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Why not an extended Higgs sector?

• The fermion and gauge boson sectors of the Standard Model

(SM) are not of minimal form (“Who ordered that?”). So,

why should the spin-0 (scalar) sector be minimal?

• Extended Higgs sectors can provide a dark matter candidate.

• Extended Higgs sectors can modify the electroweak phase

transition and facilitate baryogenesis.

• Extended Higgs sectors can enhance vacuum stability.

• Models of new physics beyond the SM often require additional

scalar Higgs states. E.g., two Higgs doublets are required in

the minimal supersymmetric extension of the SM (MSSM).



Extended Higgs sectors are highly constrained

• The electroweak ρ parameter is very close to 1.

• One neutral Higgs scalar of the extended Higgs sector must
be SM-like (and identified with the Higgs boson at 125 GeV).

• At present, only one Higgs scalar has been observed.

• Higgs-mediated flavor-changing neutral currents (FCNCs) are
suppressed.

• Charged Higgs exchange at tree level (e.g. in B̄ → D(∗)τ−ντ)
and at one-loop (e.g. in b → sγ) can significantly constrain
the charged Higgs mass and the Yukawa couplings.

• If the scale that governs the non-SM-like Higgs bosons is
close to the electroweak scale, is the naturalness problem of
electroweak symmetry breaking exacerbated?



A SM-like Higgs boson in an extended Higgs sector

Les us focus on the two-Higgs doublet model (2HDM) as a prototype for an

extended Higgs sector. Consider the 2HDM scalar potential,
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The Φi are hypercharge Y = 1 doublets. After minimizing the scalar potential,

〈Φ0
i 〉 = vi/

√
2 (for i = 1, 2) with v ≡ (|v1|2+|v2|2)1/2 = 2mW/g = 246 GeV.
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up to an overall rephasing, H2→ eiχH2.



The Higgs basis and the alignment limit

The neutral scalar H0
1 is aligned in field space with the vacuum expectation

value v. If
√
2H0

1 − v were a mass eigenstate, then its tree-level properties

would coincide with the Higgs boson of the SM.

In the Higgs basis, the scalar potential is given by:
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After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

Remark:

Exact alignment corresponds to Z6 = 0, which implies no H0
1–H

0
2 mixing.



For simplicity, assume a CP-conserving scalar potential (where all Higgs basis

parameters can be chosen real). The CP-even Higgs squared-mass matrix is,
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.

where mA is the mass of the CP-odd Higgs scalar.

The CP-even Higgs bosons are h and H with mh ≤ mH . Approximate

alignment arises two limiting cases:

1. m2
A ≫ (Z1 − Z5)v

2. This is the decoupling limit, where h is SM-like and

m2
A ∼ m2

H ∼ m2
H± ≫ m2

h ≃ Z1v
2.

2. |Z6| ≪ 1. Then, h is SM-like if m2
A + (Z5 − Z1)v

2 > 0. Otherwise, H is

SM-like. This is alignment with or without decoupling, depending on the

value of mA. The boundary between these two regions is fuzzy.



In particular, the CP-even neutral scalar mass eigenstates are:
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where cβ−α ≡ cos(β −α) and sβ−α ≡ sin(β −α) are defined in terms of the

mixing angle α that diagonalizes the CP-even Higgs squared-mass matrix when

expressed in the Φ1–Φ2 basis of scalar fields, {
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2−v2},
and tanβ ≡ v2/v1.

Since the SM-like Higgs boson must be approximately
√
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1 − v, it

follows that

• h is SM-like if |cβ−α| ≪ 1 (alignment with or without decoupling,

depending on the value of mA),

• H is SM-like if |sβ−α| ≪ 1 (alignment without decoupling).



The alignment limit in equations

The CP-even Higgs squared-mass matrix yields,
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LHC constraints on alignment in the 2HDM
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Taken from ATLAS-CONF-2019-005 (March 20, 2019), under the assumption

that h(125) is the lighter of the two CP-even scalars.



Achieving a SM-like Higgs boson in the 2HDM

• In the decoupling limit, mh ≪ mH, mA, mH±. The SM is the effective

low energy theory below the mass scale of the Higgs basis field H2, and h

is the SM-like Higgs boson.

• The inert doublet model (IDM): There is a Z2 symmetry in the Higgs basis

such that H2 → −H2 is the only Z2-odd field. Then Z6 = 0, and the

tree-level properties of
√
2ReH0

1 − v coincide with the SM Higgs boson.

That is, tree-level alignment is exact. Deviations from SM behavior can

appear at loop level due to the virtual exchange of the scalar states that

reside in H2. The lightest of the Z2-odd scalars is a dark matter candidate.

• Approximate alignment without decoupling. If present,

– is this a result of an accidental choice of model parameters?

– is this a consequence of an approximate (softly-broken) symmetry?

(The latter is not possible in the IDM.)



Family and Generalized CP symmetries of the 2HDM

Higgs family symmetries

Z2 : Φ1 → Φ1, Φ2 → −Φ2

Π2 : Φ1 ←→ Φ2

U(1)PQ [Peccei-Quinn]: Φ1 → e−iθΦ1, Φ2 → eiθΦ2

SO(3): Φa → UabΦb , U ∈ U(2)/U(1)Y

Generalized CP (GCP) transformations

GCP1 : Φ1 → Φ∗
1, Φ2 → Φ∗

2

GCP2 : Φ1 → Φ∗
2, Φ2 → −Φ∗

1

GCP3 : Φ1 → Φ∗
1cθ+Φ∗

2sθ, Φ2 → −Φ∗
1sθ+Φ∗

2cθ, for 0 < θ < 1
2π

where cθ ≡ cos θ and sθ ≡ sin θ.



Possible symmetries of the 2HDM scalar potential

A complete classification of possible Higgs family and generalized CP

symmetries of the scalar potential (in the Φ1–Φ2 basis) has been obtained.1

symmetry m2
22 m2

12 λ2 λ3 λ4 λ5 λ6 λ7

Z2 0 0 0

Π2 m2
11 real λ1 real λ∗

6

U(1) 0 0 0 0

SO(3) m2
11 0 λ1 λ1 − λ3 0 0 0

CP real real real real

GCP2 m2
11 0 λ1 −λ6

GCP3 m2
11 0 λ1 λ1 − λ3 − λ4 (real) 0 0

Remarks:

1. Π2 symmetry is equivalent to Z2 symmetry in a different basis.

2. Simultaneous Z2 and Π2 ⇐⇒ GCP2 in a different basis.

3. Simultaneous U(1)PQ and Π2 ⇐⇒ GCP3 in a different basis.
1I.P. Ivanov, Phys. Rev. D 77, 015017 (2008) [arXiv:0710.3490]; P.M. Ferreira, H.E. Haber and J.P. Silva,

Phys. Rev. D 79, 116004 (2009) [arXiv:0902.1537].



A symmetry origin for alignment without decoupling

Consider the CP-conserving 2HDM. The scalar potential parameters in the

Φ1–Φ2 basis are related to the corresponding Higgs basis parameters; e.g.,

Y3 =
1
2(m

2
22 −m2

11)s2β −m2
12c2β .

If m2
11 = m2

22 and m2
12 = 0, then Y3 = 0. The scalar potential minimum

condition (Y3 = −1
2Z6v

2) then yields Z6 = 0, i.e. exact alignment.2 This

leads to three possible symmetry choices:

symmetry m2
22 m2

12 λ2 λ3 λ4 λ5 λ6 λ7

GCP2 m2
11 0 λ1 −λ6

GCP3 m2
11 0 λ1 λ1 − λ3 − λ4 (real) 0 0

SO(3) m2
11 0 λ1 λ1 − λ3 0 0 0

Unfortunately, none of these symmetries can be extended to the

Yukawa interactions without generating a massless quark or some other

phenomenologically untenable feature.3

2See, e.g., P.S. Bhupal Dev and A. Pilaftsis, JHEP 1412, 024 (2014) [Erratum: JHEP 1511, 147 (2015)].
3P.M. Ferreira and J.P. Silva, Eur. Phys. J. C 69, 45 (2010).



The GCP-symmetric 2HDM with mirror fermions

The 2HDM with a GCP2 [GCP3]-symmetric scalar potential can be realized

in another basis as a Z2 ⊗ Π2 [U(1)PQ ⊗Π2] discrete symmetry, where

m2
11 = m2

22 , λ1 = λ2 , λ5 real [λ5 = 0] , m2
12 = λ6 = λ7 = 0 .

To extend this symmetry to the Yukawa sector, we introduce mirror fermions

U and U . SM two-component fermions are denoted by lower case letters

(e.g. doublet fields q = (u, d) with Y = 1/3 and singlet fields ū with

Y = −4/3); mirror singlet two-component fermions by upper case letters.

Note that Yū = YŪ = −YU . Under the symmetries,4

symmetry Φ1 Φ2 q ū U U

Z2 Φ1 −Φ2 q −ū U U

Π2 Φ2 Φ1 q U ū U

U(1) e−iθΦ1 eiθΦ2 q e−iθū eiθU e−iθU
4The down-type fermions and leptons can also be included by introducing the appropriate mirror fermions.



The Yukawa couplings consistent with the Z2⊗Π2 [U(1)PQ⊗Π2] symmetry

and the SU(2)×U(1)Y gauge symmetry are

LYuk ⊃ yt
(

qΦ2ū+ qΦ1U
)

+ h.c.

The model is not phenomenologically viable due to

• experimental limits on mirror fermion masses

• existence of a massless scalar if U(1)PQ is spontaneously broken

Thus, we introduce SU(2)×U(1)Y preserving mass terms associated with

mirror fermions,

Lmass ⊃MUUU +MuūU + h.c.

The Z2 [U(1)PQ] symmetry is preserved by the UU mass term, whereas it

is explicitly broken by the ūU mass term. The Π2 discrete symmetry is also

explicitly broken if MU 6= Mu. In all cases the symmetry breaking is soft, so

that corrections to the scalar potential squared-mass parameters are protected

from quadratic sensitivity to the cutoff scale Λ of the theory.



Effects of the broken symmetries
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corrections proportional to κ. Note that when MU = Mu, the Π2 discrete

symmetry is unbroken and hence the relation m2
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22 is protected.

Likewise,

m2
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3y2tMUMu

4π2
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which includes a finite threshold corrections proportional to κ12.

Integrating out the mirror fermions below the scale M , one generates a

splitting between λ1 and λ2 and nonzero values of λ5,6,7.



For example, above the scale M , the diagrams
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log(M/mt) ∼ O(0.1) ,

for M ∼ O(1 TeV). This is a small correction, which in first approximation

can be neglected in our analysis.

Likewise, explicit breaking of the Z2 [U(1)PQ] symmetry will generate small

nonzero values of [λ5], λ6 and λ7.



Top quark–mirror quark mixing

After electroweak symmetry breaking, the fermion mass eigenstates are obtain

by Takagi-diagonalization of the following 4× 4 mass matrix.
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where m1 ≡ ytv1/
√
2 and m2 ≡ ytv2/

√
2. States with the same electric

charge, i.e. {u,U} and {ū, U}, can separately mix (with mixing angles θL

and θR, respectively). This yields two Dirac fermions–the top quark t and its

mirror T , with squared-masses,
{
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The Higgs sector of the softly-broken GCP-symmetric 2HDM

The important parameters of the scalar potential are:

m2 ≡ 1
2(m

2
11 +m2

22) , ∆m2 ≡ m2
22 −m2

11 , R ≡ λ345

λ
, m2

12 ,

where λ345 ≡ λ3+λ4+λ5. We impose λ > 0 and R > −1 to ensure that the

vacuum is bounded from below. Solving for the potential minimum yields,
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, where ǫ ≡ cos 2β .

The positivity of v21 and v22 requires |ǫ| < 1.



Approximate alignment without decoupling

The relevant Higgs basis parameters are given by,

Z1 =
1
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2
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,
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√
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Approximate alignment without decoupling requires that |Z6| ≪ 1 and m2 ∼ O(v2).

To avoid tan β very large or very small, we consider two limiting cases: |ǫ| ≪ 1 and

|R − 1| ≪ 1.

In the limit of |ǫ| ≪ 1,
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Allowed regions of the R vs. ǫ parameter space with m = 50 GeV (left) and m = 150 GeV (right)

with softly broken GCP symmetry, taking the precision h(125) LHC data into account.

We impose constraints from precision Higgs data, which favors a SM-like

h(125). The allowed regions above correspond to those of a Type-I 2HDM.

For m = 150 GeV, typical values of mH and mA are around 250 GeV.



Regions of approximate alignment without decoupling

To be consistent with current LHC data, we shall also impose:

• Non-SM Higgs bosons in the parameter regime of alignment without

decoupling should have so far evaded LHC detection.

• Constraints on the charged Higgs mass from flavor constraints in the

Type-I 2HDM.

• Vector-like top quark bounds [we choose MT >∼ 1.2 TeV]

• Constraints on mixing between the top quark and its mirror partner5

[sin θL <∼ 0.12]

• Avoid excessive fine-tuning to keep size of the effects due to soft-GCP-

symmetry breaking terms small. This will provide upper limits on the

values of M/mt and Λ/M .
5See, e.g., A. Arhrib et al., Phys. Rev. D 97, 095015 (2018).



Future work

• Adding in the mirror fermions corresponding to the down-type quarks and
leptons.

• A detailed phenomenological study of the softly-broken GCP model to see
the interplay between the spectrum of mirror fermions and the deviations
from the alignment limit.

• Correlating the properties of the non-SM Higgs bosons with those of the
mirror fermions.

• If mirror fermions are discovered, how to use data to identify the presence
of an approximate GCP symmetry and to distinguish between GCP2 and
GCP3.

• Assessing the extent of the fine-tuning of parameters in models of
approximate alignment without decoupling (in the presence of an
approximate symmetry), beyond the one fine-tuning required to set the
electroweak symmetry breaking scale.


