The Other Fermion-Compositeness

Brando Bellazzini

IPhT - CEA/Saclay

based on 1705.xxxx with F. Riva, J.Serra and F. Sgarlata

Planck 2017, Warsaw May 22nd

Brando Bellazzini IPhT - CEA/Saclay

based on 1705.xxxx with F. Riva, J.Serra and F. Sgarlata

Planck 2017, Warsaw May 22nd

Quarks and Leptons as Composite Pseudo-Goldstini

Brando Bellazzini

IPhT - CEA/Saclay

based on 1705.xxxx with F. Riva, J.Serra and F. Sgarlata

Brando Bellazzini IPhT - CEA/Saclay

based on 1705.xxxx with F. Riva, J.Serra and F. Sgarlata

Planck 2017, Warsaw May 22nd

Did Thompson discover SUSY in 1897 ??

Brando Bellazzini

IPhT - CEA/Saclay

based on 1705.xxxx with F. Riva, J.Serra and F. Sgarlata

In any case, we should think more about new ideas that are

In any case, we should think more about new ideas that are

THE EFT PARADIGM

EFT encodes UV-info via C_i

small parameter E/Λ_{UV}

Power counting = understanding = symmetries

HEAVY STRONGLY COUPLED PHYSICS

large couplings from a strong sector help

e.g. in CHM:
$$\mathcal{L} = \frac{g_*^2}{m_*^2} (\partial H^2)^2$$
 $[\mathcal{M}(2 \to 2)] = [g_*^2]$

Higher dim-operators may dominate the amplitude within EFT

symmetries: suppress relevant, marginal and less-irrelevant operators

Higher dim-operators may dominate the amplitude within EFT

symmetries: suppress relevant, marginal and less-irrelevant operators

fermion chiral-compositeness

(1)
$$\bar{\psi}i\partial\psi - m_*\bar{\psi}\psi + \dots$$

naively important only at the cutoff: useless theory

Higher dim-operators may dominate the amplitude within EFT

symmetries: suppress relevant, marginal and less-irrelevant operators

fermion chiral-compositeness

(1)
$$\bar{\psi}i\partial\psi - m_*\bar{\psi}\psi + \dots$$

hiral-sym. $\bar{\psi}i\partial\psi - \epsilon \cdot m_*\bar{\psi}\psi + \dots$
naively important only at the cutoff: useless theory

Higher dim-operators may dominate the amplitude within EFT

symmetries: suppress relevant, marginal and less-irrelevant operators

fermion chiral-compositeness

(1)
$$\bar{\psi}i\partial\psi - m_*\bar{\psi}\psi + \dots$$

hiral-sym. $\bar{\psi}i\partial\psi - \epsilon \cdot m_*\bar{\psi}\psi + \dots$
naively important only at the cutoff: useless theory

1-to-1 amplitude dominated by a less-relevant operator $\mathcal{M}(1 \to 1) \sim \frac{1}{p} \qquad \epsilon \cdot m_* \ll E \ll m_*$

Higher dim-operators may dominate the amplitude within EFT

symmetries: suppress relevant, marginal and less-irrelevant operators

fermion chiral-compositeness

$$(1) \quad \bar{\psi}i\partial\psi - m_*\bar{\psi}\psi + \dots \qquad \overline{\psi}i\partial\psi - \epsilon \cdot m_*\bar{\psi}\psi + \dots$$
naively important only at the cutoff: useless theory

1-to-1 amplitude dominated by a less-relevant operator $\mathcal{M}(1 \to 1) \sim \frac{1}{p} \qquad \epsilon \cdot m_* \ll E \ll m_*$

Higher dim-operators may dominate the amplitude within EFT

symmetries: suppress relevant, marginal and less-irrelevant operators

fermion chiral-compositeness

$$\begin{array}{c}
\frac{g_*^2}{m_*^2}(\bar{\psi}\gamma^{\mu}\psi)^2 \\
\hline (1) \quad \bar{\psi}i\partial\psi - m_*\bar{\psi}\psi + \dots \\
\hline chiral-sym. \quad \bar{\psi}i\partial\psi - \epsilon \cdot m_*\bar{\psi}\psi + \dots \\
\hline naively important only at the cutoff: useless theory$$
1-to-1 amplitude dominated by a less-relevant operator $\mathcal{M}(1 \rightarrow 1) \sim \frac{1}{\not{p}} \quad \epsilon \cdot m_* \ll E \ll m_*$

$$\bar{\psi}i\partial\psi - \overline{\epsilon} \cdot g_* A_\mu \bar{\psi}\gamma^\mu \psi + \frac{g_*^2}{m_*^2} (\bar{\psi}\gamma^\mu \psi)^2 + \dots$$

Higher dim-operators may dominate the amplitude within EFT

symmetries: suppress relevant, marginal and less-irrelevant operators

fermion chiral-compositeness

$$\begin{array}{c}
\frac{g_{*}^{2}}{m_{*}^{2}}(\bar{\psi}\gamma^{\mu}\psi)^{2} \\
\hline (1) \quad \bar{\psi}i\partial\psi - m_{*}\bar{\psi}\psi + \dots \\
\hline \text{chiral-sym.} \quad \bar{\psi}i\partial\psi - \epsilon \cdot m_{*}\bar{\psi}\psi + \dots \\
\hline \text{naively important only at the cutoff: useless theory} \\
1-\text{to-1 amplitude dominated by a less-relevant operator} \quad \mathcal{M}(1 \to 1) \sim \frac{1}{p} \quad \epsilon \cdot m_{*} \ll E \ll m_{*} \\
\hline \bar{\psi}i\partial\psi - \epsilon \cdot g_{*}A_{\mu}\bar{\psi}\gamma^{\mu}\psi + \frac{g_{*}^{2}}{m_{*}^{2}}(\bar{\psi}\gamma^{\mu}\psi)^{2} + \dots \quad \mathcal{M}(2 \to 2) = g_{SM}^{2}\left(1 + \frac{1}{\epsilon^{2}}\frac{E^{2}}{m_{*}^{2}}\right) \\
\hline \text{Amplitude runs fast within the validity of EFT}
\end{array}$$

HOW FAST?

what the landscape of consistent EFTs?

The more irrelevant, the more SM-like at low-energy

CH, Goldstones $(\partial \pi)^2 \pi^2$ 4-Fermions $(\bar{\psi}\gamma^\mu\psi)^2 \sim E^2$

dilaton, ISO(4)

Goldstino

remedios

$$(\partial \sigma)^4$$

$$\overline{\phi}^2 \partial^2 \psi^2 \sim E^4$$

$$F^4_{\mu\nu}$$
....

 $\overline{\psi}^2$

HOW FAST?

what the landscape of consistent EFTs?

The more irrelevant, the more SM-like at low-energy

CH, Goldstones

H, Goldstones $(\partial \pi)^2 \pi^2$ 4-Fermions $(\bar{\psi}\gamma^\mu\psi)^2 \sim E^2$

can amplitudes be softer than E^4 ?

dilaton, ISO(4) $(\partial \sigma)^4$

Goldstino

remedios

$$\langle \partial \sigma \rangle$$

 $^{2}\partial^{2}\psi^{2}$ $\rangle \sim E^{4}$
 $F^{4}_{\mu\nu}$

HOW FAST?

what the landscape of consistent EFTs?

The more irrelevant, the more SM-like at low-energy

CH, Goldstones

4-Fermions

s $(\partial \pi)^2 \pi^2$ $(\bar{\psi} \gamma^{\mu} \psi)^2$ $\sim E^2$

can amplitudes be softer than E^4 ? **No!**

dilaton, ISO(4)

Goldstino

remedios

unitarity+crossing+analyticity of UV theory

EXAMPLE

Higher-Derivatives partial compositeness

$$\psi \to \psi + \xi \qquad \mathcal{L}_{mix} = \lambda \,\partial_{\mu} \psi \mathcal{O}^{\mu}$$

$$\mathcal{L}_{eff} = \frac{g_*^2}{m_*^6} (\partial_\nu \psi^\dagger)^2 (\partial_\mu \psi)^2 + \dots \longrightarrow \qquad \mathcal{M}(2 \to 2) = g_*^2 (E/m_*)^6$$

EXAMPLE

Higher-Derivatives partial compositeness

$$\psi \to \psi + \xi \qquad \mathcal{L}_{mix} = \lambda \,\partial_{\mu} \psi \mathcal{O}^{\mu}$$

$$\mathcal{L}_{eff} = \frac{g_*^2}{m_*^6} (\partial_\nu \psi^\dagger)^2 (\partial_\mu \psi)^2 + \dots \longrightarrow \qquad \mathcal{M}(2 \to 2) = g_*^2 (E/m_*)^6$$

doesn't admit a local unitary UV completion

THE ONLY TWO FERMION-COMPOSITENESS

non-linear SUSY
$$\begin{cases} \psi(x) \longrightarrow \psi(x(x')) + \xi \\ x \longrightarrow x^{\mu} + i\xi \sigma^{\mu}\psi^{\dagger}(x) - i\psi(x)\sigma^{\mu}\xi^{\dagger} \end{cases}$$

unique dim-8 operator, and no lower dimensional op.'s

THE ONLY TWO FERMION-COMPOSITENESS

$$\mathcal{M}(\psi\psi \to \psi\psi) = E^{2} (\bar{\psi}\gamma^{\mu}\psi)^{2}$$

$$E^{4} \bar{\psi}^{2}\partial^{2}\psi^{2}$$

$$\frac{\mathcal{C}hiral-compositeness"}{\text{only one tested so far at LHC}}$$

$$\frac{\mathcal{M}(\psi\psi \to \psi\psi)}{\mathcal{V}^{S}}$$

$$\frac{\mathcal{L}^{4} \bar{\psi}^{2}\partial^{2}\psi^{2}}{\mathcal{V}^{2}}$$

$$\frac{\mathcal{C}hiral-compositeness"}{\mathcal{C}hiral-compositeness"}$$

$$\frac{\mathcal{L}^{4} \bar{\psi}^{2}\partial^{2}\psi^{2}}{\mathcal{V}^{2}}$$

non-linear SUSY
$$\begin{cases} \psi(x) \longrightarrow \psi(x(x')) + \xi \\ x \longrightarrow x^{\mu} + i\xi \sigma^{\mu}\psi^{\dagger}(x) - i\psi(x)\sigma^{\mu}\xi^{\dagger} \end{cases}$$

unique dim-8 operator, and no lower dimensional op.'s

Manifesto:

quarks and/or leptons as composite pseudo-Goldstini what are the experimental bounds? Generic Predictions?

modern incarnation of Akulov-Volkov 1972 Bardeen-Visnjic (1982)

revived in Liu-Pomarol-Rattazzi-Riva 1603.03064

maximal R-symmetry $U(\mathcal{N}) \supset [\text{flavor}] \times [\text{gauge}]$

maximal R-symmetry $U(\mathcal{N}) \supset [\text{flavor}] \times [\text{gauge}]$

<u>Coset space</u> $\mathcal{N} - SUSY/Lorentz$ $x \to g(x) \sim g(x)h(x)$

composite metric composite veilbein

"gravity theory" local Lorentz $g_{\mu\nu}(\chi,\chi^{\dagger}) \quad E_{\mu}{}^{a}(\chi,\chi^{\dagger})$

CCWZ-Ology:
$$U(x, \chi(x)) \equiv e^{i(\chi_i(x)Q^i + \chi_i^{\dagger}(x)Q_i^{\dagger})} e^{ix^{\mu}P_{\mu}}$$

$$(U^{-1}dU)(x) = idx^{\mu}E_{\mu}{}^{a}\left(P_{a} + \nabla_{a}\chi Q + \nabla_{a}\chi^{\dagger}Q^{\dagger}\right)$$

 $g_{\xi} U(x, \chi(x)) = U'(x', \chi'(x'))$ $\chi'(x') = \chi(x(x')) + \xi$ $x'^{\mu}(x) = x^{\mu} - i\chi^{\dagger}(x)\bar{\sigma}^{\mu}\xi + i\xi^{\dagger}\bar{\sigma}^{\mu}\chi(x)$

fermionic & spacetime shift

<u>Coset space</u> $\mathcal{N} - \frac{SUSY}{Lorentz}$ $x \to g(x) \sim g(x)h(x)$

composite metric composite veilbein

"gravity theory" local Lorentz $g_{\mu\nu}(\chi,\chi^{\dagger}) \quad E_{\mu}{}^{a}(\chi,\chi^{\dagger})$

CCWZ-Ology:
$$U(x, \chi(x)) \equiv e^{i(\chi_i(x)Q^i + \chi_i^{\dagger}(x)Q_i^{\dagger})} e^{ix^{\mu}P_{\mu}}$$

$$(U^{-1}dU)(x) = idx^{\mu}E_{\mu}{}^{a} \left(P_{a} + \nabla_{a}\chi Q + \nabla_{a}\chi^{\dagger}Q^{\dagger}\right)$$
$$(\nabla_{a}\chi)'(x) = (\nabla_{a}\chi)(x'(x))$$

 $g_{\xi} U(x, \chi(x)) = U'(x', \chi'(x'))$ $\chi'(x') = \chi(\boldsymbol{x}(\boldsymbol{x'})) + \xi$ $x'^{\mu}(x) = x^{\mu} - i\chi^{\dagger}(x)\bar{\sigma}^{\mu}\xi + i\xi^{\dagger}\bar{\sigma}^{\mu}\chi(x)$

fermionic & spacetime shift

<u>Coset space</u> $\mathcal{N} - \underline{SUSY}/\underline{Lorentz}$ $x \to g(x) \sim g(x)h(x)$

composite metric composite veilbein

"gravity theory" local Lorentz $g_{\mu\nu}(\chi,\chi^{\dagger}) \quad E_{\mu}{}^{a}(\chi,\chi^{\dagger})$

<u>Coset space</u> $\mathcal{N} - SUSY/Lorentz$ $x \to g(x) \sim g(x)h(x)$

composite metric composite veilbein

"gravity theory" local Lorentz $g_{\mu\nu}(\chi,\chi^{\dagger}) \quad E_{\mu}{}^{a}(\chi,\chi^{\dagger})$

$$CCWZ-OLOGY: U(x, \chi(x)) \equiv e^{i(\chi_i(x)Q^i + \chi_i^{\dagger}(x)Q_i^{\dagger})}e^{ix^{\mu}P_{\mu}} \qquad g_{\xi} U(x, \chi(x)) = U'(x', \chi'(x')) \\ (U^{-1}dU)(x) = idx^{\mu}E_{\mu}{}^a \left(P_a + \nabla_a \chi Q + \nabla_a \chi^{\dagger} Q^{\dagger}\right) \\ E'_{\mu}{}^a(x) = \frac{\partial x'^{\nu}}{\partial x^{\mu}}E_{\nu}{}^a(x'(x)) \qquad (\nabla_a \chi)'(x) = (\nabla_a \chi)(x'(x)) \\ d^4x \det E(x) \rightarrow d^4x \left|\frac{\partial x'}{\partial x}\right| \det E(x'(x)) = d^4x' \det E(x')$$

<u>Coset space</u> $\mathcal{N} - \frac{SUSY}{Lorentz}$ $x \to g(x) \sim g(x)h(x)$

composite metric composite veilbein

"gravity theory" local Lorentz $g_{\mu\nu}(\chi,\chi^{\dagger}) \quad E_{\mu}{}^{a}(\chi,\chi^{\dagger})$

$$\begin{array}{ll} & \begin{array}{l} & \begin{array}{l} & C \\ \hline C \\ \hline$$

invariant action $S_{\text{SUSY}}[\chi, \Phi] = \int d^4x \det E \mathcal{L}(\nabla_a \chi(x), \Phi(x), \nabla_a \Phi(x), F_{bc}{}^a(x), \ldots) = \int d^4x \sqrt{-\det g} \mathcal{L}$

<u>invariant action</u> $S_{\text{SUSY}}[\chi, \Phi] = \int d^4x \det E \mathcal{L}(\nabla_a \chi(x), \Phi(x), \nabla_a \Phi(x), F_{bc}{}^a(x), \ldots) = \int d^4x \sqrt{-\det g} \mathcal{L}$

<u>Coset space</u> $\mathcal{N} - SUSY/Lorentz$ $x \to g(x) \sim g(x)h(x)$

composite metric composite veilbein

"gravity theory" local Lorentz $g_{\mu\nu}(\chi,\chi^{\dagger}) \quad E_{\mu}{}^{a}(\chi,\chi^{\dagger})$

invariant action
$$S_{\text{SUSY}}[\chi, \Phi] = \int d^4x \det E \mathcal{L}(\nabla_a \chi(x), \Phi(x), \nabla_a \Phi(x), F_{bc}{}^a(x), \ldots) = \int d^4x \sqrt{-\det g} \mathcal{L}$$

$$\det \left[\delta^a_\mu - i\chi^{j\dagger} \bar{\sigma}^a \partial_\mu \chi_j + i\partial_\mu \chi^{j\dagger} \bar{\sigma}^a \chi_j \right] \left\{ -F^2 + \ldots \right\} \qquad \begin{array}{l} \text{most relevant term:} \\ \text{CC contribution from SUSY-breaking} \end{array}$$

<u>Coset space</u> $\mathcal{N} - \frac{SUSY}{Lorentz}$ $x \to g(x) \sim g(x)h(x)$

composite metric composite veilbein

"gravity theory" local Lorentz $g_{\mu\nu}(\chi,\chi^{\dagger}) \quad E_{\mu}{}^{a}(\chi,\chi^{\dagger})$

$$\frac{\text{invariant action}}{\det \left[\delta_{\mu}^{a} - i\chi^{j\dagger}\bar{\sigma}^{a}\partial_{\mu}\chi_{j} + i\partial_{\mu}\chi^{j\dagger}\bar{\sigma}^{a}\chi_{j}\right]\left\{-F^{2} + \ldots\right\}} \qquad \begin{array}{l} \text{most relevant term:}\\ \text{CC contribution from SUSY-breaking} \end{array}$$

canonical K.T.+
$$\int d^4x \, \frac{1}{F^2} (\chi_i^{\dagger} \partial_{\mu} \chi_j^{\dagger}) (\partial^{\mu} \chi^i \chi^j) + \dots$$

Goldstino 4-fermion interactions

accidentally maximally R-symmetric

$$\mathbf{X} = \frac{E^4}{F^2}$$

 $F^2 \sim m_*^4 / g_*^2$

model indep.
coupling
(well, not quite)

accidentally Maximal R-sym

naked terms	SUSY dressing	leading 4-body interactions
$-F^{2}$	$-F^2\sqrt{-\det g}$	$\frac{1}{F^2} (\chi_i^{\dagger} \partial_{\mu} \chi_j^{\dagger}) (\partial^{\mu} \chi^i \chi^j)$
$(\frac{i}{2}\psi_i^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\psi^i(x) + h.c)$	$\det E(\frac{i}{2}\psi_i^{\dagger}\bar{\sigma}^a\nabla_a\psi^i(x) + h.c)$	$-rac{1}{F^2}(\psi_i^\daggerar\sigma^a\partial_\mu\psi^i)(\chi_j^\daggerar\sigma^\mu\partial_a\chi^j)$
$-rac{1}{4}F^A_{\mu u}F^{A\mu u}$	$-\sqrt{-\det g}\tfrac{1}{4}F^A_{\mu\nu}F^A_{\rho\sigma}g^{\mu\rho}g^{\nu\sigma}$	$-\frac{1}{4F^2}F^A_{\mu\nu}F^{A\mu}_{\ \rho}\left(i\chi^{\dagger}_i\bar{\sigma}^{\{\rho}\partial^{\nu\}}\chi^i+\text{h.c.}\right)$
$\partial_\mu \phi^{i\dagger} \partial_\mu \phi_i$	$\sqrt{-\det g} g^{\mu u} \partial_\mu \phi^{i\dagger} \partial_ u \phi_i$	$\frac{1}{2F^2} \left(i \chi_j^{\dagger} \bar{\sigma}^{\{\mu} \partial^{\nu\}} \chi^j + \text{h.c.} \right) \partial_{\mu} \phi^{i\dagger} \partial_{\nu} \phi_i$

model indep. coupling (well, not quite)

accidentally Maximal R-sym

some
model dep.
coupling

naked terms	SUSY dressing	leading 4-body interactions	
$-F^{2}$	$-F^2\sqrt{-\det g}$	$rac{1}{F^2}(\chi_i^\dagger\partial_\mu\chi_j^\dagger)(\partial^\mu\chi^i\chi^j)$	
$\left[\left(\frac{i}{2} \psi_i^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi^i(x) + h.c \right) \right]$	$\det E(\frac{i}{2}\psi_i^{\dagger}\bar{\sigma}^a\nabla_a\psi^i(x) + h.c)$	$-rac{1}{F^2}(\psi_i^\daggerar\sigma^a\partial_\mu\psi^i)(\chi_j^\daggerar\sigma^\mu\partial_a\chi^j)$	
$-rac{1}{4}F^A_{\mu u}F^{A\mu u}$	$-\sqrt{-\det g}\frac{1}{4}F^A_{\mu\nu}F^A_{\rho\sigma}g^{\mu\rho}g^{\nu\sigma}$	$-\frac{1}{4F^2}F^A_{\mu\nu}F^{A\mu}_{\ \rho}\left(i\chi^{\dagger}_i\bar{\sigma}^{\{\rho}\partial^{\nu\}}\chi^i+\text{h.c.}\right)$	
$\partial_\mu \phi^{i\dagger} \partial_\mu \phi_i$	$\sqrt{-\det g} g^{\mu u} \partial_\mu \phi^{i\dagger} \partial_ u \phi_i$	$\frac{1}{2F^2} \left(i \chi_j^{\dagger} \bar{\sigma}^{\{\mu} \partial^{\nu\}} \chi^j + \text{h.c.} \right) \partial_{\mu} \phi^{i\dagger} \partial_{\nu} \phi_i$	

R-symmetry	SUSY Lgrangian	Leading interactions
$\psi = \text{singlet}$	$c_i^j \det E\left(\nabla_a \chi^{i\dagger} \bar{\sigma}^b \nabla^a \chi_j\right)(\psi^{\dagger} \bar{\sigma}_b \psi)$	$c_{i}^{j} \frac{1}{F^{2}} (\partial_{\nu} \chi^{i\dagger} \bar{\sigma}^{\mu} \partial^{\nu} \chi_{j}) (\psi^{\dagger} \bar{\sigma}_{\mu} \psi)$
$\pi = \text{singlet}, \text{GB}$	$d_i^j \det E \left(\nabla_a \chi^{i\dagger} \bar{\sigma}^b \nabla^a \chi_j \right) \nabla_b \pi$	5-body or \propto masses
$\pi =$ fund., GB	$c \det E \left(\nabla_a \chi^{\dagger} \bar{\sigma}^b T^A \nabla^a \chi \right) \left(i \pi^{\dagger} T^A \overleftrightarrow{\nabla}_b \pi \right)$	$\frac{c}{F^2} \left(\partial_{\mu} \chi^{\dagger} \bar{\sigma}^{\nu} T^A \partial^{\mu} \chi \right) \left(i \pi^{\dagger} T^A \overleftrightarrow{\partial}_{\nu} \pi \right)$

model indep. coupling (well, not quite)

accidentally Maximal R-sym

naked terms	SUSY dressing	leading 4-body interactions
$-F^{2}$	$-F^2\sqrt{-\det g}$	$rac{1}{F^2}(\chi_i^\dagger\partial_\mu\chi_j^\dagger)(\partial^\mu\chi^i\chi^j)$
$\left[\left(\frac{i}{2} \psi_i^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi^i(x) + h.c \right) \right]$	$\det E(\frac{i}{2}\psi_i^{\dagger}\bar{\sigma}^a\nabla_a\psi^i(x) + h.c)$	$-rac{1}{F^2}(\psi^\dagger_iar\sigma^a\partial_\mu\psi^i)(\chi^\dagger_jar\sigma^\mu\partial_a\chi^j)$
$-\frac{1}{4}F^A_{\mu\nu}F^{A\mu\nu}$	$-\sqrt{-\det g}\frac{1}{4}F^A_{\mu\nu}F^A_{\rho\sigma}g^{\mu\rho}g^{\nu\sigma}$	$-\frac{1}{4F^2}F^A_{\mu\nu}F^{A\mu}_{\ \rho}\left(i\chi^{\dagger}_i\bar{\sigma}^{\{\rho}\partial^{\nu\}}\chi^i+\text{h.c.}\right)$
$\partial_\mu \phi^{i\dagger} \partial_\mu \phi_i$	$\sqrt{-\det g} g^{\mu u} \partial_\mu \phi^{i\dagger} \partial_ u \phi_i$	$\left \frac{1}{2F^2} \left(i \chi_j^{\dagger} \bar{\sigma}^{\{\mu} \partial^{\nu\}} \chi^j + \text{h.c.} \right) \partial_{\mu} \phi^{i\dagger} \partial_{\nu} \phi_i \right.$

some model dep. coupling

R-symmetry	SUSY Lgrangian	Leading interactions
$\psi = \text{singlet}$	$c_i^j \det E \left(\nabla_a \chi^{i\dagger} \bar{\sigma}^b \nabla^a \chi_j \right) (\psi^{\dagger} \bar{\sigma}_b \psi)$	$c_{i}^{j}rac{1}{F^{2}}(\partial_{ u}\chi^{i\dagger}ar{\sigma}^{\mu}\partial^{ u}\chi_{j})(\psi^{\dagger}ar{\sigma}_{\mu}\psi)$
$\pi = \text{singlet}, \text{GB}$	$d_i^j \det E \left(\nabla_a \chi^{i\dagger} \bar{\sigma}^b \nabla^a \chi_j \right) \nabla_b \pi$	5-body or \propto masses
$\pi =$ fund., GB	$c \det E \left(\nabla_a \chi^{\dagger} \bar{\sigma}^b T^A \nabla^a \chi \right) \left(i \pi^{\dagger} T^A \overleftrightarrow{\nabla}_b \pi \right)$	$\frac{c}{F^2} \left(\partial_\mu \chi^\dagger \bar{\sigma}^\nu T^A \partial^\mu \chi \right) \left(i \pi^\dagger T^A \overleftrightarrow{\partial}_\nu \pi \right)$

all dim-8

model indep. coupling (well, not quite)

accidentally Maximal R-sym

nakod torma	SUSV drossing	loading 1 body interactions
	5051 dressing	leaunig 4-bouy interactions
$-F^2$	$-F^2\sqrt{-\det g}$	$rac{1}{F^2}(\chi_i^\dagger\partial_\mu\chi_j^\dagger)(\partial^\mu\chi^i\chi^j)$
$(\frac{i}{2}\psi_i^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\psi^i(x)+h.c)$	$\det E(\frac{i}{2}\psi_i^{\dagger}\bar{\sigma}^a\nabla_a\psi^i(x) + h.c)$	$-rac{1}{F^2}(\psi_i^\daggerar\sigma^a\partial_\mu\psi^i)(\chi_j^\daggerar\sigma^\mu\partial_a\chi^j)$
$-rac{1}{4}F^A_{\mu u}F^{A\mu u}$	$-\sqrt{-\det g} \frac{1}{4} F^A_{\mu\nu} F^A_{\rho\sigma} g^{\mu\rho} g^{\nu\sigma}$	$-\frac{1}{4F^2}F^A_{\mu\nu}F^{A\mu}_{\ \rho}\left(i\chi^{\dagger}_i\bar{\sigma}^{\{\rho}\partial^{\nu\}}\chi^i+\text{h.c.}\right)$
$\partial_\mu \phi^{i\dagger} \partial_\mu \phi_i$	$\sqrt{-\det g} g^{\mu\nu} \partial_\mu \phi^{i\dagger} \partial_\nu \phi_i$	$\frac{1}{2F^2} \left(i \chi_j^{\dagger} \bar{\sigma}^{\{\mu} \partial^{\nu\}} \chi^j + \text{h.c.} \right) \partial_{\mu} \phi^{i\dagger} \partial_{\nu} \phi_i$

some
model dep.
coupling

R-symmetry	SUSY Lgrangian	Leading interactions
$\psi = \text{singlet}$	$c_i^j \det E \left(\nabla_a \chi^{i\dagger} \bar{\sigma}^b \nabla^a \chi_j \right) (\psi^{\dagger} \bar{\sigma}_b \psi)$	$c_{i}^{j} \frac{1}{F^{2}} (\partial_{\nu} \chi^{i\dagger} \bar{\sigma}^{\mu} \partial^{\nu} \chi_{j}) (\psi^{\dagger} \bar{\sigma}_{\mu} \psi)$
$\pi = \text{singlet}, \text{GB}$	$d_i^j \det E \left(abla_a \chi^{i\dagger} \bar{\sigma}^b abla^a \chi_j \right) abla_b \pi$	5-body or \propto masses
$\pi =$ fund., GB	$c \det E \left(\nabla_a \chi^{\dagger} \bar{\sigma}^b T^A \nabla^a \chi \right) \left(i \pi^{\dagger} T^A \overleftrightarrow{\nabla}_b \pi \right)$	$\frac{c}{F^2} \left(\partial_{\mu} \chi^{\dagger} \bar{\sigma}^{\nu} T^A \partial^{\mu} \chi \right) \left(i \pi^{\dagger} T^A \overleftrightarrow{\partial}_{\nu} \pi \right)$

Explicit breakingelementarycomposite (remedios)gauge $\mathcal{L}_{gauge} = -\frac{1}{4g^2}F_{\mu\nu}^{A\,2} + V_{\mu}^{A}R^{A\,\mu}$ $\mathcal{L}_{gauge} = \frac{1}{4g^2_*}F_{\mu\nu}^{A}F_{\rho\sigma}^{A}g^{\mu\rho}g^{\nu\sigma} + qV_{\mu}^{A}R^{A\,\mu} + \dots$ Yukawa $\mathcal{L}_{Y} = \chi_i y^{ij}\chi_j H + h.c.$

 $(\det E) \chi_i \sigma^{ab} \chi_j \mathbb{F}_{ab} = \chi_i \sigma^{\mu\nu} \chi_j F_{\mu\nu} + \dots \quad \blacktriangleleft \quad \text{suppressed by MFV}$

other

EMBEDDINGS QUARKS AND LEPTONS

PG	$G_{Gauge} imes G_{Flav}$	\mathcal{N}_{min}
e^{c}	$U(1)_Y$	$\mathcal{N}=1$
L_e	$U(1)_Y \times SU(2)_L$	$\mathcal{N}=2$
L_e, e^c	$U(1)_Y \times SU(2)_L \times U(1)_{L_e}$	$\mathcal{N}=3^*$
L_e, e^c, u_e^c	$U(1)_Y \times SU(2)_L \times U(1)_{L_e} \times U(1)_A$	$\mathcal{N}=4^*$
$d^c ext{ or } u^c$	$U(1)_Y \times SU(3)_C$	$\mathcal{N}=3$
e^{c}	$U(1)_Y imes SU(3)_{l_R}^{Flav}$	$\mathcal{N}=3$
L	$U(1)_Y \times SU(2)_L \times SU(3)_L^{Flav}$	$\mathcal{N}=6$
$oldsymbol{L}, oldsymbol{e}^{c}$	$U(1)_Y \times SU(2)_L \times U(1)_L \times SU(3)_L^{Flav}$	$\mathcal{N}=9$
$oldsymbol{L},oldsymbol{e}^c,oldsymbol{ u}^c$	$U(1)_Y \times SU(2)_L \times U(1)_L \times [SU(3)^{Flav}]^3$	$\mathcal{N} = 12^*$
d^c or u^c	$U(1)_Y \times SU(3)_C \times SU(3)_{d(u)}^{Flav}$	$\mathcal{N}=9$
Q	$U(1)_R \times SU(2)_L \times SU(3)_C \times SU(3)_Q^{Flav}$	$\mathcal{N}=18$
$oldsymbol{d}^c,oldsymbol{u}^c$	$[U(1)_Y]^2 \times SU(2)_L \times [SU(3)_C]^2 \times [SU(3)^{Flav}]^2$	$\mathcal{N}=18$
$oldsymbol{Q}, oldsymbol{d}^c, oldsymbol{u}^c, oldsymbol{X}_{-2/3,1/3}$	$[U(1)_Y]^2 \times SU(2)_L \times [SU(3)_C]^3 \times U(1)_B \times [SU(3)^{Flav}]^3$	$\mathcal{N}=72(36)$
$oldsymbol{L},oldsymbol{e}^c,oldsymbol{ u}^c,oldsymbol{Q},oldsymbol{d}^c,oldsymbol{u}^c,oldsymbol{X}_{-2/3,1/3}$	$[U(1)_Y]^4 \times [SU(2)_L]^2 \times [SU(3)_C]^3 \times U(1)_B \times U(1)_L \times [SU(3)^{Flav}]^6$	$\mathcal{N} = 84 (48)$

EMBEDDINGS QUARKS AND LEPTONS

PG	$G_{Gauge} \times G_{Flav}$	\mathcal{N}_{min}
e^{c}	$U(1)_Y$	$\mathcal{N} = 1$
L_e	$U(1)_Y \times SU(2)_L$	$\mathcal{N}=2$
L_e, e^c	$U(1)_Y \times SU(2)_L \times U(1)_{L_e}$	$\mathcal{N}=3^*$
L_e, e^c, ν_e^c	$U(1)_Y \times SU(2)_L \times U(1)_{L_e} \times U(1)_A$	$\mathcal{N}=4^*$
d^c or u^c	$U(1)_Y \times SU(3)_C$	$\mathcal{N}=3$
e^{c}	$U(1)_Y imes SU(3)_{l_R}^{Flav}$	$\mathcal{N}=3$
L	$U(1)_Y \times SU(2)_L \times SU(3)_L^{Flav}$	$\mathcal{N}=6$
$oldsymbol{L}, oldsymbol{e}^c$	$U(1)_Y \times SU(2)_L \times U(1)_L \times SU(3)_L^{Flav}$	$\mathcal{N}=9$
$oldsymbol{L},oldsymbol{e}^{c},oldsymbol{ u}^{c}$	$U(1)_Y \times SU(2)_L \times U(1)_L \times [SU(3)^{Flav}]^3$	$\mathcal{N} = 12^*$
$oldsymbol{d}^c$ or $oldsymbol{u}^c$	$U(1)_Y \times SU(3)_C \times SU(3)_{d(u)}^{Flav}$	$\mathcal{N}=9$
Q	$U(1)_R \times SU(2)_L \times SU(3)_C \times SU(3)_Q^{Flav}$	$\mathcal{N}=18$
$oldsymbol{d}^c,oldsymbol{u}^c$	$[U(1)_Y]^2 \times SU(2)_L \times [SU(3)_C]^2 \times [SU(3)^{Flav}]^2$	$\mathcal{N}=18$
$oldsymbol{Q},oldsymbol{d}^c,oldsymbol{u}^c,oldsymbol{X}_{-2/3,1/3}$	$[U(1)_Y]^2 \times SU(2)_L \times [SU(3)_C]^3 \times U(1)_B \times [SU(3)^{Flav}]^3$	$\mathcal{N}=72(36)$
$oxed{L},oldsymbol{e}^c,oldsymbol{ u}^c,oldsymbol{Q},oldsymbol{d}^c,oldsymbol{u}^c,oldsymbol{X}_{-2/3,1/3}$	$[U(1)_Y]^4 \times [SU(2)_L]^2 \times [SU(3)_C]^3 \times U(1)_B \times U(1)_L \times [SU(3)^{Flav}]^6$	$\mathcal{N}=84(48)$

<u>all quarks</u> $\mathcal{N} = 36$ $\mathbf{36} = \mathbf{18}_q \oplus \mathbf{9}_d \oplus \mathbf{9}_u$

doesn't work! need to get antifundamental $\mathbf{3} \otimes \mathbf{3} = \mathbf{3}^* \oplus \mathbf{6}$

 $\mathcal{N} = 72$ $\mathbf{72}_r = \begin{pmatrix} q \\ u^c \\ X_{-2/3} \\ d^c \end{pmatrix}$ generic prediction of maximal R-symmetry

exotic color 6-plets **X**, they are flavour triplets too

BOUNDS FROM DIJETS

test dR compositeness

- dim-8 Goldstino-Compositeness
- dim-6 chiral-compositeness

 $\sigma_{SM}^{cuts} = 50.8 \pm 9.1 \text{ fb}$

BOUNDS FROM DIJETS

test dR compositeness

- dim-8 Goldstino-Compositeness
- dim-6 chiral-compositeness

from 50 TeV to 10 TeV!

dim-6 Chiral-Compositeness

dim-8 Goldstino-compositeness m_{*}

Goldstini	\sqrt{F} (TeV)
d_R	2.2
u_R	3.3
u_R, d_R	3.5
q_L	3.5
q_L, d_R	3.6
q_L, u_R	4.0
q_L, u_R, d_R	4.1

dim-6 Chiral-Compositeness

dim-8 Goldstino-compositeness m,

$$d \mathbb{R} \atop m_* \gtrsim \begin{cases} (g_*/4\pi) \ 47 \ \text{TeV} \text{ (positive)} \\ (g_*/4\pi) \ 39 \ \text{TeV} \text{ (negative)} \end{cases}$$
$$m_* \gtrsim \begin{cases} \sqrt{g_*/4\pi} \ 10 \ \text{TeV} \text{ (positive)} \\ \sqrt{g_*/4\pi} \ 9.5 \ \text{TeV} \text{ (negative)} \end{cases}$$

Goldstini	\sqrt{F} (TeV)
d_R	2.2
u_R	3.3
u_R, d_R	3.5
q_L	3.5
q_L, d_R	3.6
q_L, u_R	4.0
q_L, u_R, d_R	4.1

bounds rescaling
dim-8 ~ dim-6 ×
$$(E/m_*)^2$$
 \longrightarrow $m_*^{(8)} \sim m_*^{(6)} \cdot \left(\frac{m_{jj}^{cut}}{m_*^{(6)}}\right)^{1/2} \left(\frac{g_*^{(8)}}{g_*^{(6)}}\right)^{1/2}$
0.1

dim-6 Chiral-Compositeness

dim-8 Goldstino-compositeness m_{*}

$$d\mathsf{R} \\ m_* \gtrsim \begin{cases} (g_*/4\pi) \ 47 \ \text{TeV} \text{ (positive)} \\ (g_*/4\pi) \ 39 \ \text{TeV} \text{ (negative)} \end{cases}$$
$$m_* \gtrsim \begin{cases} \sqrt{g_*/4\pi} \ 10 \ \text{TeV} \text{ (positive)} \\ \sqrt{g_*/4\pi} \ 9.5 \ \text{TeV} \text{ (negative)} \end{cases}$$

Goldstini	\sqrt{F} (TeV)
d_R	2.2
u_R	3.3
u_R, d_R	3.5
q_L	3.5
q_L, d_R	3.6
q_L, u_R	4.0
q_L, u_R, d_R	4.1

bounds rescaling
dim-8 ~ dim-6 ×
$$(E/m_*)^2$$
 \longrightarrow $m_*^{(8)} ~ m_*^{(6)} \cdot \left(\frac{m_{jj}^{cut}}{m_*^{(6)}}\right)^{1/2} \left(\frac{g_*^{(8)}}{g_*^{(6)}}\right)^{1/2}$
0.1 $m_*^{(8)} \sim 0.3m_*^{(6)}$

dim-6 Chiral-Compositeness

dim-8 Goldstino-compositeness | m,

$$d\mathsf{R} \\ m_* \gtrsim \begin{cases} (g_*/4\pi) \ 47 \ \text{TeV (positive)} \\ (g_*/4\pi) \ 39 \ \text{TeV (negative)} \end{cases}$$
$$m_* \gtrsim \begin{cases} \sqrt{g_*/4\pi} \ 10 \ \text{TeV (positive)} \\ \sqrt{g_*/4\pi} \ 9.5 \ \text{TeV (negative)} \end{cases}$$

Goldstini	\sqrt{F} (TeV)
$\overline{d_R}$	2.2
u_R	3.3
u_R, d_R	3.5
q_L	3.5
q_L, d_R	3.6
q_L, u_R	4.0
q_L, u_R, d_R	4.1

bounds rescaling
dim-8 ~ dim-6 ×
$$(E/m_*)^2$$
 \longrightarrow $m_*^{(8)} ~ m_*^{(6)} \cdot \left(\frac{m_{jj}^{cut}}{m_*^{(6)}}\right)^{1/2} \left(\frac{g_*^{(8)}}{g_*^{(6)}}\right)^{1/2}$
 $g_*^{(8)} ~ 10 g_*^{(6)}$ is the formula of the second second

dim-6 Chiral-Compositeness

dim-8 Goldstino-compositeness m,

$$d\mathsf{R} \\ m_* \gtrsim \begin{cases} (g_*/4\pi) \ 47 \ \text{TeV} \text{ (positive)} \\ (g_*/4\pi) \ 39 \ \text{TeV} \text{ (negative)} \end{cases}$$
$$m_* \gtrsim \begin{cases} \sqrt{g_*/4\pi} \ 10 \ \text{TeV} \text{ (positive)} \\ \sqrt{g_*/4\pi} \ 9.5 \ \text{TeV} \text{ (negative)} \end{cases}$$

Goldstini	\sqrt{F} (TeV)
d_R	2.2
u_R	3.3
u_R, d_R	3.5
q_L	3.5
q_L, d_R	3.6
q_L, u_R	4.0
q_L, u_R, d_R	4.1

EFT consistency: $m_* > m_{jj}$ $g_* \gtrsim 2$ or $g_* \gtrsim 4$ strongly-coupled th.

weaker bound on Goldstino-Compositeness: huge impact for FCC-hh@100 TeV

BOUNDS FROM DILEPTONS

LEP combination 1302.3415

$$\left(\frac{2\pi}{\Lambda_{\pm}^2}\right)\bar{e}_R\gamma^{\mu}e_R\bar{e}_R\gamma_{\mu}e_R$$

chiral-compositeness (RR)

$$\Lambda_{\pm} \gtrsim 9 \text{ TeV} \Rightarrow m_*^{(6)} > (g_*^{(6)}/4\pi) 45 \text{ TeV}$$

Goldstino-Compositeness of eR?

rough estimate from rescaling dim-6

$$m_{*}^{(8)} \sim m_{*}^{(6)} \cdot \left(\frac{m_{ee}^{cut}}{m_{*}^{(6)}}\right)^{1/2} \left(\frac{g_{*}^{(8)}}{g_{*}^{(6)}}\right)^{1/2} \prod_{i=1}^{n} \frac{1}{2} \prod_{i=1}^{n} \frac{1}{2}$$

our analysis: ~2 TeV

PRECISION MEASUREMENTS?

CONCLUSIONS

The future of the LHC are tests for deviations from the SM

important to have a complete picture of how the SM can emerge from completely different dynamics, in particular strongly coupled which have the strongest effects

There exist only two fermion-compositeness: Chiral- and Goldstino-compositeness

- Goldstino-Compositeness is controlled by SUSY-breaking power counting
- SUSY put to good use, although very unusually and with different scope

We tested Goldstino-Compositeness for the first time

- Fully composite light-quarks as pseudo-Goldstini in the 10 TeV range (as opposed to ~50 TeV)
- Fully composite electron as pseudo-Goldstino in the few TeV range (as opposed to ~45 TeV)
- Did Thompson discover SUSY in 1897? We addressed this question looking at data

Maximal R-symmetry and Goldstino-compositeness of all quarks predict light coloured exotics 6-plets (look for it!) thank you!

backup slides

WHAT ABOUT THE EXOTIC 6-PLETS?

RH-down	$\mathcal{N}=3$	$U(1)_R \times SU(3)_R = U(1)_Y \times SU(3)_{Color}$	$3^* = \chi_i = d_i^c$
	$\mathcal{N}=9$	$U(1)_R \times SU(9)_R \supset U(1)_Y \times SU(3)_{Color} \times SU(3)_{d^c}$	$m{9}^*_{1/3} = (m{3}^*,m{3}^*)_{1/3} = m{d}^c_j$

<u>RH-down</u>	$\mathcal{N}=3$	$U(1)_R \times SU(3)_R = U(1)_Y \times SU(3)_{Color}$	$3^* = \chi_i = d_i^c$
	$\mathcal{N}=9$	$U(1)_R \times SU(9)_R \supset U(1)_Y \times SU(3)_{Color} \times SU(3)_{d^c}$	$9_{1/3}^{*} = (3^{*}, 3^{*})_{1/3} = \mathbf{d}_{j}^{c}$

all RH-down+up $\mathcal{N} = 18$ $U(1)_R \times SU(18)_R \supset U(1)_R \times U(1)_S \times SU(9) \times SU(9) \supset [U(1)]^2 \times [SU(3)]^4$

$$oldsymbol{18}_{-1/6}^* = (oldsymbol{9}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{9}^*,oldsymbol{3}^*)_{1/6,1/2} = oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{3}^*,oldsy$$

RH-down	$\mathcal{N}=3$	$U(1)_R \times SU(3)_R = U(1)_Y \times SU(3)_{Color}$	$3^* = \chi_i = d_i^c$
	$\mathcal{N}=9$	$U(1)_R \times SU(9)_R \supset U(1)_Y \times SU(3)_{Color} \times SU(3)_{d^c}$	$9_{1/3}^{*} = (3^{*}, 3^{*})_{1/3} = \mathbf{d}_{j}^{c}$

all RH-down+up $\mathcal{N} = 18$ $U(1)_R \times SU(18)_R \supset U(1)_R \times U(1)_S \times SU(9) \times SU(9) \supset [U(1)]^2 \times [SU(3)]^4$

 $\mathbf{18}^*_{-1/6} = (\mathbf{9}^*, \mathbf{1})_{-1/6, -1/2} \oplus (\mathbf{1}, \mathbf{9}^*)_{1/6, 1/2} = (\mathbf{3}^*, \mathbf{3}^*, \mathbf{1}, \mathbf{1})_{-1/6, -1/2} \oplus (\mathbf{1}, \mathbf{1}, \mathbf{3}^*, \mathbf{3}^*)_{-1/6, 1/2} = \begin{pmatrix} \mathbf{u}_j^c \\ \mathbf{d}_i^c \end{pmatrix}$

 $\begin{array}{ll} \underline{\mathsf{LH-quarks}} & \mathcal{N} = 18 & U(1)_R \times SU(18)_R \supset U(1)_R \times SU(2) \times SU(9) \supset U(1)_R \times SU(2)_W \times SU(3)_C \times SU(3)_{q_L} \\ \\ & \chi_i = \mathbf{18}_{1/6} = (\mathbf{2}, \mathbf{9})_{1/6} = (\mathbf{2}, \mathbf{3}, \mathbf{3})_{1/6} = \mathbf{q}_{ij} \end{array}$

<u>RH-down</u>	$\mathcal{N}=3$	$U(1)_R \times SU(3)_R = U(1)_Y \times SU(3)_{Color}$	$3^* = \chi_i = d_i^c$
	$\mathcal{N} = 9$	$U(1)_R \times SU(9)_R \supset U(1)_Y \times SU(3)_{Color} \times SU(3)_{d^c}$	$9_{1/3}^{*} = (3^{*}, 3^{*})_{1/3} = d_{j}^{c}$

all RH-down+up $\mathcal{N} = 18$ $U(1)_R \times SU(18)_R \supset U(1)_R \times U(1)_S \times SU(9) \times SU(9) \supset [U(1)]^2 \times [SU(3)]^4$

 $oldsymbol{18}_{-1/6}^* = (oldsymbol{9}^*,oldsymbol{1})_{-1/6,-1/2} \oplus (oldsymbol{1},oldsymbol{9}^*)_{1/6,1/2} = oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1},oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1},oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1},oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1},oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1},oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1},oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1},oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1},oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1},oldsymbol{3}^*,oldsymbol{3}^*,oldsymbol{1},oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1},oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1})_{-1/6,-1/2} \oplus oldsymbol{1})_{-1/6,-1/2}$

 $\underline{\mathsf{LH-quarks}} \qquad \mathcal{N} = 18 \qquad U(1)_R \times SU(18)_R \supset U(1)_R \times SU(2) \times SU(9) \supset U(1)_R \times SU(2)_W \times SU(3)_C \times SU(3)_{q_L}$

$$\chi_i = \mathbf{18}_{1/6} = (\mathbf{2}, \mathbf{9})_{1/6} = (\mathbf{2}, \mathbf{3}, \mathbf{3})_{1/6} = \boldsymbol{q}_{ij}$$

all quarks $\mathcal{N} = 36$ $\mathbf{36} = \mathbf{18}_q \oplus \mathbf{9}_d \oplus \mathbf{9}_u$ doesn't work! need to get antifundamental $\mathbf{3} \otimes \mathbf{3} = \mathbf{3}^* \oplus \mathbf{6}$ $\mathcal{N} = 72$ $\mathbf{72}_r = \begin{pmatrix} \mathbf{q} \\ \mathbf{u}^c \\ X_{-2/3} \\ \mathbf{d}^c \\ X_{1/3} \end{pmatrix}$ generic prediction of maximal R-symmetry exotic color 6-plets X, they are flavour triplets too

GOLDSTINO-COMPOSITENESS OF LEPTONS

right-handed	$\mathcal{N} = 1$	$U(1)_R = U(1)_Y$	$e^c = (1, 1)_1$
	$\mathcal{N}=3$	$U(1)_R \times SU(3)_R = U(1)_Y \times SU(3)_{flavor}$	$oldsymbol{e}^c = oldsymbol{3}_1 = (e^c, \mu^c, au^c)_1$ flavor
left-handed	$\mathcal{N}=2$	$U(1)_R \times SU(2)_R = U(1)_Y \times SU(2)_W$	$L = (1, 2)_{-1/2}$
	$\mathcal{N} = 6$	$U(1)_R \times SU(6)_R \supset U(1)_Y \times SU(2)_W \times SU(3)_{flavour}$	$\chi_{i=(j,k)} = \boldsymbol{L}_j = (L_j^e, L_j^\mu, L_j^\tau)$
all leptons	$\mathcal{N} = 12$ 12 = (6 , 1)	$_{-1/2} \oplus (1, 6)_{1/2} = (3, 2, 1, 1)_{-1/2, 0} \oplus (1, 1, 3, 1)_{1/2, 1/2} \oplus$	$({f 1},{f 1},{f 1},{f 3})_{1/2,-1/2}=\left(egin{array}{c} L \ {m e}^c \end{array} ight)$
	$SU(12) \supset SU($	$(6) \times SU(6) \times U(1)_A \supset SU(2)_W \times SU(3) \times SU(3) \times SU(3) \times U(1)_A >$ flavor U_Y	$\langle U(1)_B \rangle$ $\langle U(1)_B \rangle$ $\langle U(1)_B \rangle$

GOLDSTINO-COMPOSITENESS OF LEPTONS

right-handed	$\mathcal{N} = 1$	$U(1)_R = U(1)_Y$	$e^c = (1, 1)_1$
	$\mathcal{N}=3$	$U(1)_R \times SU(3)_R = U(1)_Y \times SU(3)_{flavor}$	$e^c = 3_1 = (e^c, \mu^c, \tau^c)_1$ flavor
left-handed	$\mathcal{N}=2$	$U(1)_R \times SU(2)_R = U(1)_Y \times SU(2)_W$	$L = (1, 2)_{-1/2}$
	$\mathcal{N} = 6$	$U(1)_R \times SU(6)_R \supset U(1)_Y \times SU(2)_W \times SU(3)_{flavour}$	$\chi_{i=(j,k)} = \boldsymbol{L}_j = (L_j^e, L_j^\mu, L_j^\tau)$
all leptons	$\mathcal{N} = 12$		
	$oldsymbol{12} = (oldsymbol{6},oldsymbol{1})$ $SU(12) \supset SU$	$(6) \times SU(6) \times U(1)_A \supset SU(2)_W \times SU(3) \times SU(3) \times SU(3) \times U(1)_A >$	$(1,1,1,3)_{1/2,-1/2} = \left(egin{array}{c} L \ e^c \ oldsymbol{ u}^c \end{array} ight) \ imes U(1)_B$

$$\supset SU(6) \times SU(6) \times U(1)_A \supset SU(2)_W \times SU(3) \times SU(3) \times SU(3) \times U(1)_A \times U(1)_B$$

flavor
$$U_{Y=A+B}$$

GOLDSTINO-COMPOSITENESS OF LEPTONS

right-handed	$\mathcal{N} = 1$	$U(1)_R = U(1)_Y$	$e^c = (1, 1)_1$
	$\mathcal{N}=3$	$U(1)_R \times SU(3)_R = U(1)_Y \times SU(3)_{flavor}$	$e^c = 3_1 = (e^c, \mu^c, \tau^c)_1$ flavor
left-handed	$\mathcal{N}=2$	$U(1)_R \times SU(2)_R = U(1)_Y \times SU(2)_W$	$L = (1, 2)_{-1/2}$
	$\mathcal{N} = 6$	$U(1)_R \times SU(6)_R \supset U(1)_Y \times SU(2)_W \times SU(3)_{flavour}$	$\chi_{i=(j,k)} = \boldsymbol{L}_j = (L_j^e, L_j^\mu, L_j^\tau)$
all leptons	$\mathcal{N} = 12$		
	12 = (6, 1)	$_{-1/2} \oplus (1, 6)_{1/2} = (3, 2, 1, 1)_{-1/2, 0} \oplus (1, 1, 3, 1)_{1/2, 1/2} \oplus$	$(1,1,1,3)_{1/2,-1/2} = \left(egin{array}{c} 2 & 2$
	$SU(12) \supset SU($	$(6) \times SU(6) \times U(1)_A \supset SU(2)_W \times SU(3) \times SU(3) \times SU(3) \times U(1)_A$ flavor U	$\times U(1)_B$ $V_{Y=A+B}$

GAUGING R-SYMMETRY

without SUGRA explicit breaking

 $[R^{a}_{SU(\mathcal{N})_{R}}, Q^{i}] = (T^{a})^{i}{}_{j}Q^{j}, \qquad [R_{U(1)_{R}}, Q^{i}] = Q^{i}$ $[R^{a}_{SU(\mathcal{N})_{R}}, Q^{\dagger}_{i}] = -(\overline{T}^{a})^{i}{}_{j}Q^{\dagger}_{j}, \qquad [R_{U(1)_{R}}, Q^{\dagger}_{i}] = -Q^{\dagger}_{i}$

R is not an invariant sub-algebra

more prosaically, the R-current doesn't respect the shift symmetry

$$R^{A\,\mu} = \frac{1}{F^2} T_a^{\ \mu} \chi^{\dagger} \bar{\sigma}^a T^A \chi = \left(\chi^{\dagger} \bar{\sigma}^a T^A \chi\right) \left(\delta^{\mu}_a + \frac{i}{2F^2} \chi^{j\dagger} \bar{\sigma}^{\mu} \overleftrightarrow{\partial}_a \chi_j + \dots\right)$$

with SUGRA: gauging R is OK in principle (see e.g. Drainer '95)

superpotential is charged

BUT

- 1) vanishing CC requires R broken near Planck $CC \sim F^2 |W|^2/m_{Pl}^2$
- 2) SUGRA adds N-gravitini that eat the Goldstini

gravity is breaking SUSY explicitly in our setup: no-SUGRA!

POSITIVITY

4-fermion with two derivatives

R-currents	U(1)	$U(1) \times SU(N)$	$U(1) imes SU(N_C) imes SU(N_F)$
	$(\partial\chi^\dagger)\chi^\dagger(\partial\chi)\chi$	$\partial_\mu ar\chi_a a\chi_b \partial^\mu \chi^a \chi^b$	$\partial\chi^{\dagger}{}^{lpha}_a\chi^{\dagger}{}^{eta}_b\partial\chi^a_lpha\chi^b_eta$
		$\partial_\mu ar\chi_a a\chi_b \partial^\mu \chi^b \chi^a$	$\partial \chi^{\dagger}{}^{lpha}_a \chi^{\dagger}{}^{eta}_b \partial \chi^a_eta \chi^b_lpha$
			$\partial \chi^{\dagger}{}^{lpha}_a \chi^{\dagger}{}^{eta}_b \partial \chi^b_lpha \chi^a_eta$
			$\partial\chi^{\dagger}{}^{lpha}_a\chi^{\dagger}{}^{eta}_b\partial\chi^b_{eta}\chi^a_{lpha}$

$$R^{A\,\mu} = \frac{1}{F^2} T_a{}^{\mu} \chi^{\dagger} \bar{\sigma}^a T^A \chi = \left(\chi^{\dagger} \bar{\sigma}^a T^A \chi\right) \left(\delta^{\mu}_a + \frac{i}{2F^2} \chi^{j\dagger} \bar{\sigma}^{\mu} \overleftrightarrow{\partial}_a \chi_j + \ldots\right)$$