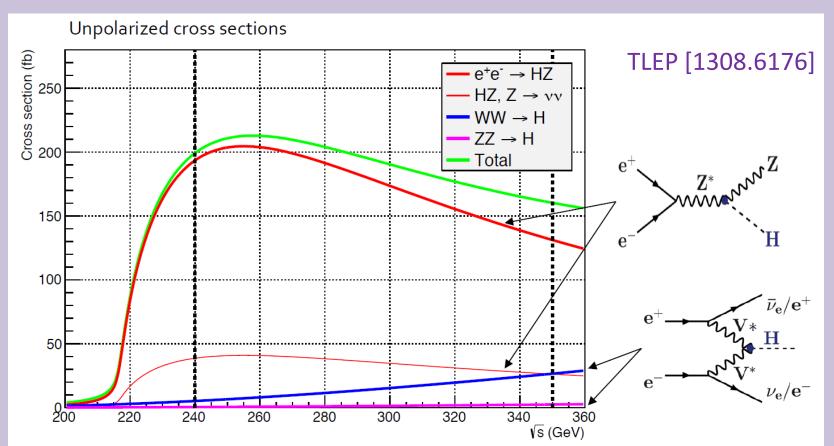

- Exclusion limits are highly sensitive to the dark matter mass
 - Nuclear recoil
 energy
 threshold
 becomes too
 soft for light
 dark matter
 (about 5 GeV)


- Relic abundance (blue line) shows resonances at dark photon and Z masses
- DM is underabundant above blue line, overabundant below blue line

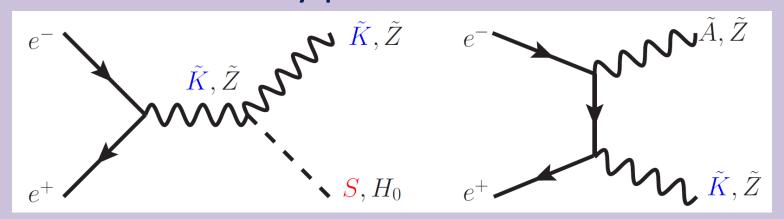
- Dark matter experiments fix the local relic abundance to 0.3 GeV/cm³
 - On the other hand, the predicted dark matter relic abundance scales as ϵ^{-2} , while the scattering rate scales as ϵ^2
- Ratio of DD limits to relic abundance curve (for fixed m_K) gives the limit on local abundance



- Present day annihilation constrained by observations of gamma ray spectra
- Early universe annihilation constrained by energy injection in CMB
- Strongest limits when DM mass is close to Z or dark photon resonance


Collider phenomenology

- Modifications to Z couplings probed in precision electroweak observables
- Modifications to Higgs couplings tested by LHC and can be seen at a future Higgs factory
 - Also induce invisible and semi-visible exotic Higgs decays
- Will assume dark decays of S and K are on-shell
 - Ensured by kinematics and mild hierarchy for g_D and ϵ
 - (Can get displaced decays when dark matter is too heavy)


Going beyond k-framework, Higgs EFT

- Higgsstrahlung production at e⁺e⁻ machine
 - In Double Dark Portal model, both portal couplings give leading order deviations in Higgsstrahlung

Going beyond k-framework, Higgs EFT

 New light states cause deviations in Higgs physics and can be directly produced

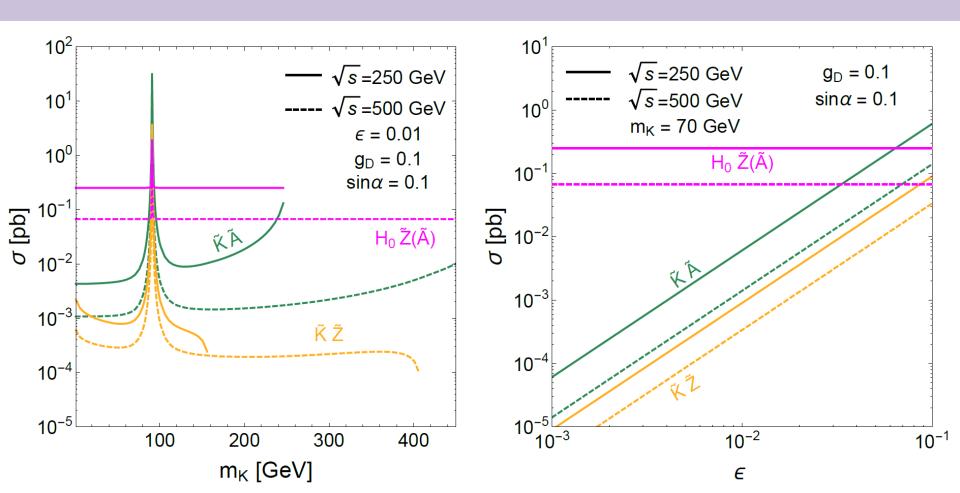
- Exploit radiative return process for hidden photon production
 - Recoil mass technique adapted to monophoton events and other SM candles as recoil taggers

New capabilities at e⁺e⁻ machines

- Radiative return use ISR photon to make 2-2 production on-shell
 - At LHC, "radiative return" is better known as "mono-jet"
- Recoil mass method use four-momentum conservation in 2-2 process
 - In case of invisible decay and radiative return, equivalent to searching for a monophoton peak
 - Design driver for e⁺e⁻ electromagnatic calorimeter

$$E_{\text{vis}} = \frac{\sqrt{s}}{2} + \frac{m_{\text{vis}}^2 - m_X^2}{2\sqrt{s}}$$
$$m_{\text{recoil}} = m_X = \sqrt{s + m_{\text{vis}}^2 - 2E_{\text{vis}}\sqrt{s}}$$

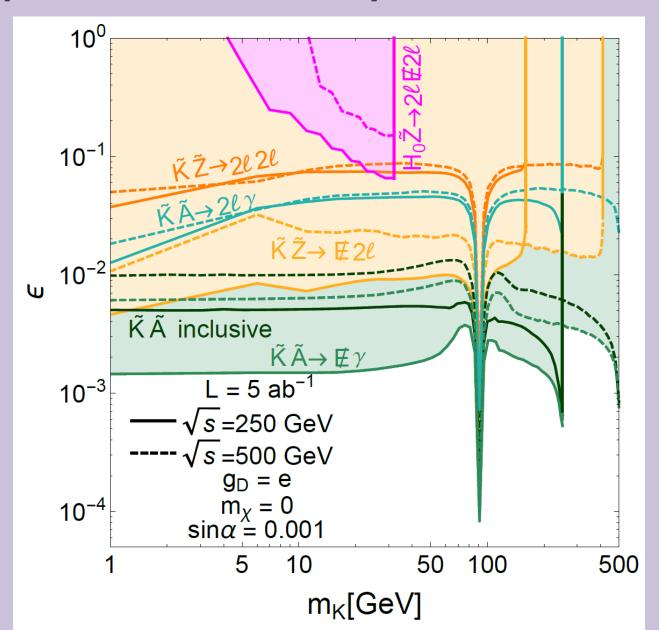
Exotic invisible decay of Higgs


- Familiar case: Higgs recoiling against Z for invisible Higgs decays
 - Invisible decay combines sensitivity to $\sin \alpha$ and ϵ , overall rate driven by g_D

$$\Gamma(H_0 \to \text{inv}) \approx \Gamma(H_0 \to SS) + \Gamma(H_0 \to \tilde{K}\tilde{K}) + 0.2 \times \Gamma(H_0 \to \tilde{K}\tilde{Z})$$

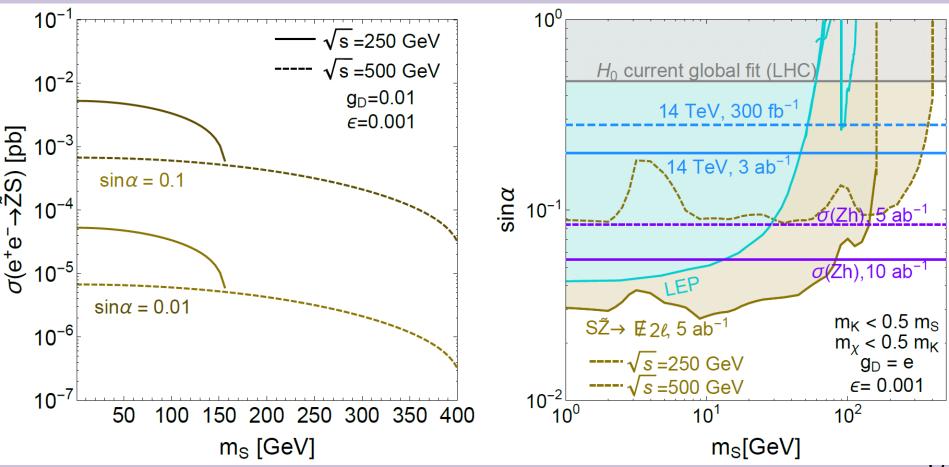
Direct production of new light states

- Possible new physics within kinematic reach
 - Signatures too difficult at LHC, exploit e⁺e⁻ capabilities

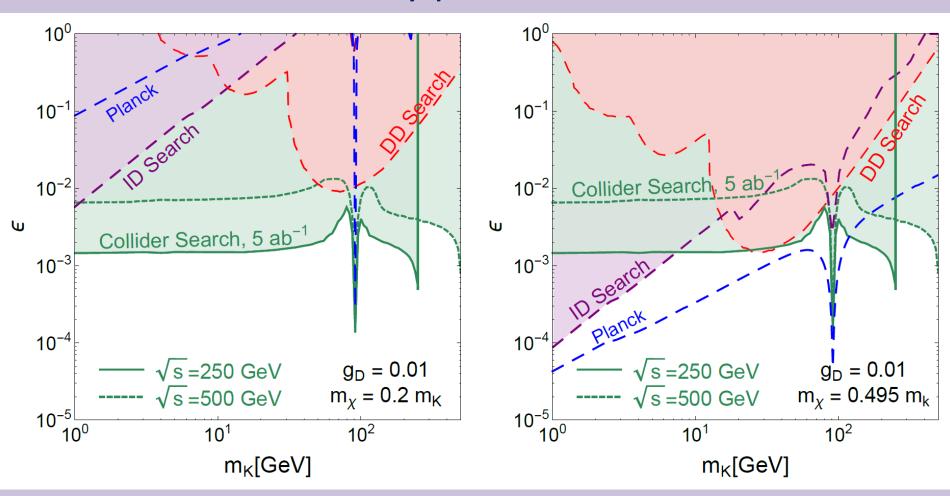

Prospects for dark photon

Many possible visible and invisible final states

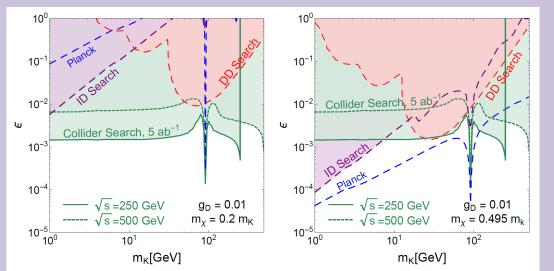
$$e^+e^- \to \tilde{Z}H_0$$
 Study $\tilde{Z} \to \ell\ell$ and semi-visible $H_0 \to (\ell\ell)_Z \chi \chi$
 $e^+e^- \to \tilde{Z}\tilde{K}$ Study $\tilde{Z} \to \ell\ell$ and $\tilde{K} \to \bar{\chi}\chi$ or $\ell\ell$
 $e^+e^- \to \gamma \tilde{K}$ Study \tilde{K} inclusive decays, and exclusive $\tilde{K} \to \bar{\chi}\chi$ or $\ell\ell$
 $e^+e^- \to \tilde{Z}S$ Study $\tilde{Z} \to \ell\ell$ and $S \to 4\chi$


- Event simulation using MG5+Pythia+Delphes
 - Use parametrized preliminary CEPC detector card
- Backgrounds, cuts in backup
- Rates for visible states are lower by $(\epsilon/g_D)^2$, best sensitivity from requiring missing energy threshold
 - LEP direct constraints (ϵ < 0.03) not competitive

Dark photon sensitivity


Prospects for dark scalar

Similarly, Higgs physics from invisible decays and precision Higgs measurements


Combining complementary probes

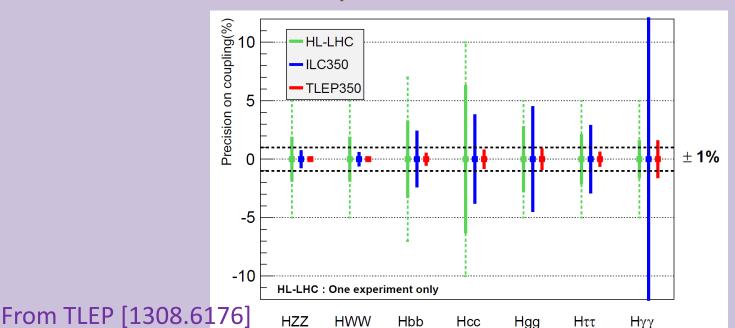
Dark matter discovery possible at e⁺e⁻ machines

Conclusions

- Physics potential of e⁺e⁻ machine goes well beyond precision Standard Model program
- Direct production of new, light, hidden particles possible
- Double Dark Portal model is a concrete framework for studying two marginal couplings in tandem

Collider study cuts

Parameter	Signal process		Background (pb)		Signal region
ϵ	$ ilde{Z} ilde{K}$.	$\tilde{Z} \to \bar{\ell}\ell, \ \tilde{K} \to \bar{\chi}\chi$	$ar{\ell}\ellar{ u} u$	0.929 (250 GeV)	$N_{\ell} \ge 2, m_{\ell\ell} - m_Z < 10 \text{ GeV},$
				$0.545~(500~{ m GeV})$	and $ m_{\text{recoil}} - m_{\tilde{K}} < 2.5 \text{ GeV}$
		$\tilde{Z} \to \bar{\ell}\ell, \ \tilde{K} \to \bar{\ell}\ell$	$ar{\ell}\ellar{\ell}\ell$	$0.055 \; (250 \; \mathrm{GeV})$	$N_{\ell} \ge 4$, $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$,
				$0.023~(500~{ m GeV})$	and $ m_{\ell\ell} - m_{\tilde{K}} < 2.5 \text{ GeV}$
	$ ilde{A} ilde{K}$	$ ilde{K}$ inclusive decay	$\gammaar{f}f$	23.14 (250 GeV)	$N_{\gamma} \geq 1$, and
				$8.88 \; (250 \; \text{GeV})$	$ E_{\gamma} - (\frac{\sqrt{s}}{2} - \frac{m_{\tilde{K}}^2}{2\sqrt{s}}) < 2.5 \text{ GeV}$
		$ ilde{K} ightarrow ar{\ell} \ell$	$\gammaar{\ell}\ell$	12.67 (250 GeV)	$ N_{\gamma} \ge 1, N_{\ell} \ge 2,$ $ E_{\gamma} - (\frac{\sqrt{s}}{2} - \frac{m_{\tilde{K}}^2}{2\sqrt{s}}) < 2.5 \text{ GeV},$
				4.38 (500 GeV)	and $ m_{\ell\ell} - m_{\tilde{K}} < 5 \text{ GeV}$
		$\tilde{K} \to \bar{\chi} \chi$	$\gammaar u u$	$3.45 \ (250 \ \mathrm{GeV})$	$ N_{\gamma} \ge 1,$ $ E_{\gamma} - (\frac{\sqrt{s}}{2} - \frac{m_{\tilde{K}}^2}{2\sqrt{s}}) < 2.5 \text{ GeV},$
				$2.92~(500~{\rm GeV})$	and $E > 50 \text{ GeV}$
	$ ilde{Z}H_0$	$H_0 \to \tilde{K}\tilde{Z}$ with	$ar{\ell\ell\ell\ellar{ u} u}$	$1.8 \times 10^{-5} \ (250 \ \text{GeV})$	$N_{\ell} \ge 4$, $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$,
		$\tilde{K} \to \bar{\chi}\chi, \ \tilde{Z} \to \bar{\ell}\ell$	· · · · · · · · · · · · · · · · · · ·	$3.5 \times 10^{-4} \ (500 \ \text{GeV})$	and $ m_{\text{recoil}} - m_{\tilde{K}} < 2.5 \text{ GeV}$
$\sin \alpha$	$ ilde{Z}S$	$ ilde Z o ar\ell \ell$	$ar{\ell}\ellar{ u} u$	0.87 (250 GeV)	$N_{\ell} \ge 2, m_{\ell\ell} - m_Z < 10 \text{ GeV},$
		$S \to \tilde{K}\tilde{K} \to 4\chi$		$0.87 \; (250 \; \mathrm{GeV})$	and $ m_{\text{recoil}} - m_S < 2.5 \text{ GeV}$


Future e⁺e⁻ collider(s)

- In particular, precision Higgs machines are strongly motivated, including
 - International Linear Collider
 - TLEP / Future Circular Collider-ee
 - Circular electron-positron collider

TLEP [1308.6176]

CEPC-SPPC Pre-CDR,

IHEP-TH-2015-01

32

- Steps for solving the neutral vector Lagrangian (pedagogical)
 - Diagonalize gauge boson mass matrix
 - Usual t_w = g' / g rotation corresponds to

$$\mathcal{L} \supset \frac{-1}{4} \left(\begin{array}{ccc} Z_{\rm SM}^{\mu\nu} & A_{\rm SM}^{\mu\nu} & K^{\mu\nu} \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & \epsilon t_W \\ 0 & 1 & -\epsilon \\ \epsilon t_W & -\epsilon & 1 \end{array} \right) \left(\begin{array}{ccc} Z_{\mu\nu, \, {\rm SM}} \\ A_{\mu\nu, \, {\rm SM}} \\ K_{\mu\nu} \end{array} \right) \\ + \frac{1}{2} \left(\begin{array}{ccc} Z_{\rm SM}^{\mu} & A_{\rm SM}^{\mu} & K^{\mu} \end{array} \right) \left(\begin{array}{ccc} m_{Z, \, {\rm SM}}^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_K^2 \end{array} \right) \left(\begin{array}{ccc} Z_{\mu, \, {\rm SM}} \\ A_{\mu, \, {\rm SM}} \\ K_{\mu} \end{array} \right)$$

- Require $|\epsilon| < c_W$ for positive kinetic mixing determinant
- Field strengths are Abelian kinetic terms, non-Abelian interactions inherited from transformations

- Steps for solving the neutral vector Lagrangian (pedagogical)
 - Remove kinetic mixing and canonically normalize

$$U_{1} = \begin{pmatrix} 1 & 0 & 0 \\ -\epsilon^{2}t_{W} & 1 & \epsilon \\ -\epsilon t_{W} & 0 & 1 \end{pmatrix} \qquad U_{2} = \begin{pmatrix} \sqrt{\frac{1-\epsilon^{2}}{1-\epsilon^{2}c_{W}^{-2}}} & 0 & 0 \\ 0 & 1 & 0 \\ \frac{-\epsilon^{3}t_{W}}{\sqrt{(1-\epsilon^{2})(1-\epsilon^{2}c_{W}^{-2})}} & 0 & \frac{1}{\sqrt{1-\epsilon^{2}}} \end{pmatrix}$$

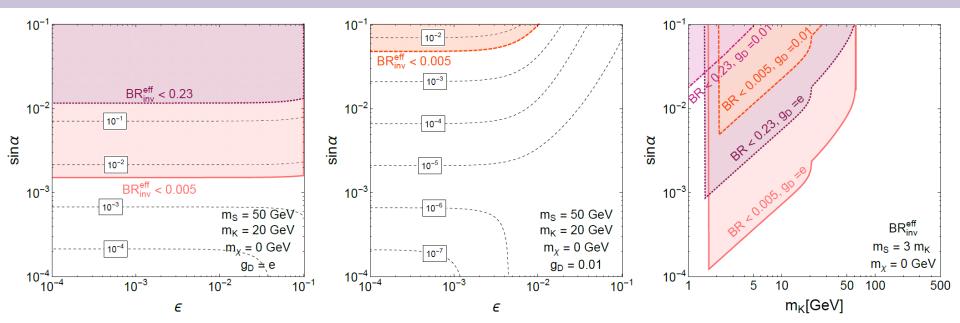
$$\mathcal{L} \supset \frac{-1}{4} \begin{pmatrix} Z_{\text{SM}}^{\mu\nu} & A_{\text{SM}}^{\mu\nu} & K^{\mu\nu} \end{pmatrix} (U_{1}^{T})^{-1}(U_{2}^{T})^{-1} \mathbb{I}_{3} U_{2}^{-1} U_{1}^{-1} \begin{pmatrix} Z_{\mu\nu, \text{ SM}} \\ A_{\mu\nu, \text{ SM}} \\ K_{\mu\nu} \end{pmatrix}$$

$$+ \frac{1}{2} \begin{pmatrix} Z_{\text{SM}}^{\mu} & A_{\text{SM}}^{\mu} & K^{\mu} \end{pmatrix} (U_{1}^{T})^{-1}(U_{2}^{T})^{-1} \begin{pmatrix} \frac{m_{Z, \text{ SM}}^{2}(1-\epsilon^{2})^{2} + m_{K}^{2}\epsilon^{2}t_{W}^{2}}{(1-\epsilon^{2})(1-\epsilon^{2}c_{W}^{-2})} & 0 & \frac{-m_{K}^{2}\epsilon t_{W}}{(1-\epsilon^{2})\sqrt{1-\epsilon^{2}c_{W}^{-2}}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{m_{Z, \text{ SM}}^{2}(1-\epsilon^{2})^{2} + m_{K}^{2}\epsilon^{2}t_{W}^{2}}{(1-\epsilon^{2})\sqrt{1-\epsilon^{2}c_{W}^{-2}}} & 0 & \frac{m_{K}^{2}}{1-\epsilon^{2}} \end{pmatrix}$$

$$\times U_2^{-1}U_1^{-1} \left(\begin{array}{c} Z_{\mu, \text{ SM}} \\ A_{\mu, \text{ SM}} \\ K_{\mu} \end{array} \right)$$

- Steps for solving the neutral vector Lagrangian (pedagogical)
 - Rediagonalize mass matrix via Jacobi rotation (exact)
 - To $O(\varepsilon^3)$, masses and fields are


$$m_{\tilde{K}}^2 = m_K^2 + \frac{m_K^2 c_W^{-2} \epsilon^2 (m_{Z, \text{SM}}^2 c_W^2 - m_K^2)}{m_{Z, \text{SM}}^2 - m_K^2} , \quad m_{\tilde{Z}}^2 = m_{Z, \text{SM}}^2 + \frac{m_{Z, \text{SM}}^4 t_W^2 \epsilon^2}{m_{Z, \text{SM}}^2 - m_K^2}$$

$$\begin{pmatrix} \tilde{Z}_{\mu} \\ \tilde{A}_{\mu} \\ \tilde{K}_{\mu} \end{pmatrix} = \begin{pmatrix} Z_{\mu, \text{ SM}} - \frac{t_{W} m_{K}^{2}}{m_{Z, \text{ SM}}^{2} - m_{K}^{2}} \epsilon K_{\mu} - \frac{m_{Z, \text{ SM}}^{4} t_{W}^{2}}{2(m_{Z, \text{ SM}}^{2} - m_{K}^{2})^{2}} \epsilon^{2} Z_{\mu, \text{ SM}} \\ A_{\mu, \text{ SM}} - \epsilon K_{\mu} \\ K_{\mu} + \frac{t_{W} m_{Z, \text{ SM}}^{2}}{m_{Z, \text{ SM}}^{2} - m_{K}^{2}} \epsilon Z_{\mu, \text{ SM}} - \left(\frac{1}{2} + \frac{m_{K}^{4} t_{W}^{2}}{2(m_{Z, \text{ SM}}^{2} - m_{K}^{2})^{2}}\right) \epsilon^{2} K_{\mu} \end{pmatrix}$$

- Singular behavior at $m_K = m_{Z, SM}$ is maximal mixing limit
- Effects from field redefinitions seen in dark, SM currents

Exotic invisible decay of Higgs

$$\begin{split} \Gamma(H_0 \to SS) &= g_D^2 \sin^2 \alpha \frac{m_{H_0}}{32\pi} \sqrt{1 - \frac{4m_S^2}{m_{H_0}^2} \frac{(m_{H_0}^2 + 2m_S^2)^2}{m_{H_0}^2 m_K^2}} \ , \\ \Gamma(H_0 \to \tilde{K}\tilde{K}) &= g_D^2 \sin^2 \alpha \frac{m_{H_0}}{32\pi} \sqrt{1 - \frac{4m_{\tilde{K}}^2}{m_{H_0}^2} \frac{m_{H_0}^4 - 4m_{H_0}^2 m_{\tilde{K}}^2 + 12m_{\tilde{K}}^4}{m_{H_0}^2 m_{\tilde{K}}^2} \frac{m_K^2}{m_{\tilde{K}}^2}} \ , \\ \Gamma(H_0 \to \tilde{K}\tilde{Z}) &= \frac{\epsilon^2 t_W^2 \left(\frac{\cos \alpha}{v_H} + \frac{\sin \alpha}{v_D}\right)^2}{16\pi m_{H_0}^3 \left(m_K^2 - m_{Z, \text{ SM}}^2\right)^2} \frac{m_K^4 m_{Z, \text{ SM}}^4}{m_{\tilde{K}}^2 m_{\tilde{Z}}^2} \sqrt{m_{H_0}^4 + \left(m_{\tilde{K}}^2 - m_{\tilde{Z}}^2\right)^2 - 2m_{H_0}^2 \left(m_{\tilde{K}}^2 + m_{\tilde{Z}}^2\right)}} \\ &\times \left((m_{H_0}^2 - m_{\tilde{K}}^2 - m_{\tilde{Z}}^2)^2 + 8m_{\tilde{K}}^2 m_{\tilde{Z}}^2\right) \end{split}$$

