Outlook (\neq summary)

Oxford Dictionary:

1. A person's point of view
2. The prospect for the future

A contribution to the discussion in a time of healthy uncertainty

The Standard Model paradox

R. Barbieri

Planck 2017, Warsaw, May 22-28

The SM Lagrangian

(since 1973 in its full content)

$$
\begin{aligned}
\mathcal{L}_{\sim S M}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+i \bar{\psi} \not D \psi & & (\sim 1975-2000) \\
& +\left|D_{\mu} h\right|^{2}-V(h) & & (\sim 1990-2012-n \\
& +\psi_{i} \lambda_{i j} \psi_{j} h+h . c . & & (\sim 2000-\text { now })
\end{aligned}
$$

In () the approximate dates of the experimental shining of the various lines (at different levels)

The synthetic nature of PP exhibited

QCD in full strength

G. Dissertori 2016

Precision in ElectroWeak Physics

(a story that goes on from about 1970 on and still keeps its relevance)

	$A P V$	$(g-2)_{e}$	$(g-2)_{\mu}$	W, Z	$m_{\text {top }}$
$\Delta \mathcal{O} / \mathcal{O}$	10^{-3}	10^{-8}	10^{-6}	$10^{-(3 \div 4)}$	10^{-2}
$\mathrm{~d}(\mathrm{~cm})$	10^{-5}	10^{-11}	10^{-13}	10^{-16}	10^{-16}

precision at work at many different scales
a key to understanding

The Standard Model or not the SM?

Question:

1: Give the SM for granted and "look elsewhere" or?
2: Keep testing the SM to learn how to complete it Answer: the "or" is the problem
reasons of poor understanding and reasons of incompleteness

Precision in Higgs couplings

$$
\mu_{i}^{f}=\frac{\sigma_{i} \cdot B R^{J}}{\left(\sigma_{i}\right)_{S M} \cdot\left(B R^{f}\right)_{S M}}
$$

$$
\kappa_{f}=\frac{g_{h f_{i} f_{i}}}{\left(g_{h f_{i} f_{i}}\right)_{S M}} \quad \kappa_{V}=\frac{g_{h V V}}{\left(g_{h V V}\right)_{S M}}
$$

at best, currently, a 20% precision
no measurement, so far, of triple or quartic self-coupling

The Higgs boson is the least "understood" particle in the SM It cannot be the one that is less precisely measured

comparing Higgs with EW precision

Consider any theory where the hVV-coupling κ_{V} deviates from the SM

$$
\delta \epsilon_{1}=-\frac{3 \alpha}{8 \pi c^{2}}\left(1-k_{V}^{2}\right) \log \frac{\Lambda}{m_{h}}, \quad \delta \epsilon_{3}=\frac{\alpha}{24 \pi s^{2}}\left(1-k_{V}^{2}\right) \log \frac{\Lambda}{m_{h}}
$$

EW precision in principle more constraining on κ_{V} however:

1. Need to specify the cutoff
2. Be sure of no other contribution

The flavour paradox $\quad \lambda_{i j} \Psi_{i} \Psi_{j} h$

as opposed to the hard time we have in trying to describe spectrum and mixings of quarks and leptons

Not easy to improve without observed deviations from the SM

A significant comparison

$\epsilon_{1}^{S M}=5.21 \cdot 10^{-3}, \epsilon_{3}^{S M}=5.28 \cdot 10^{-3}$

measures EW loops at about 20\% level

A future facility (FCCee, ...) could go to 2% level

B, Buttazzo, Sala, Straub 2014

measures FCNC loops at about 20% level

An "aggressive" flavour program could go to 2% level

A significant comparison

$\epsilon_{1}^{S M}=5.21 \cdot 10^{-3}, \epsilon_{3}^{S M}=5.28 \cdot 10^{-3}$

measures EW loops at about 20\% level

A future facility (FCCee, ...) could go to 2% level

Straub 2016

measures FCNC loops at about 20% level

An "aggressive" flavour program could go to 2% level

An "Extreme Flavour" experiment?

Vagnoni - SNS, 7-10 Dec 2014

- Currently planned experiments at the HL-LHC will only exploit a small fraction of the huge rate of heavyflavoured hadrons produced
- ATLAS/CMS: full LHC integrated luminosity of $3000 \mathrm{fb}^{-1}$, but limited efficiency due to lepton high p_{T} requirements
- LHCb: high efficiency, also on charm events and hadronic final states, but limited in luminosity, $50 \mathrm{fb}^{-1}$ vs $3000 \mathrm{fb}^{-1}$
- Would an experiment capable of exploiting the full HLLHC luminosity for flavour physics be conceivable?
- Aiming at collecting $\mathrm{O}(100)$ times the LHCb upgrade luminosity $\rightarrow 10^{14} \mathrm{~b}$ and $10^{15} \mathrm{c}$ hadrons in acceptance at $\mathrm{L}=10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

a recent <Phase-II LHCb Upgrade> submitted to the LHCC

The incompleteness of the SM

0. Which rationale for matter quantum numbers?
$\left|Q_{p}+Q_{e}\right|<10^{-21} e$
1. Phenomena unaccounted for
neutrino masses matter-antimatter asymmetry Dark matter inflation

$$
\text { 2. Why } \theta \lesssim 10^{-10} \text { ? } \quad \theta G_{\mu \nu} \tilde{G}^{\mu \nu}
$$

Axions
3. $\mathcal{O}_{i}: d\left(\mathcal{O}_{i}\right) \leq 4$ only?
neutrino masses Are the protons forever? Gravity
4. Lack of calculability (a euphemism)
\Rightarrow the hierarchy problem the flavour paradox

Key neutrino measurements

Where progression is most likely
current bounds (with uncertainties)

black $=$ realistic/conservative green = optimistic

Power spectrum of large scale structures

Power spectrum $P(k) / P_{\text {massless }} \nu(k)$

- Determination with future large-scale structure observations (Euclid) at $2-5 \sigma$ depending on control of (mildy) non-linear physics
- Not independent on "priors" but still highly significant

$\Delta N_{\text {eff }}^{\nu} \lesssim 0.6$ now, expected to improve in sensitivity by about one order of magnitude

Dark Matter

$$
\begin{aligned}
& \Omega_{W I M P} \sim 0.1 \frac{\sigma v}{(20 T e V)^{2}} \\
& \Omega_{a} \sim 0.1\left(\frac{10^{-5} e V}{m_{a}}\right)^{2} \theta_{i}^{2} \quad m_{a} \sim 10^{-(4 \div 5)} \mathrm{eV} \frac{10^{11 \div 12} G e V}{f_{a}}
\end{aligned}
$$

makes sense to look also elsewhere independent motivations valuable
(almost) a forgotten question: Why Ω_{b} and $\Omega_{D M}$ comparable?

WIMP direct searches

well in place, quite relevant already now

$$
\lambda h \bar{\chi} \chi \quad \sigma_{\chi N} \approx 10^{-44}(\lambda / 0.1)^{2} \mathrm{~cm}^{2}
$$

Axion/ALP searches

Good to look for other couplings:

$$
\vec{\nabla} a \cdot \vec{\sigma}, a \vec{\sigma} \cdot \vec{E}, \dot{a} \mathcal{O}_{S M}\left(a \mathcal{O}_{S M}\right)
$$

The hierarchy problem, once again

Can we compute the Higgs mass/vev in terms of some fundamental dynamics?

NOT in the SM

$$
\delta m_{h}^{2} \propto \Lambda^{2}
$$

We have seen $\log \Lambda$ divergences everywhere: running of gauge couplings, scaling violations, anomalies

Power law divergences prevent us from calculating or even estimating
the Fermi scale nor the cosmological constant

The standard reaction

$$
\delta m_{h}^{2}=\frac{3 y_{t}^{2}}{4 \pi^{2}} \Lambda_{t}^{2}-\frac{9 g^{2}}{32 \pi^{2}} \Lambda_{g}^{2}-\frac{3 g^{\prime 2}}{32 \pi^{2}} \Lambda_{g^{\prime}}^{2}+\ldots
$$

$\Lambda_{t} \lesssim 0.4 \sqrt{\Delta} \mathrm{TeV} \quad \Lambda_{g} \lesssim 1.1 \sqrt{\Delta} \mathrm{TeV} \quad \Lambda_{g^{\prime}} \lesssim 3.7 \sqrt{\Delta} \mathrm{TeV}$
$1 / \Delta=$ amount of tuning
\Rightarrow Look for a top "partner" (coloured, S=0 or $1 / 2$) with a mass not far from 1 TeV
aesthetically and theoretically
SUSY as the best option
(among others)

$<h>\approx m_{\tilde{e}} \approx m_{S U S Y \text { particles }}$
But this is a quantitative relation only if one bars accidental cancellations

Not a problem for SUSY but for knowing if true in nature

Where are the superpartners?

Define an "inverse fine-tuning" measure

$$
\Delta=\frac{\delta m_{h}^{2}}{m_{h}^{2}}, \quad \operatorname{Max}_{a_{i}} \frac{d m_{h}^{2} / m_{h}^{2}}{d a_{i} / a_{i}}, \ldots
$$

G. Ross (sept 2016) Is SUSY alive?

$$
\begin{aligned}
& \Delta^{\text {CMSSM }}>3500^{\times} \quad \Delta^{(C) M S S M}>40(200)^{\text {SUSY DM }} \\
& \Delta^{\text {CGMSSM }}>60 \quad{ }^{\times \quad} \quad \Delta^{(C) G N M M S}>20^{\text {V8TEV } 13 \text { TEV? }} \\
& \Delta^{(C) M S S M+\mu \cdot}>20(40)^{\text {SUSYDM }}
\end{aligned}
$$

Cute more natural models available (JMR) Too cute?

$$
\text { Peculiar configurations } \quad\left(m_{i}^{\text {susy }}>?\right)
$$

The judgement suspended, reasons of concern
Other signals than from standard sparticles (R-axions, S-axions, ...)?

Λ^{2}-divergences as a signal of the problem

The running m_{h}^{2} versus the scale M

$$
\begin{aligned}
& \text { The running } m_{h} \text { versus the scale } M \text { "fine tuning" } \\
& \left(\frac{m_{r}}{\operatorname{Gev}}\right)^{10^{10}}
\end{aligned}
$$

Pending questions to avoid a "low energy" explanation of the hierarchy:

- gravity?
- Non-asymptotically free couplings?
- No higher physical scale?

Can we lack a clever IR-UV connection?

Frequently asked questions about "naturalness"

 especially after the (temporary) blank of LHC in BSMIs the quest for "naturalness" still relevant?
More than ever

How about: "naturalness" = "low energy" New Physics?
Not a "theorem" anymore

Which are the good "naturalness" solutions?

The ones that lead to testable predictions, the more quantitative the better

Among the many reactions to the (temporary) blank of LHC in BSM Twin Higgs

$$
\begin{aligned}
& V\left(H, H^{\prime}\right) \rightarrow V(\mathcal{H}), \quad|\mathcal{H}|^{2}=|H|^{2}+\left|H^{\prime}\right|^{2} \text { is } S O(8) \text {-symmetric } \\
& V \\
& V(\mathcal{H}): S O(8) \rightarrow S O(7) \Rightarrow 7 P G B s, S U(2)^{\prime} \times U(1)^{\prime} \rightarrow U(1)_{e m}^{\prime} \\
&+S U(2) \times U(1) \text { unbroken }
\end{aligned}
$$

and 1 massless Higgs doublet, a pseudo-Goldstone

Craig et at 2015

Fraternal
minimise extra rely on many initial conditions No problem with

 to get $v / v^{\prime} \neq 0,1$

Dark baryons/atoms? 2
(very annoying since seems make you loose $\Omega_{B} \sim \Omega_{D M}$!)

If mirror, is there a way to solve

look for P-breaking in light Yukawa's $y_{i}^{\prime}>y_{i}$
Enough? Need a theory of flavour?

If mirror, is there a way to solve
First guided by the Dark Radiation:

$$
m_{i}^{\prime}=y_{i}^{\prime} v^{\prime}
$$

$T_{d}=$ decoupling temperature

look for P-breaking in light Yukawa's $y_{i}^{\prime}>y_{i}$
Enough? Need a theory of flavour?

If mirror, is there a way to solve
The only breaking of Parity in a single parameter

$$
\epsilon \neq \epsilon^{\prime}
$$

from where the fermion hierarchies (standard and mirror) arise

$$
y_{i j}=\epsilon^{n_{i}} \lambda_{i j} \epsilon^{\bar{n}_{j}} \quad y_{i j}^{\prime}=\epsilon^{\prime n_{i}} \lambda_{i j} \epsilon^{\bar{n}_{j}}
$$

$$
\frac{y_{f}^{\prime}}{y_{f}}=\left(\frac{\epsilon}{\epsilon}\right)^{n_{f}}\left(1+\delta_{f}\left(\epsilon^{\prime m_{f}}-\epsilon^{m_{f}}\right)\right)
$$

$m_{f} \geq 2 \quad$ Typically $\quad \epsilon \sim 0.2$
B, Hall, Harigaya 2017

Dark Matter

Mirror matter asymmetry stored in

$$
\begin{gathered}
B_{u u u}^{\prime}, B_{u u d}^{\prime}, B_{u d d}^{\prime}, B_{d d d}^{\prime}, e^{\prime} \\
p^{\prime} \\
n^{\prime}
\end{gathered}
$$

DM = the lightest among:

Dark Matter direct detection

B, Hall, Harigaya 2016

Astro/Cosmo phase space

$$
\begin{aligned}
& n^{\prime}=B_{u d d}^{\prime} \\
& H e_{*}^{\prime}=B_{u u u}^{\prime}+2 e^{\prime} \\
& H_{*}^{\prime} / H^{\prime}=B_{d d d}^{\prime}+\bar{e}^{\prime} / B_{b u d}^{\prime}+e^{\prime}
\end{aligned}
$$

Dark Radiation $\Delta N_{\text {eff }}=\left.\frac{\rho_{\gamma^{\prime}, \nu^{\prime}, f^{\prime}}}{\rho_{1 \nu}}\right|_{\text {now }}$

Precision on Higgs couplings

$$
\begin{gathered}
h=\cos \theta H+\sin \theta H^{\prime} \quad \tan \theta \approx \frac{v}{v^{\prime}} \quad h \rightarrow i_{S M}, f^{\prime} \bar{f}^{\prime} \\
\mu_{i}^{f}=\frac{\sigma_{i} \cdot B R^{f}}{\left(\sigma_{i}\right)_{S M} \cdot\left(B R^{f}\right)_{S M}} \approx 1-\sin ^{2} \theta-B R_{i n v} \equiv \mu
\end{gathered}
$$

The Minimal Mirror Twin Higgs spectrum

Physics at $\Lambda_{T H}$ (SUSY, composite, extra-dim.s, etc.?) affects $m_{h^{\prime}}\left(1 \mathrm{TeV}\right.$?) but not m_{h}

Is this why nothing new has been seen so far at LHC?

A deviation from the SM, finally?

$$
R_{D^{(*)}}=\frac{B R\left(B \rightarrow D^{(*)} \tau \nu\right)}{B R\left(B \rightarrow D^{(*)} l \nu, l=\mu, e\right)}
$$

	exp	SM	Pull
$R_{D}^{\tau / l}$	0.403 ± 0.047	$0.300(8)$	2σ
$R_{D^{*}}^{\tau / l}$	0.310 ± 0.017	$0.252(3)$	3.4σ

$$
\begin{array}{cccc}
R_{K^{(*)}}=\frac{B R\left(B \rightarrow K^{(*)} \mu \mu\right)}{B R\left(B \rightarrow K^{(*)} e e\right)} \\
\text { exp } & \text { SM } & \text { Pull } \\
R_{K}^{\mu / e} & 0.745_{-0.074}^{+0.090} \pm 0.036 & 1.00 \pm 0.01 & 2.6 \sigma \\
\hline R_{K^{*}\left(\text { low } q^{2}\right)}^{\mu / e} & 0.660_{-0.070}^{+0.110} \pm 0.024 & 0.906 \pm 0.028 & 2.3 \sigma \\
\hline R_{K^{*}\left(\text { high } q^{2}\right)}^{\mu / e} & 0.685_{-0.069}^{+0.113} \pm 0.047 & 1.00 \pm 0.01 & 2.4 \sigma
\end{array}
$$

$$
P_{5}^{\prime}\left(B \rightarrow K^{*} \mu \mu\right) ; B R(B \rightarrow \phi \mu \mu)
$$

general caveats

$$
R_{D^{(*)}}=\frac{B R\left(B \rightarrow D^{(*)} \tau \nu\right)}{B R\left(B \rightarrow D^{(*)} l \nu, l=\mu, e\right)} \quad R_{K^{(*)}}=\frac{B R\left(B \rightarrow K^{(*)} \mu \mu\right)}{B R\left(B \rightarrow K^{(*)} e e\right)}
$$

Difficult experiments

Lepton Flavour Violation never seen before in charged leptons

In case one wants to see them correlated: $b \rightarrow c l \nu$ tree level, $b \rightarrow s l l$ loop level

more specific slight caveats

One would have preferred a smaller deviation from the SM at low q^{2}

No significant deviation

$$
\text { seen so far in } \Delta B=2
$$

$$
L^{N P}=\frac{\left(V_{t b} V_{t q}^{*}\right)^{2}}{\Lambda^{2}}\left(\bar{b}_{L} \gamma_{\mu} q_{L}\right)^{2} ; \quad \Lambda \gtrsim 10 \mathrm{TeV}
$$

agains \dagger

$$
L^{N P} \approx \frac{V_{c b}}{(1 T e V)^{2}}\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right)
$$

Straub 2017

Why I like them

1. A $U(2)^{n}$ flavour symmetry
as approximately observed in the
quarks (spectrum and mixings) and in the charged leptons basically distinguish
the q_{3}, l_{3} singlets from the $\left(q_{1}, q_{2}\right),\left(l_{1}, l_{2}\right)$ doublets
2. If due to a leptoquark exchange, singlet under $U(2)^{n}$ $U_{\mu}\left(\bar{q}_{3} \gamma_{\mu} l_{3}\right), S\left(\bar{q}_{3} l_{3}\right)$ only allowed by exact $U(2)^{n}$
3. After (small) $U(2)^{n}$-breaking, mixing gives

$$
\begin{aligned}
& b \rightarrow c \tau \nu \quad \text { (once suppressed) } \\
& b \rightarrow s \mu \mu \quad(3 \text { times suppressed) }
\end{aligned}
$$

Signals

LFV in many other channels

Buttazzo, Greljo, Isidori, Marzocca 2016
Anomalous $\sigma(p p \rightarrow(b \bar{b}) \rightarrow \tau \tau)$

from the <Phase-II LHCb Upgrade>

CERN-LHCC-2017-003

For completeness

$$
\mathcal{L}_{S M G R}=\frac{\sqrt{-g}}{16 \pi G_{N}}(-R(g)+2 \Lambda)
$$

Classically well tested BH, GW, cosmology

Resists quantisation
No successful renormalisation recipe so far

No way to calculate or even estimate $\Lambda\left(\approx\left(10^{-3} \mathrm{eV}\right)^{4}\right)$

The boundaries between PP, AP and cosmology fading away

Conclusions

The Standard Model is NOT a complete story (although any deeper theory will include it as a relevant limit)

Precision in Higgs and flavour physics is a must

Pictures that go Beyond the SM are not lacking, but - fair to say - we don't know which one is right

The very nature of Particle Physics and the current uncertain situation REQUIRE highly diverse frontiers of research

For question time

Successful FN models

$\operatorname{SU}(5) \quad Q, \bar{u}, \bar{e}:(4,2,0), \bar{d}, L:(4,3,3)$.
$\mathrm{B} 1 \quad Q:(3,2,0), \bar{u}:(4,2,0), \bar{e}:(4,2,0), \bar{d}, L:(4,3,3)$
$\mathrm{B} 2 \quad Q:(3,2,0), \bar{u}:(4,2,0), \bar{e}:(4,2,0), \bar{d}, L:(3,2,2)$

model	$\frac{m_{b}}{m_{t}}$	$\frac{m_{\tau}}{m_{t}}$	$\frac{m_{c}}{m_{t}}$	$\frac{m_{s}}{m_{t}}$	$\frac{m_{\mu}}{m_{t}}$	$\frac{m_{u}}{m_{t}}$	$\frac{m_{d}}{m_{t}}$	$\frac{m_{e}}{m_{t}}$	$\mid V_{u s}$	$V_{c b}$	$V_{u b}$
$S U(5)$	$1.6 \epsilon^{3}$	$1.1 \epsilon^{3}$	$1.8 \epsilon^{4}$	$1.0 \epsilon^{5}$	$1.25 \epsilon^{5}$	$2.5 \epsilon^{8}$	$4.5 \epsilon^{8}$	$0.6 \epsilon^{8}$	$4.5 \epsilon^{2}$	$1.0 \epsilon^{2}$	$2.3 \epsilon^{4}$
B1	$1.6 \epsilon^{3}$	$1.1 \epsilon^{3}$	$1.8 \epsilon^{4}$	$1.0 \epsilon^{5}$	$1.25 \epsilon^{5}$	$0.55 \epsilon^{7}$	$1.0 \epsilon^{7}$	$0.6 \epsilon^{8}$	1.0ϵ	$1.0 \epsilon^{2}$	$0.5 \epsilon^{3}$
B2	$0.5 \epsilon^{2}$	$0.4 \epsilon^{2}$	$4.0 \epsilon^{4}$	$0.45 \epsilon^{4}$	$0.6 \epsilon^{4}$	$2.2 \epsilon^{7}$	$0.7 \epsilon^{6}$	$0.5 \epsilon^{7}$	1.2ϵ	$1.5 \epsilon^{2}$	$1.8 \epsilon^{3}$

h^{\prime} production and decays

$$
\sigma\left(p p \rightarrow \tilde{h}^{\prime}\right) \approx\left(\frac{v}{v^{\prime}}\right)^{2} \sigma\left(p p \rightarrow h_{S M}\left(m=m_{h^{\prime}}\right)\right) \text { via a top loop }
$$

Neglecting phase space $\frac{\Gamma_{L}}{\Gamma_{L}+\Gamma_{T}} \rightarrow 1$

f	$Z Z$	$W W$	$h h$	$W^{\prime} W^{\prime}$	$Z^{\prime} Z^{\prime}$
$\Gamma\left(\tilde{h}^{\prime} \rightarrow f\right)$	1	2	1	2	1

LHC13-100 fb^{-1}
LHC $14-300 \mathrm{fb}^{-1}$
$H L-L H C-3 a b^{-1}$

Buttazzo, Sala, Tesi 2015

Why $\left|Q_{p}+Q_{e}\right|<10^{-21} e$?

(recall Einstein's lesson from $m_{\text {in }}=m_{\text {grav }}$)

$$
\Psi=Q(3,2)_{1 / 6} \quad u(\overline{3}, 1)_{-2 / 3} \quad d(\overline{3}, 1)_{1 / 3} \quad L(1,2)_{-1 / 2} \quad e(1,1)_{1}
$$

$\Psi=$ next-to-simplest rep of \mathcal{G} :
chiral, anomaly-free, vector-like under $S U(3) \times U(1)_{e m}$
However:

1. A simpler rep: $\quad \Xi=(3,2)_{0} \quad(\overline{3}, 1)_{1 / 2} \quad(\overline{3}, 1)_{-1 / 2}$
2. What if ν_{R} are added?

$$
\tilde{\Psi}=Q(3,2)_{y} \quad u(\overline{3}, 1)_{-y-1 / 2} d(\overline{3}, 1)_{-y+1 / 2} L(1,2)_{-3 y} e(1,1)_{5 y+1 / 2} \nu^{c}(1,1)_{3 y-1 / 2}
$$

(An important hint for "algebraic" Unification?)

3 ways to be sensitive to the absolute v-mass scale

1- beta-decay endpoint $m_{\beta}=\left[c_{13}^{2} c_{12}^{2} m_{1}^{2}+c_{13}^{2} s_{12}^{2} m_{2}^{2}+s_{13}^{2} m_{3}^{2}\right]^{\frac{1}{2}}$

3 - cosmology (large scale structures)

$$
\Sigma=m_{1}+m_{2}+m_{3}
$$

Relic abundance of the QCD axion

$$
H=T^{2} / M_{P l}
$$

$\theta_{i}=a_{i} / f_{a}$

$$
\rho_{a}=m_{a}^{2} a^{2} \propto T^{3} \propto 1 / R^{3}
$$

ie. cold Dark Matter

$$
\ddot{a}+3 H \dot{a}+m_{a}^{2} a=0
$$

QCD Axions in cosmology

$$
m_{a} f_{a} \approx 10^{-4} \mathrm{eV} \cdot 10^{11} \mathrm{GeV}
$$

(Axion Like Particles: m and f unrelated)

The dynamical field, a, is the "axion"

and is very intensively searched for
(with the most interesting region still unaccessible)

An alternative definition of the SM (equally precise!)

1. Symmetry group $\mathcal{L} \times \mathcal{G}$
$\mathcal{L}=$ Lorentz (rigid, exact)
$\mathcal{G}=S U(3) \times S U(2) \times U(1)$ (local, spontaneously broken)
2. Particle content (rep.s of $\mathcal{L} \times \mathcal{G}$)
3. All "operators" (products of $\Phi, \partial_{\mu} \Phi$) in \mathcal{L} of dimension ≤ 4 with a single exception $\theta G_{\mu \nu} \tilde{G}^{\mu \nu}$

$$
\hbar=c=1 \Rightarrow\left[A_{\mu}\right]=[\phi]=\left[\partial_{\mu}\right]=M, \quad[\Psi]=M^{3 / 2}, \quad[\mathcal{L}]=M^{4}
$$

Which direction to take in flavour?

1. High energy exploration

$$
\begin{aligned}
\mathcal{L}= & \mathcal{L}_{S M}+\sum_{i}^{\alpha} \frac{C_{i}^{\alpha}}{\Lambda_{i}^{\alpha}}(\bar{f} f \bar{f} f)_{i}^{\alpha} \\
\alpha= & K(\Delta S=2), D(\Delta C=2), B_{d}(\Delta B=1), B_{s}(\Delta B=1) \\
& \text { i }=1, \ldots, 5=\text { different Lorentz structures }
\end{aligned}
$$

Lepton Flavour Violation at least equally motivated

2. Indirect signals of new physics at the TeV scale

