PQ field with small self-coupling: evolution in early universe and implications for ALP DM

Paweł Kozów[†]

[†]University of Warsaw

Scalars 2023, University of Warsaw, Faculty of Physics

based on PK, M. Olechowski[†], JCAP 06 (2023) 043

2 Corrections

3 Φ evolution during inflation – geometric corrections

4 Φ evolution after inflation – thermal corrections

(Numerical) Results: influence of \sim each correction on (warm) n_a

6 Summary/Conclusions

Scenario: non-trivial evolution of $\Phi_{PQ} \equiv \Phi$ in the early universe

- ("saxion") $S \equiv |\Phi|/\sqrt{2}$ obtains large field value S_i during inflation (stochastic inflationary fluctuations) [Starobinsky, Yokoyama, 94'] see talk by O. LEBEDEV
- $\Phi \sim$ homogeneous with large initial value \Rightarrow ALP can contribute to both CDM and WDM
- one can start with the usual Mexican hat PQ potential... :

$$V(\Phi) = \lambda_{\Phi} \left(|\Phi|^2 - rac{f_a^2}{2}
ight)^2 = rac{\lambda_{\Phi}}{4} \left(S^2 - f_a^2
ight)^2$$

... $S_i \gg f_a \Rightarrow$ warm axions can be produced after onset of S oscillations (parametric resonance) e.g. [Harigaya, Ibe, Kawasaki, Yanagida, 15'] see talk by C. LIN $\lambda_{\Phi} \lesssim 10^{-20}$ (DM isocurvature) \Rightarrow one should consider corrections to $V(\Phi)$

e.g. non-renormalizable corrections explicitly breaking $U(1)_{PQ}$ used as source of kinetic misalignment mechanism e.g. [Co, Harigaya, 19'], [Co, Hall, Harigaya, 19'], [Co, Hall, Harigaya, Olive, Verner, 20']

• In the talk we investigate other types of corrections...

2 Corrections

(3) Φ evolution during inflation – geometric corrections

40 Φ evolution after inflation – thermal corrections

(Numerical) Results: influence of \sim each correction on (warm) n_a

6 Summary/Conclusions

Radiative potential (Coleman-Weinberg, CW)

• Gildener-Weinberg

$$\begin{split} \lambda_{\Phi}(\mu) &= 0\\ \mathcal{L} \supset -\sum_{i} \frac{1}{2} \lambda_{\Phi\phi_{i}} \left|\Phi\right|^{2} \phi_{i}^{2} - \sum_{j} y_{j} \Phi \overline{\psi}_{j} \psi_{j} \\ \mathcal{V}(\Phi) &= \frac{1}{64\pi^{2}} \sum_{\text{scalars}} M_{\phi_{i}}^{4} \left[\ln \left(\frac{M_{\phi_{i}}^{2}}{\mu^{2}}\right) - \frac{3}{2} \right] - \frac{4}{64\pi^{2}} \sum_{\text{fermions}} M_{\psi_{j}}^{4} \left[\ln \left(\frac{M_{\psi_{j}}^{2}}{\mu^{2}}\right) - \frac{3}{2} \right] \\ M_{\phi_{i}}^{2} &= m_{i}^{2} + \lambda_{\Phi\phi_{i}} \left|\Phi\right|^{2} , \qquad M_{\psi_{j}}^{2} = y_{j}^{2} \left|\Phi\right|^{2} \end{split}$$

For simplicity we will assume:

۲

$$y_j = y,$$
 $\lambda_{\Phi\phi_i} = \lambda,$ $m_i^2 = m^2,$ $(m^2/\mu^2 \lesssim e)$

 Geometric correction: relevant ∼only during inflation(≈ de Sitter) The radiative potential receives corrections from curvature dependent invariants

[Markkanen, Nurmi, Rajantie, Stopyra, 18'], [Hardwick, Markkanen, Nurmi, 19']

$$V(\Phi) = \frac{1}{64\pi^2} \sum_{\text{bosons}} \left\{ M_{\phi_i}^4 \left[\ln\left(\frac{\left|M_{\phi_i}^2\right|}{\mu^2}\right) - \frac{3}{2} \right] + \frac{R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - R_{\mu\nu}R^{\mu\nu}}{90} \ln\left(\frac{\left|M_{\phi_i}^2\right|}{\mu^2}\right) \right\} - \frac{4}{64\pi^2} \sum_{\text{fermions}} \left\{ M_{\psi_j}^4 \left[\ln\left(\frac{\left|M_{\psi_j}^2\right|}{\mu^2}\right) - \frac{3}{2} \right] - \frac{\frac{7}{8}R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + R_{\mu\nu}R^{\mu\nu}}{90} \ln\left(\frac{\left|M_{\psi_j}^2\right|}{\mu^2}\right) \right\} - \frac{M_{\phi_i}^2}{90} = m^2 + \lambda |\Phi|^2 + \left(\xi - \frac{1}{6}\right) R, \qquad M_{\psi_j}^2 = y^2 |\Phi|^2 + \frac{1}{12}R$$

where $\mathcal{L} \supset -\sum_{\text{scalars}} \frac{1}{2} \xi R \phi_i^2$

 Thermal corrections, relevant at ~earlier post-inflationary stage due to φ_i and/or ψ_j in thermal bath (thermalization, thermal corrections to V(Φ)) the goal is to check influence of 1., 2. on *axion* contribution to CDM and WDM

6/30

3 Φ evolution during inflation – geometric corrections

4 Φ evolution after inflation – thermal corrections

(Numerical) Results: influence of \sim each correction on (warm) n_a

6 Summary/Conclusions

Interesting dependence of $V_{inf}(\Phi)$ on H_I , if spectrum of particles is similar to supersymmetric one

$$N_s = 4N_f, \qquad y^2 = (1-\delta)\lambda, \qquad \delta \lesssim 1$$

We will assume $H_I \gtrsim m \Rightarrow$ therefore geometric corrections imply enhancement of S_i $\xi_{PQ} = 0, \xi < 1/4$ soon after inflation $V(\Phi) \sim$ "the dashed curve" $(+\Delta V_T)$ Interesting dependence of $V_{inf}(\Phi)$ on H_I , if spectrum of particles is similar to supersymmetric one

$$N_s = 4N_f, \qquad y^2 = (1 - \delta)\lambda, \qquad \delta \lesssim 1$$

We will assume $H_I \gtrsim m \Rightarrow$ therefore geometric corrections imply enhancement of S_i $\xi_{PQ} = 0, \xi < 1/4$ soon after inflation $V(\Phi) \sim$ "the dashed curve" $(+\Delta V_T)$ Interesting dependence of $V_{inf}(\Phi)$ on H_I , if spectrum of particles is similar to supersymmetric one

$$N_s = 4N_f, \qquad y^2 = (1-\delta)\lambda, \qquad \delta \lesssim 1$$

We will assume $H_I \gtrsim m \Rightarrow$ therefore geometric corrections imply enhancement of S_i $\xi_{PQ} = 0, \ \xi < 1/4$ soon after inflation $V(\Phi) \sim$ "the dashed curve" $(+\Delta V_T)$

3 Φ evolution during inflation – geometric corrections

(4) Φ evolution after inflation – thermal corrections

(Numerical) Results: influence of \sim each correction on (warm) n_a

6 Summary/Conclusions

- We will assume ϕ_i and/or ψ_j are populated in thermal bath (unless too heavy):
 - thermal effect crucial from the very beginning... onset of oscillations $(H \sim 3m_{S, eff})$ due to thermal mass
 - .. or only later

onset of oscillations due to zero-temperature mass

We will focus of the former case:

- full potential can be approximated by a quadratic one $\frac{1}{2}\frac{\alpha}{24}T^2S^2$ \Rightarrow (s)axion production due to parametric resonance very strongly suppressed ($\dot{\omega}_k/\omega_k^2 \lesssim 1$)
- resonant production of ϕ_i and/or ψ_j also ineffective

The picture:

- ullet at early stages S oscillates in \sim quadratic potential, no resonant production
- the oscillation amplitude redshifts...

The picture breaks down around \widetilde{T} such that $\partial^2 V_{\it full}(S=0)/\partial S^2 pprox 0\ldots$

$$\widetilde{T}^2 pprox rac{3}{4\pi^2} \, rac{N_s}{n_{
m eff} \left(\widetilde{T}
ight)} \, \ln \left(rac{e\mu^2}{m^2}
ight) m^2$$

when T approaches \tilde{T} , full potential develops global minimum at $S \neq 0$ \Rightarrow Further evolution of S determined by $A_S(\tilde{T})/f_a$:

numerical simulations necessary

• scenario "A":
$$A_{S}(\widetilde{T}) \gg f_{a} \dots$$

• scenario "B":
$$A_{S}(T) \sim f_{a} \dots$$

• scenario "C": $A_{S}(\widetilde{T}) \ll f_{a}$:

• S oscillations decay very quickly due to tachyonic instability warm (s)axions produced

[Felder, Garcia-Bellido, Greene, Kofman, Linde, Tkachev, 00'], [Felder, Kofman, Linde, 01']

2 Corrections

3 Φ evolution during inflation – geometric corrections

4 Φ evolution after inflation – thermal corrections

(Numerical) Results: influence of \sim each correction on (warm) n_a

6 Summary/Conclusions

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1\cdot 10^5$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^3$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0\cdot10^3$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^3$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^{4}$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8\cdot 10^5$

 $n_{CW} \lesssim n_{CW+G}$: $n_{CW+G}/n_{CW} \sim O(5)$ for $\delta = 0.1$ and $n_{CW+G}/n_{CW} \sim O(30)$ for $\delta = 0.001$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57\cdot 10^5$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18\cdot 10^5$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2\cdot 10^3$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^3$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P ₁₀	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^{4}$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5\cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^3$	$7.9\cdot 10^5$	$5.8\cdot 10^5$

 $P_{1 \div 6, 10, 12 \div 14}$ - scenario C2, n_{CW+T} , $n_{CW+T+G} \gg n_{CW}$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57\cdot 10^5$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^5$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1\cdot 10^5$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0\cdot 10^3$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^3$	$3.0 \cdot 10^{3}$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4\cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8\cdot 10^5$

 $P_{1 \div 6, 10, 12 \div 14}$ - scenario C2, strong dependence of n_{CW+T} , n_{CW+T+G} on m/μ

- C2: barrier between global minimum and S = 0 (for some temperatures) the global minimum of the full potential has a non-negligible depth at phase transition
 - non-negligible number of particles may be produced

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1\cdot 10^5$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2\cdot 10^3$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9 \cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^3$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6\cdot 10^5$	$2.5\cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8\cdot 10^5$

P₇- scenario C1, n_{CW+T} , $n_{CW+T+G} \approx 0$

- C1: no barrier between global minimum and S = 0full potential changes with temperature and it is very shallow at $T \sim \tilde{T}$
 - the amount of warm axions very small

2 Corrections

3 Φ evolution during inflation – geometric corrections

4 Φ evolution after inflation – thermal corrections

(Numerical) Results: influence of \sim each correction on (warm) n_a

6 Summary/Conclusions

- Non-trivial evolution of $\Phi_{PQ} \Rightarrow$ very rich and interesting WDM phenomenology (very small self-coupling)
- $\bullet \Rightarrow Significant$ role is played by various corrections: radiative&&geometric, thermal
- If H_i is not too small, V_{inf} develops a new deep minimum at large Φ (i) DM isocurvature relaxed (ii) very long inflation might not be needed especially interesting are models in which ϕ_i, ψ_j have a quasi-susy spectrum
- $\bullet\,$ Post-inflationary evolution of $\Phi\,$ may be quite complicated

Thermal corrections \Rightarrow

(i) the resonant production (s)axions strongly suppressed...

(ii) ...later produced due to the tachyonic instability

(iii) n_a orders of magnitude smaller or bigger than w/o thermal corrections

(iv) no extra ingredients... necessary for thermalization (of saxion remnants)

CDM: oscillating S carries the initial PQ phase θ_i ...

BACK UP

For parameters to the left from the black/red solid lines, the S oscillations start due to the thermal mass

Some examples – lines of constant $A_S(\tilde{T})/S_{\min,0}$

MD(
$$\lambda = 10^{-7}$$
, $\delta = 0.1$) RD($\lambda = 10^{-10}$, $\delta = 10^{-2}$)

 \Rightarrow scenario B typically only when both H_I and m/μ are \sim maximal allowed \Rightarrow scenario C typically when either H_I or m/μ is smaller

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3\cdot 10^5$	$3.1\cdot 10^5$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0\cdot 10^3$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9\cdot 10^3$	$3.0 \cdot 10^{3}$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4\cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6\cdot 10^5$	$2.5\cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^3$	$7.9\cdot 10^5$	$5.8 \cdot 10^{5}$

 P_8, P_9, P_{11} - scenario B, $n_{CW+T}, n_{CW+T+G} \gg n_{CW}$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57\cdot 10^5$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18\cdot 10^5$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1\cdot 10^5$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0\cdot 10^3$	$2.2 \cdot 10^3$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9\cdot 10^3$	$3.0 \cdot 10^{3}$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4\cdot 10^4$	$8.3\cdot 10^4$
P_{13}	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6\cdot 10^5$	$2.5\cdot 10^5$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8\cdot 10^5$

 P_8, P_9, P_{11} - scenario B, geometric correction increase $n: n_{CW+T} \leq n_{CW+T+G}$

	λ	δ	m/μ	μ [GeV]	H_I [GeV]	n_{CW}	n_{CW+G}	n_{CW+T}	n_{CW+T+G}
P_1	10^{-7}	0.1	0.1	10^{9}	10^{11}	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_2	10^{-7}	0.1	0.1	10^{10}	10^{13}	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_3	10^{-7}	0.1	0.1	10^{12}	10^{13}	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_4	10^{-7}	0.1	0.1	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1\cdot 10^5$
P_5	10^{-7}	0.1	0.5	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_6	10^{-7}	0.1	0.7	10^{11}	10^{13}	42.0	207	95	5.9
P_7	10^{-7}	0.1	0.8	10^{11}	10^{13}	42.0	207	0	0
P_8	10^{-7}	0.03	0.5	10^{11}	10^{13}	84	$6.9\cdot 10^2$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_9	10^{-7}	0.01	0.5	10^{11}	10^{13}	$1.6 \cdot 10^2$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	0.01	0.5	10^{11}	10^{13}	9.0	120	490	47
P ₁₁	10^{-6}	0.001	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	10^{-7}	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4\cdot 10^4$	$8.3\cdot 10^4$
P ₁₃	10^{-8}	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^5$	$2.5 \cdot 10^{5}$
P_{14}	10^{-9}	0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^2$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$	$5.8 \cdot 10^{5}$

 $P_{1 \div 6, 10, 12 \div 14}$ – scenario C2, geometric correction decreases $n : n_{CW+T} \gtrsim n_{CW+T+G}$

thermal corrections neglected – (s)axions produced by parametric resonance:
 n_{CW+G} ≥ n_{CW}

$$n_{CW} \propto \delta^{-5/8} \lambda^{-5/4} H_I^{3/2} T^3, \qquad n_{CW+G} \propto \delta^{-1} \lambda^{-5/4} H_I^{3/2} T^3$$

dependence on m, μ very weak

• thermal corrections accounted –(s)axions produced by tachyonic instability:

- scenario C more natural than B and especially A
- C \rightarrow C1(no barrier), C2(barrier for some T)
- scenario C1 : n_{CW+T} , $n_{CW+T+G} \approx 0$
- scenario C2 : n_{CW+T} , $n_{CW+T+G} \gg n_{CW}$

$$n_{CW+T}, n_{CW+T+G} \propto \lambda^{-1/2} \left(\frac{m}{\mu}\right)^{-2} T^3$$

dependence on δ , μ and H_I much weaker, $n_{CW+T+G} \lesssim n_{CW+T}$

• dedicated numerical computations for C1 - C2 transition region, scenario B ...

scenario D: early thermalization : $T_{\mathrm{th}} > \widetilde{T}$

• interactions with thermal plasma – modification to EOM:

$$egin{aligned} \ddot{S} + \left(3H + \Gamma_{ ext{th}}
ight) \dot{S} + rac{\partial V_{ ext{eff}}}{\partial S} &= 0 \ T_{ ext{th}} &\sim rac{\lambda^2 S^2}{lpha_{ ext{th}} T} \,, & \Gamma_{ ext{th}}^{(\psi)} &\sim y^2 lpha_{ ext{th}} T \ &\Rightarrow & \mathcal{T}_{ ext{th}} &\sim \sqrt{rac{45}{4 \pi^3 g_*}} \,lpha_{ ext{th}} \lambda M_{Pl} \end{aligned}$$

early thermalization if:

$$\frac{m^2}{\mu^2} \ln\left(\frac{e\mu^2}{m^2}\right) \lesssim \frac{15 n_{\rm eff}(\widetilde{T})}{\pi g_* N_s} \, \alpha_{\rm th}^2 \lambda^2 \frac{M_{Pl}^2}{\mu^2}$$

 $\alpha_{\rm th}=\alpha_{\it s}\sim 0.1\Rightarrow {\rm RHS}$ bigger than 1, if $\mu\lesssim\lambda\cdot 10^{17}~{\rm GeV}$

Figure: The ratio of densities of warm axions produced via a parametric resonance with (n_{CW}) and without (n_{tree}) radiative corrections taken into account as a function of m^2/μ^2 . The relevant parameters are fixed as: $\delta = 0.1$ (left panel) and $\delta = 0.01$ (right panel); $H_I/\mu = 5$ (red curves) and $H_I/\mu = 10^3$ (black curves). The solid (dashed) lines correspond to situation when the axions are produced after (before) the end of the reheating process.

We will focus on

- CW with only geometric corrections (CW + G)
- CW with only thermal corrections (CW + T)
- CW with both geometric and thermal corrections (CW + T + G)

 n_{CW} , n_{CW+G} , n_{CW+T} and n_{CW+T+G} are rescaled to a common T (in units T^3) n_{CW} vs n_{tree} : $n_{CW}/n_{tree} \leq 1$ depending on m/μ , δ and H_I/μ

• Two different approximations:

$$\begin{split} n_{CW}, n_{CW+G} \sim \frac{1}{2} \left. \frac{V_{CW}}{m_S} \right|_{S=S_i} & \text{(parametric resonance)} \\ n_{CW+T}, n_{CW+T+G} \sim \left. \frac{1}{2} \frac{\Delta V_{tot}}{m_S} \right|_{T \sim \widetilde{T}} & \text{(tachyonic instability)} \\ \Delta V_{tot} = \text{(available potential energy)}, \ m_S = \text{(mass at the global minimum)} \end{split}$$

- Cold axions produced via the conventional misalignment mechanism
- n_{a, cold} often determined by stochastic processes during inflation...
 ...despite V_{full}(Φ) is in the unbroken phase for some time

saxion keeps oscillating and carries the initial PQ phase θ_i

• in the end one should compare

 $\rho_{a, warm} + \rho_{a, cold} \leftrightarrow \rho_{DM, observed}$

 \Rightarrow extra flexibility: if $\rho_{a, warm}$ too small (or vanishing...), often possible to complement with $\rho_{a, cold}$ (choice of θ_i)

Number densities (n.d.) of ALP WDM n_i (in units T^3):

- radiative corrections: n_{CW} vs n_{tree} : $n_{CW}/n_{tree} \leq 1$ (depending on m/μ , δ and H_I/μ)
 - $n_{CW} \equiv (n.d. \text{ of warm ALP for "pure" CW potential})$
 - $n_{tree} \equiv (n.d. \text{ of warm ALP for the corresponding Mexican hat potential})$
- **2** We will take n_{CW} as the reference and compare it with:
 - $n_{CW+G} \equiv (CW \text{ with only geometric corrections})$
 - $n_{CW+T} \equiv (CW \text{ with only thermal corrections})$
 - $n_{CW+T+G} \equiv (CW \text{ with both geometric and thermal corrections})$

 n_{CW} , n_{CW+G} , n_{CW+T} and n_{CW+T+G} are rescaled to a common T

• We use the full thermal potential

$$V_{T}(\Phi) = \frac{T^{4}}{2\pi^{2}} \left[\sum_{\text{bosons}} J_{+} \left(\frac{M_{\phi_{i}}}{T} \right) + 4 \sum_{\text{fermions}} J_{-} \left(\frac{M_{\psi_{j}}}{T} \right) \right]$$
$$J_{\pm}(y) = \pm \int_{0}^{\infty} x^{2} \ln \left[1 \mp \exp\left(-\sqrt{x^{2} + y^{2}} \right) \right] dx$$

Number densities (n.d.) of ALP WDM n_i :

• radiative corrections: n_{CW} vs n_{tree} : $n_{CW}/n_{tree} \leq 1$ (depending on m/μ , δ and H_I/μ)

- $n_{CW} \equiv (n.d. \text{ of warm ALP for "pure" Gildener-Weinberg potential})$
- $n_{tree} \equiv (n.d. \text{ of warm ALP for the corresponding Mexican hat potential})$
- **2** We will take n_{CW} as the reference and compare it with:
 - $n_{CW+G} \equiv (CW \text{ with only geometric corrections})$
 - $n_{CW+T} \equiv (CW \text{ with only thermal corrections})$
 - $n_{CW+T+G} \equiv (CW \text{ with both geometric and thermal corrections})$

 n_{CW} , n_{CW+G} , n_{CW+T} and n_{CW+T+G} are rescaled to a common T (and in units T^3)