

Symmetries for the 4HDM

- Extensions of abelian symmetry groups --- [arXiv: 2305.05207]
- And a look towards future work
- **†** School of physics and Astronomy, Sun Yat-Sen University

[1] Review & Motivation

- Partial list of 4HDM literature
- Many use discrete groups in model building
- Talk by Igor, first day 13 Sep
- Q: Which to choose? Guess work?
- A: Some math results needed to guide phenomenological search

[9]	D. Wyler, Phys. Re	ev. D	19 , 3369 (1979) doi:10.110	03/P	hysRevD.19.3369		
10]	M. Leurer, Y. Ni	Leurer, Y. Ni [33] L. Lavoura, Phys. Rev. D 44, 16 13(93)90112-3 [a [34] L. Lavoura, Phys. Rev. 1 [54] V. González Felipe		44 ,	1610-1612 (1991) doi:10.1103/PhysRevD.44.1610		
[1]	R. González Felipe			[54]	V. Keus, S. F. King and S. Moretti, Phys. Rev. D 90 , no.7, 075015 (2014) doi:10.1103/PhysRevD.90.075015 [arXiv:1408.0796 [hep-ph]].		
	no.7, 2953 (2014) c	[35]	N. G. Deshpande doi:10.1103/PhysRevD.4	[55]	E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001) doi:10.1103/PhysRevD.64.113012		
[2]	R. Gonzalez Felip doi:10.1103/PhysR	[36]	L. Lavoura, Phys.	[56]	[arXiv:nep-ph/0106291 [nep-ph]]. X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 04, 039 (2006) doi:10.1088/1126-		
[3]	R. González Felip	[37]	G. Cree and H. E. Loga		6708/2006/04/039 [arXiv:hep-ph/0601001 [hep-ph]].		
[4]	I. Bree, S. Carrol	[0.0]	arXiv:1106.4039 [hep-ph	[57]	W. Grimus and L. Lavoura, JHEP 09 , 106 (2008) doi:10.1088/1126-6708/2008/09/106 [arXiv:0809.0226 [hep-ph]].		
	doi:10.1140/epjc/s	[38]	M. A. Arroyo-Ureña, J. 1 45, no.2, 023118 (2021)	[58]	W. Grimus and L. Lavoura, Phys. Lett. B 671 , 456-461 (2009)		
[5]	S. Pakvasa and H. 2	[39]	W. Rodejohann and U. [arXiv:1903.00983 [hep-p	[59]	W. Grimus and L. Lavoura, JHEP 04, 013 (2009) doi:10.1088/1126-6708/2009/04/013		
[6]	E. Ma, Phys. Rev.	[40]	B. L. Gonçalves, M. Kna		[arXiv:0811.4766 [hep-ph]].		
l7]	E. Derman and H.	[41]	R. A. Porto and A. Zee.	[60]	W. Grimus and L. Lavoura, Phys. Lett. B 687 , 188-193 (2010) doi:10.1016/j.physletb.2010.03.025 [arXiv:0912.4361 [hep-ph]].		
18]	G. A. Christos, Au	[]	[arXiv:0712.0448 [hep-ph	[61]	W. Grimus, L. Lavoura and P. O. Ludl, J. Phys. G 36 , 115007 (2009) doi:10.1088/0954-		
L9]	S. Rajpoot, Phys.	[42]	R. A. Porto and A. Zee	ני-ן א נ	3899/36/11/115007 [arXiv:0906.2689 [hep-ph]].		
20]	T. Kobayashi, Lett	[49]	A E Cáranna Hamánd	[62]	P. M. Ferreira and L. Lavoura, [arXiv:1111.5859 [hep-ph]].		
21]	C. H. Albright, doi:10.1103/PhysR	[43]	05 , 215 (2021) doi:10.10	[63]	N. W. Park, K. H. Nam and K. Siyeon, Phys. Rev. D 83, 056013 (2011) doi:10.1103/PhysRevD.83.056013 [arXiv:1101.4134 [hep-ph]].		
22]	M. Drees, Int. J. M	[44]	V. V. Vien, Nucl. Phys.	[64]	Y. BenTov, X. G. He and A. Zee, JHEP 12 , 093 (2012) doi:10.1007/JHEP12(2012)093		
23]	H. E. Haber and Y	[45]	N. G. Desnpande and E.	[e=1	[arXiv:1208.1062 [nep-pn]].		
24]	K. Griest and M. S	[46]	D. Meloni, S. Mori doi:10.1016/j.physletb.20		Y. Grossman and C. Peset, JHEP 04, 033 (2014) doi:10.1007/JHEP04(2014)0. [arXiv:1401.1818 [hep-ph]].		
25]	K. Griest and M. S	[47]	L. Lavoura, J. Phys. G 3 [hep-ph]].	[66]	A. E. Nelson and L. Randall, Phys. Lett. B 316 , 516-520 (1993) doi:10.1016/0370-2693(93)91037- N arXiv:hep-ph/9308277 [hep-ph]].		
26]	M. Masip and A. R [arXiv:hep-ph/9500	[48]	D. Meloni, S. Mori	[67]	N. Krasnikov, G. Kreyerhoff and R. Rodenberg, Nuovo Cim. A 107, 589-596 (1994)		
27]	Y. Grossman, N	[40]	doi:10.1016/j.physletb.20	[68]	doi:10.1007/BF02768793		
28]	E. Ma, Phys. Rev.	[49]	(2011) doi:10.1007/JHEI	[00]	[arXiv:hep-ph/0005113 [hep-ph]].		
29]	E. Ma, Phys. Rev.	[50]	R. de Adelhart Toorop doi:10.1016/j.nuclphysb.	[69]	G. Marshall and M. Sher, Phys. Rev. D 83, 015005 (2011) doi:10.1103/PhysRevD.83.015005 [arXiv:1011.3016 [hep-ph]].		
B 0]	T. V. Duong and I	[51]	C. Bonilla, J. Herms, O.	[70]	H. Kawase, JHEP 12 , 094 (2011) doi:10.1007/JHEP12(2011)094 [arXiv:1110.3861 [hep-ph]].		
31]	A. Franklin, Rev. 1	[52]	I. P. Ivanov and V. Ket	[71]	T. E. Clark, S. T. Love and T. ter Veldhuis, Phys. Rev. D 85, 015014 (2012)		
32] N.	N. G. Deshpand		[arXiv:1203.3426 [hep-ph	[70]	doi:10.1103/PhysRevD.85.015014 [arXiv:1107.3116 [hep-ph]].		
doi:10.1103/PhysR		[53]	J. L. Diaz-Cruz and doi:10.1016/i.nuclphysb.	[72]	R. ragyu, $[ar_{A}(v):1204.0424]$ [nep-pn]].		
				[73]	B. Dutta and Y. Mimura, Phys. Lett. B 790, 589-594 (2019) doi:10.1016/j.physletb.2019.01.065 [arXiv:1810.08413 [hep-ph]].		

[2] Rephasing & Permutation transformation

 $rac{2\pi i n_k}{N}$

with yet sen university

The groups: abelian
$$\phi_k \mapsto \phi_k e$$

 $\mathbb{Z}_N \simeq \langle a \rangle$
 $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times ... \simeq \langle a, a', ... \rangle$

- Not all are symmetries of 4HDM
- Igor et al, [arXiv:1112.1660]

•

• Symmetry of 4HDM --- order < 8

 $\mathbb{Z}_8, \ \mathbb{Z}_7, \ \mathbb{Z}_6, \ \mathbb{Z}_5, \ \mathbb{Z}_4, \ \mathbb{Z}_3, \ \mathbb{Z}_2, \\ \mathbb{Z}_2 \times \mathbb{Z}_2, \ \mathbb{Z}_4 \times \mathbb{Z}_2, \ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \ \mathbb{Z}_4 \times \mathbb{Z}_4$

<u>https://github.com/JiazhenShao/4HDM-</u>
 <u>Toolbox.git</u> --- my code, 4HDM toolbox

• The groups: non-abelian, List of nonabelian symmetry of 4HDM ?

- Start with rephasing symmetry group, e.g. $A = \langle a \rangle$
- Add permutation symmetry --- we don't consider other symmetries in this work
- What permutation? don't want to guess.
- Inspired by Igor et al, [arXiv:1206.7108], [arXiv:1210.6553], define $b \in Aut(A)$.

• $b^{-1}A b = A$, b as automorphism of $A : b \in Aut(A) \cdot b^{-1}a b = a'$. As an equation

Renormalizable:
$$V = m_{ij}^2 (\phi_i^{\dagger} \phi_j) + \Lambda_{ijkl} (\phi_i^{\dagger} \phi_j) (\phi_k^{\dagger} \phi_l)$$

Potential with abelian symmetry A: $V(A) = V_0 + V'(A)$.

Potential with additional permutation symmetry b: specify relation among coefficients

Classify discrete symmetry groups of 4HDM scalar sector

- For A in \mathbb{Z}_8 , \mathbb{Z}_7 , \mathbb{Z}_6 , \mathbb{Z}_5 , \mathbb{Z}_4 , \mathbb{Z}_3 , \mathbb{Z}_2 do:
 - Find out Aut(A)
 - Determine and solve equation $b^{-1}ab = a'$
 - Find out the group, see whether it's a symmetry of 4HDM potential

- Using 4HDM toolbox https://github.com/JiazhenShao/4HDM-Toolbox.git
- **Unique** choice of Z_5 4HDM model, Invariant under $Z_5 \simeq \langle a \rangle$:

$$V(\mathbb{Z}_{5}) = V_{0} + \lambda_{1}(\phi_{2}^{\dagger}\phi_{1})(\phi_{4}^{\dagger}\phi_{1}) + \lambda_{2}(\phi_{3}^{\dagger}\phi_{4})(\phi_{2}^{\dagger}\phi_{4}) + \lambda_{3}(\phi_{1}^{\dagger}\phi_{2})(\phi_{3}^{\dagger}\phi_{2}) + \lambda_{4}(\phi_{4}^{\dagger}\phi_{3})(\phi_{1}^{\dagger}\phi_{3}) + \lambda_{5}(\phi_{1}^{\dagger}\phi_{3})(\phi_{2}^{\dagger}\phi_{4}) + \lambda_{6}(\phi_{4}^{\dagger}\phi_{1})(\phi_{3}^{\dagger}\phi_{2}) + h.c.$$

$$V_0 = \sum_{i=1}^4 \left[m_{ii}^2 (\phi_i^{\dagger} \phi_i) + \Lambda_{ii} (\phi_i^{\dagger} \phi_i)^2 \right] + \sum_{i < j} \left[\Lambda_{ij} (\phi_i^{\dagger} \phi_i) (\phi_j^{\dagger} \phi_j) + \tilde{\Lambda}_{ij} (\phi_i^{\dagger} \phi_j) (\phi_j^{\dagger} \phi_i) \right]$$

$$a = \eta \cdot \operatorname{diag}(\eta, \eta^2, \eta^3, 1) = \operatorname{diag}(\eta^2, \eta^{-2}, \eta^{-1}, \eta), \quad \eta \equiv e^{2\pi i/5}, \quad \eta^5 = 1.$$

[7] Abelian group $A = Z_5$ ---- looking for equations

[8] Abelian group $A = Z_5$ ---- solving equations, option 1

$$b^{-1}ab = a^2 \Leftrightarrow ab = ba^2$$
$$a = \operatorname{diag}(\eta^2, \eta^{-2}, \eta^{-1}, \eta), \quad \eta \equiv e^{2\pi i/5}, \quad \eta^5 = 1.$$

$$GA(1,5) \simeq \langle a, b | a^5 = b^4 = e, b^{-1}ab = a^2 \rangle$$

 $V'(\mathbb{Z}_5) = \lambda_1(\phi_2^{\dagger}\phi_1)(\phi_4^{\dagger}\phi_1) + \lambda_2(\phi_3^{\dagger}\phi_4)(\phi_2^{\dagger}\phi_4) + \lambda_3(\phi_1^{\dagger}\phi_2)(\phi_3^{\dagger}\phi_2) + \lambda_4(\phi_4^{\dagger}\phi_3)(\phi_1^{\dagger}\phi_3) + \lambda_5(\phi_1^{\dagger}\phi_3)(\phi_2^{\dagger}\phi_4) + \lambda_6(\phi_4^{\dagger}\phi_1)(\phi_3^{\dagger}\phi_2) + h.c.$

 $V'(GA(1,5)) = \lambda[(\phi_2^{\dagger}\phi_1)(\phi_4^{\dagger}\phi_1) + (\phi_3^{\dagger}\phi_4)(\phi_2^{\dagger}\phi_4) + (\phi_1^{\dagger}\phi_2)(\phi_3^{\dagger}\phi_2) + (\phi_4^{\dagger}\phi_3)(\phi_1^{\dagger}\phi_3)] + \lambda'[(\phi_1^{\dagger}\phi_3)(\phi_2^{\dagger}\phi_4) + (\phi_4^{\dagger}\phi_1)(\phi_3^{\dagger}\phi_2)] + h.c.$

[10] Option 2, extend by Z_2

$$D_5 \simeq \langle a, b | a^5 = b^2 = e, b^{-1}ab = a^4 \rangle$$
 Subgroup of $GA(1,5)$

 $V'(D_5) = \lambda_1 [(\phi_2^{\dagger} \phi_1)(\phi_4^{\dagger} \phi_1) + (\phi_1^{\dagger} \phi_2)(\phi_3^{\dagger} \phi_2)] + \lambda_2 [(\phi_3^{\dagger} \phi_4)(\phi_2^{\dagger} \phi_4) + (\phi_4^{\dagger} \phi_3)(\phi_1^{\dagger} \phi_3)] + \lambda_5 (\phi_1^{\dagger} \phi_3)(\phi_2^{\dagger} \phi_4) + \lambda_6 (\phi_4^{\dagger} \phi_1)(\phi_3^{\dagger} \phi_2) + h.c.$

- Some model can't be extended: Z₈
 CP conservation: T₇
 Many choices of
 - Z_6, Z_4 models
- 4. Some model Z_4 ,has different extensions: D_4, Q_4 --- appendix B
- 5. Novel case: GA(1,5)

A	$\operatorname{extension}$	G	G	irreps
\mathbb{Z}_2				
\mathbb{Z}_3	$\mathbb{Z}_3 \rtimes \mathbb{Z}_2$	S_3	6	1 + 1 + 2
\mathbb{Z}_4 3	$\mathbb{Z}_4 \rtimes \mathbb{Z}_2$	D_4	8	1 + 1 + 2 or $2 + 2$
	\mathbb{Z}_4 . \mathbb{Z}_2 4	Q_4	8	1 + 1 + 2
\mathbb{Z}_5	$\mathbb{Z}_5 \rtimes \mathbb{Z}_4$	GA(1,5)	5 20	4
_	$\mathbb{Z}_5 times \mathbb{Z}_2$	D_5	10	2+2
\mathbb{Z}_6 3	$\mathbb{Z}_6 \rtimes \mathbb{Z}_2$	D_6	12	1 + 1 + 2 or $2 + 2$
\mathbb{Z}_7	$\mathbb{Z}_7 \rtimes \mathbb{Z}_3$	T_7 2	21	1+3
\mathbb{Z}_8	1			

• The rest $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_4 \times \mathbb{Z}_4$

Much more involved. Why? For starters,

- $Aut(Z_2 \times Z_2 \times Z_2) \simeq SL(3,2), |SL(3,2)| = 168, 179$ subgroups
- $Aut(Z_4 \times Z_4) \simeq GL(2, Z_4), |GL(2, Z_4)| = 96, 234$ subgroups
- $Z_4 \times Z_4$: involves transformations other than rephasing & permutation

Thanks for

- Me: 4th year undergraduate. Seeking graduate supervisors.
- Really welcome to discuss if we share interests

A	$\operatorname{Aut}(A)$		A	$\operatorname{Aut}(A)$
\mathbb{Z}_2	$\{e\}$		$\mathbb{Z}_2 imes \mathbb{Z}_2$	S_3
\mathbb{Z}_3	\mathbb{Z}_2		$\mathbb{Z}_2 imes \mathbb{Z}_4$	D_4
\mathbb{Z}_4	\mathbb{Z}_2	\mathbb{Z}_2	$2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	$SL(3,2)\simeq PSL(2,7)$
\mathbb{Z}_5	\mathbb{Z}_4		$\mathbb{Z}_4 imes \mathbb{Z}_4$	$GL(2,\mathbb{Z}/4\mathbb{Z})$
\mathbb{Z}_6	\mathbb{Z}_2			
\mathbb{Z}_7	\mathbb{Z}_6			
\mathbb{Z}_8	$\mathbb{Z}_2 imes \mathbb{Z}_2$			

Table 1: The list of all finite abelian symmetry groups A of the 4HDM scalar sector and their automorphism groups Aut(A).

[B1] Why sending b_{ij} to 1? Additional equation $b^n = \cdots$

 $a \mapsto a^3$

$\rightarrow a^3$	$\mathbb{Z}_4 \text{ option 1:} a_1 = \sqrt{i} \cdot \operatorname{diag}(i, -1, -i, 1)$
	\mathbb{Z}_4 option 2: $a_2 = \operatorname{diag}(i, -i, 1, 1)$
$a \sim a^2 \epsilon$	\mathbb{Z}_4 option 3: $a_3=i^{3/4}\operatorname{diag}(i,i,-i,1)$
	$\Rightarrow ab = ba^3 \cdot i^r, \ a = \sqrt{i} \cdot \operatorname{diag}(i, -1, -i, 1)$
$\begin{pmatrix} 0 & 0 & b_{13} & 0 \\ 0 & b & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} b_{13}b_{31} & 0 & 0 & 0 \\ 0 & b^2 & 0 & 0 \end{pmatrix}$

$$b = \begin{pmatrix} 0 & 0 & b_{13} & 0 \\ 0 & b_{22} & 0 & 0 \\ b_{31} & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{44} \end{pmatrix}, \quad b^2 = \begin{pmatrix} b_{13}b_{31} & 0 & 0 & 0 \\ 0 & b_{22}^2 & 0 & 0 \\ 0 & 0 & b_{13}b_{31} & 0 \\ 0 & 0 & 0 & b_{44}^2 \end{pmatrix} \propto \mathbf{1}_4 \text{ or } a^2$$

Option 1: Split extension

$$D_4 \simeq \langle a, b | a^4 = e, \frac{b^2}{a^2} = e, b^{-1}ab = a^3 \rangle$$

- 13 real free parameters in $V'(D_4)$
- D_4 have a copy of $Z_2 = \langle b \rangle$

Option 2: Non-split

$$Q_4 \simeq \langle a, b \, | \, a^4 = e, \frac{b^2}{a^2} = \frac{a^2}{a^2}, b^{-1}ab = a^3 \, \rangle$$

- 9 real free parameters in $V'(Q_4)$ --- less but not too few
- Q_4 don't have a copy of $Z_2 = \langle b \rangle$

$$\begin{split} V_{1}(\mathbb{Z}_{4}) &= \lambda_{1}(\phi_{1}^{\dagger}\phi_{2})(\phi_{1}^{\dagger}\phi_{4}) + \lambda_{2}(\phi_{2}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{3}) + \lambda_{3}(\phi_{1}^{\dagger}\phi_{3})^{2} \\ &+ \lambda_{4}(\phi_{4}^{\dagger}\phi_{1})(\phi_{4}^{\dagger}\phi_{3}) + \lambda_{5}(\phi_{3}^{\dagger}\phi_{2})(\phi_{3}^{\dagger}\phi_{4}) + \lambda_{6}(\phi_{2}^{\dagger}\phi_{4})^{2} \\ &+ \lambda_{7}(\phi_{1}^{\dagger}\phi_{2})(\phi_{4}^{\dagger}\phi_{3}) + \lambda_{8}(\phi_{1}^{\dagger}\phi_{3})(\phi_{4}^{\dagger}\phi_{2}) + \lambda_{9}(\phi_{1}^{\dagger}\phi_{3})(\phi_{2}^{\dagger}\phi_{4}) + \lambda_{10}(\phi_{1}^{\dagger}\phi_{4})(\phi_{2}^{\dagger}\phi_{3}) + h.c. \end{split}$$

Overall U(1) invariance automatically satisfied

 $U(4)/U(1) \simeq PSU(4) \simeq SU(4)/Z(SU(4)) \simeq SU(4)/\mathbb{Z}_4$

- *a* is *PSU*(4) transformation
- Represented by SU(4) matrix factor out the center of SU(4)
- The center (elements commuting with all others) looks like : $\{\mathbf{1}_4, i\mathbf{1}_4, -\mathbf{1}_4, -i\mathbf{1}_4\}$
- Elements of PSU(4): cosets $\{a, ia, -a, -ia\}$ with $a \in SU(4)$

a is PSU(4) transformation, technically represented by SU(4) matrix with i^r , r = 1,2,3,4 difference ignored.

[C3] Solve equations --- e.g. $b^{-1}a b = a^3$

- How to solve $b^{-1}a b = a^3$? b as U(4) matrix
- Multiply on the left by *b*
- $\Rightarrow ab = ba^3$
- $V[(\phi_i^{\dagger}\phi_j)]$ don't feel overall phase shift $U(4)/U(1) \simeq SU(4)/Z_4$
- $\Rightarrow ab = ba^3 \cdot i^r$, r = 0,1,2,3 b as SU(4) matrix
- We can write the matrix explicitly

[D1] Abelian group $A = Z_8$ ---- looking for equations

- Automorphism group $\operatorname{Aut}(\mathbb{Z}_8) = \mathbb{Z}_2 \times \mathbb{Z}_2$
- Three *b* choices, $b^2 = e$

- Just to check : $a \mapsto a^3 \mapsto a^9 = a$; $a^2 \mapsto a^6 \mapsto a^{18} = a^2 \dots$
- $b^{-1}a b = a^n$, n = 3, -1, 5

$$b = \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}, \quad a = \eta^{1/4} \cdot \begin{pmatrix} \eta & 0 & 0 & 0 \\ 0 & \eta^2 & 0 & 0 \\ 0 & 0 & \eta^4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\eta^{1/4} \begin{pmatrix} \eta b_{11} & \eta b_{12} & \eta b_{13} & \eta b_{14} \\ \eta^2 b_{21} & \eta^2 b_{22} & \eta^2 b_{23} & \eta^2 b_{24} \\ \eta^4 b_{31} & \eta^4 b_{32} & \eta^4 b_{33} & \eta^4 b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix} = \eta^{3/4} \eta^{2r} \begin{pmatrix} \eta^3 b_{11} & \eta^6 b_{12} & \eta^4 b_{13} & b_{14} \\ \eta^3 b_{21} & \eta^6 b_{22} & \eta^4 b_{23} & b_{24} \\ \eta^3 b_{31} & \eta^6 b_{32} & \eta^4 b_{33} & b_{34} \\ \eta^3 b_{41} & \eta^6 b_{42} & \eta^4 b_{43} & b_{44} \end{pmatrix}$$

Compare term by term ---- no $b \in PSU(4)$ solutions

 \Rightarrow same goes for n = -1, 5. sometimes have non-zero b_{ij} , but not enough to make b invertable

[E1] Rephasing symmetries & abelian symmetries

$$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \qquad a_{1} = \sqrt{i} \cdot \begin{pmatrix} i & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad a_{2} = \sqrt{i} \cdot \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- Commute in PSU(4) : $a_1a_2 = -ia_2a_1$
- a_2 : another type of symmetry

$$b = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad a = \begin{pmatrix} e^{i\theta_1} & 0 & 0 & 0 \\ 0 & e^{i\theta_2} & 0 & 0 \\ 0 & 0 & e^{i\theta_3} & 0 \\ 0 & 0 & 0 & e^{i\theta_4} \end{pmatrix}, \quad a' = \begin{pmatrix} e^{i\theta_2} & 0 & 0 & 0 \\ 0 & e^{i\theta_1} & 0 & 0 \\ 0 & 0 & e^{i\theta_4} & 0 \\ 0 & 0 & 0 & e^{i\theta_3} \end{pmatrix}$$

