Dark Matter Mediators @ Colliders

Phil Harris (CERN)

Dark Matter searches not @ collider

Dark matter searches not at colliders have clear benchmarks

Dark Matter searches not @ collider

Goal: get to the Relic density

Question:

 Whats the simplest way to present LHC results in the context of Dark Matter?

Question:

 Whats the simplest way to present LHC results in the context of Dark Matter?

- Answer: – $\sigma_{\text{Invisible}}$
- Assumes dark matter coupling to standard model

Adding Dark Matter

- What drives dark matter interaction is production
 - Take the approach that this is defined by the mediator

Preserving Generality?

Strategy of searches in LHC does not change much Interpretation agains Direct Detection/Indirect Changes a lot

Simplified Models 101	
Vector	Axial vector
$g_{\rm DM} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$ EWK style coupling (equal to all quarks/leptons)	$g_{\rm DM} Z''_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$ EWK style coupling (equal to all quarks/leptons)
Scalar $g_{\rm DM}S \bar\chi \chi$ Yukawa style coupling (Mass based coupling)	Pseudoscalar $g_{\rm DM} P \bar{\chi} \gamma^5 \chi$ Yukawa style coupling (Mass based coupling)

Impact of the spin in production

Couplings to SM force two different scenarios

Yukawa coupling to quarks Dominated by heavy quarks

Small cross sections : Probe low masses or Large couplings

Flavor universal to quarks Dombined by light quark

Large cross sections : Probe large masses or Small couplings Establishing a collider benchmark

Relic Density??

Relic Density on Simplified Models

- Lets calculate relic density on simplified models
 - Calculation is performed with MadDM (2.0)

Acknowledge these models are simplified All of our results come with caveats

However it still serves as a motivating benchmark

MadDM

Note : I am experimentalist Don't expect a strong theoretical motivation

Features of the relic density

Considering form of the annihilation cross section

$$\begin{aligned} \sigma_{\text{ann},s}^{A} \cdot v &= \sum_{q} \frac{N_{c}^{q} g_{\text{DM}}^{2} g_{q}^{2} \beta_{q}}{2\pi} \frac{m_{q}^{2} \left(4m_{\text{DM}}^{2} - M_{\text{med}}^{2}\right)^{2}}{M_{\text{Med}}^{4} \left[\left(M_{\text{med}}^{2} - 4m_{\text{DM}}^{2}\right)^{2} + M_{\text{med}}^{2} \Gamma_{\text{med}}^{2} \right]} \\ \Gamma_{\text{vector}}^{\chi \bar{\chi}} &= \frac{g_{\text{DM}}^{2} M_{\text{med}}}{12\pi} \left(1 - 4z_{\text{DM}}\right)^{1/2} \left(1 + 2z_{\text{DM}}\right), \\ z_{i} &= m_{i}^{2} / M_{\text{med}}^{2} \end{aligned}$$

$$\begin{aligned} & \text{Width a function of :} \\ g_{SM}^{2} g_{SM}^{2} g_{DM}^{2} m_{DM} and m_{MED}^{2} \end{aligned}$$

For constant m_{DM} , m_{MED} , g_{DM} and $\langle \sigma v \rangle_{relic}$: Above form is quadratic in g_{SM} for fixed relic Yields two possible solutions for the relic density

• We can numerically solve for the solution

For a large mediator we have no allowed solution

• We can numerically solve for the solution

For smaller mediators allowed solution

• We can numerically solve for the solution

• We can numerically solve for the solution

• We can numerically solve for the solution

A common theme of DM talks

• For a constant value of:

Min couplings

- Can split the solution to the max and min coupling
 - In this case we fix $g_{DM} = 1$ (product $g_{q}g_{DM}$ defines bound)

Min couplings

- Can split the solution to the max and min coupling
 - In this case we fix $g_{DM} = 1$ (product $g_{a}g_{DM}$ defines bound)

What do we conclude?

• What is driving the results is the coupling

Min Couplings for all

22

What about at low mass?

Coupling becomes a real challenge

At low masses we can have very small couplings

However we have more strategies

Summary Benchmarks

- Spin 1 :
 - Aim to probe couplings down 0.01 for m_{Med} > 100 GeV
 - For 10 < m_{Med} < 100 GeV aim to probe down to 10⁻³
 - For m_{Med} < 10 GeV aim to probe coupling to 10⁻⁴

- Spin 0 :
 - Aim to probe couplings down 0.1 for m_{Med} > 300 GeV
 - Try to cover m_{Med} < 300 by any means possible

Covers most of the phase space

Collider Searches

The Basic Monojet Search

Escaping detector gives us signatures of MET

At Low masses

We still get MET signatures but with other stuff

To probe small couplings you need very high rates This is something we can do with a beam dump

Now many experiments being made or proposed

To probe small couplings you need very high rates This is something we can do with a beam dump

Alternative approach is to look for decays from dm Suppressed if SM coupling is small

At low mass we want to probe the g_{SM}=10⁻⁴ region

However, just to confuse everybody Coupling units are changed $: \epsilon^2 \alpha_D (m_{DM}/m_{MED})^4$

Reach of a few proposed beam dump experiements Can probe the interesting region

The Basic Monojet Search

Escaping detector gives us signatures of MET

Monojet search Straddling SM and BSM

Searching for MET

"To find nothing you have to reconstruct everything"[1]

How do we search?

hadronic recoil : Transverse sum of all particles in event excluding leptons/photons

Remove

CMS-EXO-16-037 CMS-EXO-16-010 CMS-EXO-12-055
What is the transfer factor?

Propagate the data/MC agreement of the hadronic recoil From a control region to a signal region

Control regions have less events than signal $\sigma_{\mu\mu} = 0.1 \sigma_{\nu\nu}$ Statistical precision is 4x worse Not good enough!

CMS-EXO-16-052

CMS-EXO-16-052

CMS-EXO-16-052

Hadronic recoil p₁ [GeV]

Can we really use all these regions?

Answer: Sort of...

CMS-EXO-12-055

However we still have a problem! ^{Going from} γ or $W \rightarrow Z$ Unc. $\longrightarrow \frac{d\sigma^{\gamma(W)}}{dp_{T}} / \frac{d\sigma^{z}}{dp_{T}}$

Need to know the uncertainty on the ratios @NNLO QCD @NLO EWK This is not a light statement!

However we still have a problem!
Going from
$$\gamma$$
 or $W \rightarrow Z$
Unc. $\rightarrow \frac{d\sigma^{\gamma(W)}}{dp_T} \frac{d\sigma^z}{dp_T}$
Need to know the uncertainty on the ratios
@NNLO QCD @NLO EWK
This is not a light statement Out last Monday

Precise predictions for V+jets dark matter backgrounds

J. M. Lindert¹, S. Pozzorini², R. Boughezal³, J. M. Campbell⁴, A. Denner⁵,
S. Dittmaier⁶, A. Gehrmann-De Ridder^{2,7}, T. Gehrmann², N. Glover¹, A. Huss⁷,
S. Kallweit⁸, P. Maierhöfer⁶, M. L. Mangano⁸, T.A. Morgan¹, A. Mück⁹,
F. Petriello^{3,10}, G. P. Salam^{*8}, M. Schönherr², and C. Williams¹¹

What did we get out of this?

47

- Large reduction in theory uncertainties
 - Experimental effects of the same order
- Can now correlate unc. across boson $p_{\scriptscriptstyle T}$ bins

Uncertainties are considerably smaller data constraints still better

EXO-16-048

Current Monojet Sensitivity

Dark Matter

Pick a Model

Understanding sensitivity

Beyond Monojet

The Basic Monojet Search

Escaping detector gives us signatures of MET

How Do We Discriminate Models?

Monos : Vector, Axial, Higgs

How Do We Discriminate Models?

Monos : Vector, Axial, Higgs Q W Q

Spin 1 DM Searches

Spin 1 production on SM couplings for final state Easily extend this to other final states

Spin 1 DM Searches

Can look for a Vector boson+*MET* as well

The split in simplified model terms

• With spin 1 can generate other final states :

Spin 1 DM Searches

Can look for a Photon+*MET* as well

Spin 1 DM Searches

If vertex is flavor changing

The split in simplified model terms

• With spin 1 can generate other final states :

Spin 1 DM Searches

If vertex is flavor changing

Vector Mediator

Vector Mediator

Vector Mediator

Axial Mediator

Beyond Invisible Searches

What else?

Without loss of generality we also have dijets

Mediator is coupling to quarks and to Dark matter

What else?

Without loss of generality we also have dijets

This is a dijet+ISR search Mediator is coupling to quarks and to Dark matter Mediator can decay to quarks
What else?

Without loss of generality we also have dijets

Can also just do a plain dijet search

When doing a dijet search don't need additional jet

Like Monojet we can expand to further regions By tagging other objects

No tag

Going all the way down

Design a transfom to decorrelate against mass and p_{τ}

Decorrelating avoid mass sculpting allows us to cut tighter

arXiv:1603.00027

Fit both Pass and Fail Pass QCD = fail $\epsilon(\rho, p_T)$

General Idea

Fist iteration did this in two steps Next iteration all in one fit (thanks to monojet technology) $Bin_i^{Pass} = \epsilon_0(1+a p_T+bp+cp^2+...) Bin_i^{Fail} (add orders til f-test ok)$

EXO-17-001

What we see

Nice W/Z→Jet peak Excess present near 115-120 GeV Precision level analysis

EXO-17-001

Combining

Excess with 2.9 (2.2 global) significance Visible in last bin

EXO-17-001

CMS-DP-2016-057

ATLAS Results : Split even further

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/index.html#

Now with adding the leptons

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/index.html#

Direct Detection

CMS-DP-2016-057

Spin 0

Basic production is gluon fusion Amplitude is double for pseudoscalar mediator

No EWSB

Comparing all channels

Whats the impact?

No EWSB

- 24

CMS Preliminary

12.9 fb⁻¹ (13 TeV)

EWSB

At the Higgs mass

• This model is the same as Higgs invisible search

 $BR(H\rightarrow Inv) < 24\%$ (CMS) 25% (ATLAS)

At the Higgs mass

- Higgs to invisible :
 - Direct detection and collider are head to head

BR(H→Inv) < 24% (CMS) 25% (ATLAS)

Conclusions

Pushing to higher masses

Conclusions

SM

Thanks!

See Rainer Mankel's talk at Blois next week

Max couplings

Now consider the maximum coupling

- In this case we fix $g_{DM} = 1$ (product $g_{a}g_{DM}$ defines bound)

CMS Monotop

BRAND NEW

New Substructure Observables

$$N_2(eta) = rac{2e_3^{eta}}{(e_2^{eta})^2}$$

Using AK8 PUPPI jets

Arxiv/1609.07483

What do we conclude?

105

• For pseudoscalar we have looser constraints

Aim for 0.1 < gq < 3

What do we conclude?

• What is driving the results is the coupling

Aim for 0.1 < gq < 3

Max Couplings for all

g^{may}

 10^{3}

10²

10

Going all the way down

arXiv:1603.00027

Full Decorrelation scheme

Dark Matter Mass 35.9 fb⁻¹ (13 TeV) 1200 CMS Preliminary Vector med, Dirac DM, $g_a = 0.25$, $g_{DM} = 1$ 1000 Median expected 95% CL 800 68% expected m_{DM} [GeV] Observed 95% CL Observed ± theory unc. 600 $\Omega_c \times h^2 \ge 0.12$ 400

200

 $0 500 1000 1500 2000 2500 10^{-2}$ Mass of mediator produced $\longrightarrow m_{med}$ [GeV]

Pick a Model

10

α_{th}

Observed σ_{95% CL}

10⁻¹

EXO-16-030

EXO-16-030

Outlook

Hep-ph/1603.08525 Hep-ph/1509.02904 ATL-PHYS-PUB-2015-004

- Spin 1 :
 - Dijet and monojet will continue to push out the bounds
 - Have already crossed the neutrino wall

Outlook

Hep-ph/1603.08525 Hep-ph/1509.02904 ATL-PHYS-PUB-2015-004

• Spin 1 :

- Outlook
- Dijet and monojet will continue to push out the bounds
- Have already crossed the neutrino wall

Hep-ph/1603.08525 Hep-ph/1509.02904 EXO-12-055 HIG-16-012

• Spin 0 :

- Just starting to probe interesting regions

Current reach for Higgs-like Singlet Dominated by H→Inv BR < 25% Will get to < 5%

Heavy Flavor : bb/tt+φ also excluding at low mass Expect mono-Z too

118

Mediator Arms Race

Who can cover the territory first?

CMS

CMS-DP-2016-057

However we still have a problem!

Unc.
$$- \frac{d\sigma^{\gamma}}{dp_{T}} / \frac{d\sigma^{z}}{dp_{T}} = d\sigma^{\gamma}/d\sigma^{z}(\mu)$$

We don't know how to do scale uncertainties on ratios!

Uncertainty on ratio? How is it done? Scale uncertainty on process #1 Scale uncertainty on process #2 Uncertainty on process #1/process #2 (fully correlated) % unc $\frac{d\sigma^{\gamma}}{dp_{T}} / \frac{d\sigma^{Z}}{dp_{T}} = d\sigma^{\gamma}/d\sigma^{Z}(\mu)$ Unc. $\begin{pmatrix} d\sigma^{\gamma}(+\sigma) \\ d\sigma^{Z}(+\sigma) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d\sigma^{\gamma}(\mu^{up})/d\sigma^{i}(\mu_{0}) \\ d\sigma^{Z}(\mu^{up})/d\sigma^{i}(\mu_{0}) \end{pmatrix}$

Uncertainty on ratio? How is it done? Scale uncertainty on process #1 Scale uncertainty on process #2 Uncertainty on process #1/process #2 (fully correlated) % $\frac{d\sigma^{\gamma}}{dp_{T}} / \frac{d\sigma^{Z}}{dp_{T}} = d\sigma^{\gamma}/d\sigma^{Z}(\mu)$ Unc. $\begin{pmatrix} d\sigma^{\gamma}(+\sigma) \\ d\sigma^{Z}(+\sigma) \end{pmatrix} = \begin{pmatrix} 1 & C \\ C & 1 \end{pmatrix} \begin{pmatrix} d\sigma^{\gamma}(\mu^{up})/d\sigma^{i}(\mu_{0}) \\ d\sigma^{Z}(\mu^{up})/d\sigma^{i}(\mu_{0}) \end{pmatrix}$ Adjust C until uncertainty is

unc

Uncertainty on ratio? How is it done?

Scale uncertainty on process #1 Scale uncertainty on process #2

Uncertainty on process #1/process #2 (fully correlated)

Jnc.
$$\rightarrow \frac{d\sigma^{\gamma}}{dp_{\tau}} / \frac{d\sigma^{z}}{dp_{\tau}} = d\sigma^{\gamma}/d\sigma^{z}(\mu)$$

%

unc

$$\begin{pmatrix} d\sigma^{\gamma}(+\sigma) \\ d\sigma^{Z}(+\sigma) \end{pmatrix} = \begin{pmatrix} 1 & C \\ C & 1 \end{pmatrix} \begin{pmatrix} d\sigma^{\gamma}(\mu^{up})/d\sigma^{i}(\mu_{0}) \\ d\sigma^{Z}(\mu^{up})/d\sigma^{i}(\mu_{0}) \end{pmatrix}$$

Decorrelate scale unc. until its max of either process

 $d\sigma^{v}/d\sigma^{z}(+\sigma) < \max_{i} (d\sigma^{i}(\mu^{up})/d\sigma^{i}(\mu_{o}))$

What about EWK corr. uncertainty?

In light of being conservative : Take the full correction

Take the full correction

Additionally <u>de-correlated this per bin</u> Avoids low *MET* to high *MET* constraints

We were forced to do this by management! This makes us too conservative

2015... We are stuck

CMS-EXO-12-055

How do we propagate this in?

The actual uncertainties

How exactly do they look?

Updated unc still too large

CMS-EXO-12-055

Profiling them in the fit

Constraints after the fit

2016: A new hope

A mystery? Understanding $Z/\gamma p_{\tau}$

How are going to use photons for Z with this kind of prediction?

2015

CMS-EXO-12-055

How do we fix this?

Impact of the electroweak corrections

2014...again!

CMS-EXO-12-055

Heuristic example to how it works

- [1] $m_{\chi} < m_t \rightarrow$ tight constraints - Suppression of the annihilation Process $\chi \chi \rightarrow Med \rightarrow SM$
- [2] $m_{\Phi} \sim 2 \cdot m_{\chi} \rightarrow$ weaker constraints - On-shell $\chi \chi \rightarrow Med$
- [3] $2 \cdot m_{\chi} > m_{\Phi} \rightarrow$ weaker constraints - Less suppressed annihilation $\chi \chi \rightarrow Med \rightarrow SM$

Can we really shrink unc?

Sensitivity pushed to exclude Scalar mediator models EXO-16-005

Comparing with Old results

• Exclusion for scalar up to 80 GeV

Expect the sensitivity to grow just by adding the 2 jet multiplicity back

Varying the mass

When we vary the mass

Changing mass is a search for a different mediator

This state allows for combination of vector boson copuligns

Adding more jets

Can split the signal models into 2 different sources

- What is the contribution from higher order effects?

Generate the two jet diagrams and merge them with the one jet

We will soon take advantage of the 2nd jet

ATLAS vs CMS : Scalar HF results

ATLAS neglects tt+DM and bb+DM combined interpretation Neglects a potentially large contribution

B2G-15-007

ATLAS vs CMS : Scalar HF results

ATLAS result 5x data

CMS results have roughly the same sensitivity CMS excludes the tt+DM excess in ATLAS

EXO-16-005

ATLAS modified couplings

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/index.html

Design a transfom to decorrelate against mass and $p_{\scriptscriptstyle T}$

How will things scale?

Monojet Projections

For Vector/Axial-Vector reach is 3 TeV

For Peudoscalar reach is 800-900 GeV Scalar reach is 600-700 GeV

CERN-CMS-DP-2016-064

From this: setup full CL_s get both expected and observed

Simplified likelihood^{®7}

Whats the accuracy?

CMS is aiming to release simplified likelihoods for all future SUSY and Dark matter searches

What does this mean?

CMS data cast into simplified covariance matrix

Real reaon for this : We are tired of running every theorists' model

Follow up

- The resonant searches break down
 - Larger the coupling the wider the resonance
 - Bump hunts only work with a relatively narrow bump
 - With large couplings cross section is larger

- To probe wide resonance
 - Alternative search strategy
 - Typically with angular analysis
 - Searches tend to be weaker
- Good to know if there is missing phase space

Adding EWSB in a better way

Khoze et al., 1505.03019

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix} \stackrel{\mathcal{L} \supset -y_{\rm DM} (\sin\theta h_1 + \cos\theta h_2) \bar{\chi}\chi}{+ (\cos\theta h_1 - \sin\theta h_2) \left(\frac{2M_W^2}{v}W_{\mu}^+W^{-\mu} + \frac{M_Z^2}{v}Z_{\mu}Z^{\mu} - \sum_f \frac{m_f}{v}\bar{f}f\right) }$$

$$g_{\rm DM} \longrightarrow y_{\rm DM} \cos\theta$$

$$g_{\rm SM} \longrightarrow -\sin\theta \qquad \Gamma(h_1 \to \chi\bar{\chi}) = \frac{y_{\rm DM}^2\sin^2\theta m_{h_1}}{8\pi} \left(1 - \frac{4m_\chi^2}{m_{h_1}^2}\right)^{3/2}$$

Whats the scope of phase space?

Adding EWSB in an even better way Looking to embed dark matter in 2HDMs

There has been a lot of work already

Are the current simplified models sufficient?

Dark matter working group actively investigating

Previous slides are a simple example

Composite Models

167

*** Discussion title: Review of EXO-16-030

Dear Authors

I noticed that in your PAS the introduction refers to UA1 and UA2 results at sqrt(s)=300 GeV. These results came out when I was on UA2 in fact, and the SppS ran at sqrt(s)=630 GeV.

Best regards Joe[Incandela]

m_{med} (GeV)

coupling,

EXO-16-037

EXO-16-037

Total Luminosity : 12.9 fb⁻¹ (2016)Final State: top+MET

Mono-Top

EXO-16-040

Going beyond one mediator

• Currently only being used for mono-Higgs

Searching for Z' and and Pseudoscalar

- Signature highlights the use of mono-H analysis
 - Mono-H can be added to the simplified models
 - However cross section is small

Total Luminosity : 2.3 fb⁻¹ (2015)Final State: Higgs(bb/γγ)+MET

EXO-16-011/EXO-16-012

Mono-Higgs

Sensitivity pushed to exclude Scalar mediator models EXO-16-005

Scalar : Comparing with Old results

- Exclusion up to 80 GeV but not 13 TeV
 - Two reasons : 13 TeV is systematics limited (for now)

8 TeV is using MCFM (larger scale matches Higgs)

γ+ISR

Boosted γ+ISR **CMS** *Preliminary* 2.7 fb⁻¹ (13 TeV) 5 g expected 4.5 coupling, observed expected 2o expected 1o 4 UA2 CDF Run 1 3.5 CDF Run 2 ATLAS 13 \oplus 20.3 fb⁻¹ ATLAS Run 2 (ISR γ) 3.2 fb⁻¹ ATLAS Run 2 (TLA) 3.2 fb⁻¹ CMS 18.8 fb⁻¹ (Data Scouting) 3 2.5 6g_{sM} 2 1.5 0.5 0 200 400 500 100 300 80 Z' mass (GeV) 3 jet Trigger level

182

The simplest DM model

- Lets try to make something super basic
 - Basic model

$$\mathcal{L}_{S} = g_{\chi} S \bar{\chi} \chi + \frac{\alpha_{s}}{4\pi} \frac{c_{g}}{\Lambda} S G^{a}_{\mu\nu} G^{a \,\mu\nu} + \frac{\alpha}{4\pi} \frac{c_{\gamma}}{\Lambda} S F_{\mu\nu} F^{\mu\nu}$$

$$??$$

Using the best fit cross section

- We have 3 free couplings :
 - $\mathbf{g}_{\text{DM}}, \mathbf{c}_{\text{GG}}, \mathbf{c}_{\text{YY}}$
- Taking the photon best fit can constrain one

- Indirect detection limits on-shell production
- Photon Line bounds limit photon coupling < 100

- Indirect detection limits on-shell production
- Photon Line bounds limit photon coupling < 100

Signal

CRs: γ+jets

W +

Monophoton

- Tag a photon and look for MET
 - Many challenging experimental backgrounds

Monotop

Mediator Search

• In addition we can just look for the mediator

Putting it all together

Mediator Mass [TeV]

Putting it all together

Putting it all together

Mediator Mass [TeV]

Spin 0

What can you do with Spin 0?

Our Current Scalar & Psuedo results

Our Current Scalar & Psuedo results

- When the dark matter is not onshell
 - Strong exclusion of pseudoscalar interpreation of LAT
 - Scalar and Direct detection are in close comopetition
 - Expect LHC to pass LUX this summer

CMS-PAS-EXO-12-055

Heavy Flavor

- Mono-B or B(s)
 - Require less than 4 jets
 - Basically the monojet analysis with either 1 or 2 bs
 - Inject both tt+DM and bb+DM into the analysis

Heavy Flavor Results

- Mono-B or B(s)
 - Note that this is only < 4 jets
 - Inject both tt+DM and bb+DM into the analysis

CMS-PAS-B2G-15-007

Higgs Invisible Interpretation

200

300

400

• Higgs Invisible is scalar model with EWSB

Starting to scan mass-

CMS-PAS-HIG-16-009/ATLAS-HIGG-2015-03

600

m_o [GeV]

500

Results

CMS-PAS-HIG-16-009/ATLAS-HIGG-2015-03

Mono-Higgs

Adding Spin 1 and Spin 0 mediators

h→bb bounds drive mono-Higgs

B-tagging forces ttbar background to drive analysis

ATLAS-CONF-2016-019

203

What about the visible?

Spin 0 Di-photon (미안해요)

Preliminary Work with U. Haish, O. Buchmuller, K. Hahn, N. Wardle, T. Du Pree

The simplest DM model

- Lets try to make something super basic
 - Basic model

$$\mathcal{L}_{S} = g_{\chi} S \bar{\chi} \chi + \frac{\alpha_{s}}{4\pi} \frac{c_{g}}{\Lambda} S G^{a}_{\mu\nu} G^{a \,\mu\nu} + \frac{\alpha}{4\pi} \frac{c_{\gamma}}{\Lambda} S F_{\mu\nu} F^{\mu\nu}$$

$$??$$

From this: setup full CL_s get both expected and observed

Using the best fit cross section

- We have 3 free couplings :
 - $\mathbf{g}_{\text{DM}}, \mathbf{c}_{\text{GG}}, \mathbf{c}_{\text{YY}}$
- Taking the photon best fit can constrain one

- Indirect detection limits on-shell production
- Photon Line bounds limit photon coupling < 100

- Indirect detection limits on-shell production
- Photon Line bounds limit photon coupling < 100

Outlook

Hep-ph/1603.08525 Hep-ph/1509.02904 ATL-PHYS-PUB-2015-004

Outlook

- Spin 1 :
 - Dijet and monojet will continue to push out the bounds $\Omega_c \ge h^2$

Hep-ph/1603.08525 Hep-ph/1509.02904 EXO-12-055 HIG-16-012

- Spin 0 :
 - Yet to truly coalesce in 13 TeV

214

Outlook

Summary

Pseudoscalar ($g_{DM} = g_{a} = 1$)

ATLAS-CONF-2016-019 ATLAS-CONF-2016-011

Thanks 강사합니다
How does it look for our 4 friends?

Coupling is set to 1 for all plots

How does it look for our 4 friends?

Coupling is set to 1 for all plots

What are the decays

• We only really have a few decays:

What goes into this?

• To find a signal we look for high MET :

Modeling of production mode is needed (HO corrections)

 $MET = -\Sigma_{All \text{ particles}} p_T$ $^{\mu}MET(Z \rightarrow vv) = - Z \text{ recoil} + p_T(vv)$

Modelling of the calorimeter response and resoltuion

Monojet Extensiion Plane

Jet Mass

Monojet Extension #1 ($V \rightarrow qq$)

Jet Mass

Beyond Monojet

Jet Mass

MET + fat jet

• There is no clean way to separate fat jets form jets

Is there room for improvement?

Yes

Currently require a simple : jet mass cut + τ2/τ1

Signal

CRs: γ+jets

W +

Beyond Monojet

2

Using the 2nd jet or more can add to discrimination

Where do we gain from 2nd Jet?

Background

Signal

For Vector and Axial mediators not much Only real difference is mediator mass

Where do we gain from 2nd Jet?

For Scalar and Pseudoscalar mediators more Now the production modes are different

In addition to 2nd jet can consider a quarkgluon discriminator

Spectrum of Signal MCs

Sample	LO/ Leading Loop	LO in 2j	NLO,1,2j
Vector/ Axial	Madgraph MCFM	Powheg	aMC@NLO
Scalar/ Pseudoscalar	Powheg MCFM aMC@NLO	VBF@NLO aMC@NLO	

aMC@NLO+MG get highest order 1/2 jets merged

Advantage of merged MC

- Taking advantage of the new technology
 - Can consider exploring new regions of phase space

FYI aMC@NLO merged 0,1,2jet pseudoscalar

Basic Concept of Gains

Gluon fusion induces Higher pT spectrum

Heavier mediator forces jets to be closer

How do the single variables perform?

Comparison of single variables

Gain comes from fact that light mass objects have collinear jets Using $\Delta \phi_{ii}$ can bring as much as 20% gain

Results

Our Current Public Results

Both 13 TeV and 8 TeV analysis treat: mono-V and monojet on equal footing

An 1-2 excess is present in both data sets in tail

Our Current Public Results

Translation to direct detection now standardized

An 1-2 σ excess is present in both data sets in tail

Our Current Scalar & Psuedo results

- Currently only have 8TeV exclusion
 - Yellow line : Official simplified models
 - Black/Red (controversial) : Simplified + EWSB
 - Allows us to add Higgsstrahlung

Our Current Scalar & Psuedo results

- When the dark matter is not onshell
 - Strong exclusion of pseudoscalar interpreation of LAT
 - Scalar and Direct detection are in close comopetition
 - Expect LHC to pass LUX this summer winter!

To break or not to break?

- EWK symmetry breaking adds lots of mono-V
 - Contribution can be very significant if pseudoscalar
- There are models that do that (e.g. 2HDM...)
 - Need physics at a higher scale (dim-7 operator)

Extending Our results

Building a V-tagger

Resolved Tagger

• For low p_{τ} objects focus on di-jet properties

One Big Analysis

"Its all just jets and MET"

Single Jet Vector boson

Di-Jet Vector boson

One or two jets + *MET*

Monojet category

Di-jet category

Single jet category

CMS-EXO-12-055

247

1000

Observe a small excess in resolved *MET* tail (1 σ) Observe a small deficit in the mono-V *MET* tail (1.5 σ)

CMS-EXO-12-055

2 Jets @ Vector/Axial Simplified Model

- At higher \sqrt{s} multi-jet final states predominant
- In light of building on new ideas

(Pseudo)Scalar Simplified Model

- Requires finite top mass at 2 jets order
 - Available now in now with Madgraph
 - Also can do some hacky procedure

One caveat : On-shell production is only available for 2 jet final state

Advantage of merged MC

- Taking advantage of the new technology
 - Can consider exploring new regions of phase space

Question #2 : Advantage of MC

- With 2 jet MC : can now probe multijet final states
- Two questions can be answered :
 - Which variables are most sensitive with 2 jet MC?
 - Which variables are sensitive at 100 TeV?
- Considered a number of multi-jet variables :
 - M_T^2 : SUSY like variable obtained for pairwise sparticles
 - Razor variables : M_R , R : Related SUSY variables
 - MET : standard
 - $\Delta\phi_{_{jj}}\,$: angle between the two jets
Whats the maximum gain?

• Making an MVA combining all information

Background drops by a factor of 2 Can maximize sensitivity by an additional sqrt(2) The only other way to gain is to reduce the systematics

CMS-EXO-12-055

A mystery? Understanding $Z/\gamma p_{\tau}$

Can we really use Photons to model Zs?

*See backup

CMS-SMP-14-005

A mystery? The Z p_{τ} spectrum

• These results are missing NLO EWK corrections!

dp1 dp1

변환

CMS-SMP-14-055

257

How do we fix this?

$\begin{array}{cc} d\sigma^{\gamma} & and & d\sigma^{z} \\ dp_{\tau} & & dp_{\tau} \end{array}$

Before : $\sigma_{tot} = \sigma_{NLO}(0, 1jet)$ After : $\sigma_{tot} = \sigma_{NLO}(0, 1, 2j)(1 + \sigma_{EWK})$ (added)

Energy leakage outside of photon which biases *MET* This was the harder one

How do we fix this?

Impact of the electroweak corrections

CMS-EXO-12-055

What is the previous unc?

262

Scale & PDF Unc

What is the previous unc?

Scale & PDF Unc

In light of being conservative : Treated full correction as an uncertainty

Additionally de-correlated this per bin Avoids low *MET* to high *MET* constraints Not very logical Other (better) schemes exist

Strategy to fix agreement

265

Answer : Yes Please

CMS-EXO-12-055

Strategy to fix agreement Coffee ? Tea? or **Control Region Control Region** MC MC $Z \rightarrow \mu \mu + Jets recoil$ γ+Jets recoil Data Data r(x)r(x)MET = xMET = xand Donuts Signal Region Not enough MC 1.30 1.20 LO NLO 1.10 NNI O Data 1.00 연석 0.90 r(x)

MET = x

0.80 0.70

200

400

600

800

 p_{T} [GeV]

1000 1200 1400 1600 1800

2000

267

monojet category

The Result

Small excess $(1-2\sigma)$ in *MET* tail

With new method Still systematics limited EWK uncertainty dominates

CMS-EXO-12-055

How do we do the fit?

The updated version of this search fits the $W,Z,\gamma p_{\tau}$ simultaneously

Simultaneously profile the shapes of the p_{τ} spectra

Can we bound our uncertainties into a class of shapes?

We are Stuck!

We are relying on

 $d\sigma^{\gamma}/d\sigma^{Z}(+\sigma) < \max_{i} (d\sigma^{i}(\mu^{up})/d\sigma^{i}(\mu_{0}))$

For the uncertainty on

$$\frac{d\sigma^{\gamma}}{dp_{T}} / \frac{d\sigma^{z}}{dp_{T}}$$

We need a better a approach

Ideally one that we can embed to the likelihood(L)

 $Log(L)=Log(L_0)+(d\sigma^{\gamma}/d\sigma^{Z}(\theta)-d\sigma^{\gamma}/d\sigma^{Z}(\mu_0))/\sigma^{2}$

Profiled nuisance

Improved knowledge of high p_{τ} spectrum drives search

Can we improve?

Monojet search will not improve quickly in the future

Towards a complete statement on Dark Matter

Analyses presented

• Mono Jet:

Scalar Axial Higgs modified vector modified scalar mixture Inclusive V tag Тор Jets b tag Higgs 2 3 n leptons Y X→YY

Mono Everything: at 100 TeV

Mono Everything: Extending models to cover modified simplified models

Mono Everything:
Extending models to cover modified simplified models

Mono Everything:
Extending models to cover modified simplified models

Mono Everything:
Extending models to cover modified simplified models

Common misnomers

γ+jets control suffers from γ fragmentation model

fit resolves issues of photon frag. component

- γ+jets EWK uncertainity too large to constrain
 - W+jets EWK corrections are much smaller
 - Point is we use both in simulatneous fit
 - Droping one or other is a >10% reduction in sensitivity

Projecting beyond this

Current low *MET* region unc. comes from Z→II control region Dominant uncertainty is the lepton efficiency measurement Will improve considerably with updated analyses

Current high *MET* region unc. from the γ & W control region Will improve with new scale/EWK unc. Recommendatons

As lumi LHC increases correlated data approaches are critical

What differentiates them?

• For both the mono-top and mono-V we tag

What differentiates them?

• For both the mono-top and mono-V we tag

What differentiates them?

• For both the mono-top and mono-V we tag

Signal

CRs: γ+jets

+ W + ...

287

What would it be for Mono-Z?

Can modeled by
What would it be for Mono-Z?

How do the channels compare?

Spin 0

Basic production is gluon fusion Amplitude is double for pseudoscalar mediator

Spin 0 No EWSB

Spin 0 Bounds: No EWSB

For scalar the 8TeV result slightly more sensitive Expect next set of results to exclude much more

Spin 0 With EWSB

Issue with adding EWSB

- Whats the right ratio of vector boson couplings
 - Do we have to deal with mixing with the Higgs?

Simplest model (not necessarily realistic) : Higgs, however other models exist