PQ field with small self-coupling: evolution in early universe and implications for ALP DM

Paweł Kozów ${ }^{\dagger}$
\dagger University of Warsaw

Scalars 2023, University of Warsaw, Faculty of Physics
based on PK, M. Olechowski ${ }^{\dagger}$, JCAP 06 (2023) 043

(1) Introduction

(2) Corrections
(3) Φ evolution during inflation - geometric corrections

4 Φ evolution after inflation - thermal corrections
(5) (Numerical) Results: influence of \sim each correction on (warm) n_{a}
(6) Summary/Conclusions

Scenario: non-trivial evolution of $\Phi_{P Q} \equiv \Phi$ in the early universe

- ("saxion") $S \equiv|\Phi| / \sqrt{2}$ obtains large field value S_{i} during inflation (stochastic inflationary fluctuations) [starobinsk, Yokoyama, 94] see talk by O. LEBEDEV
- $\Phi \sim$ homogeneous with large initial value \Rightarrow ALP can contribute to both CDM and WDM
- one can start with the usual Mexican hat PQ potential... :

$$
V(\Phi)=\lambda_{\Phi}\left(|\Phi|^{2}-\frac{f_{a}^{2}}{2}\right)^{2}=\frac{\lambda_{\Phi}}{4}\left(S^{2}-f_{a}^{2}\right)^{2}
$$

$\ldots S_{i} \gg f_{a} \Rightarrow$ warm axions can be produced after onset of S oscillations (parametric resonance) e.g. [Harigaya, Ibe, Kawasaki, Yanagida, 15] see talk by C. LIN $\lambda_{\Phi} \lesssim 10^{-20}$ (DM isocurvature) \Rightarrow one should consider corrections to $V(\Phi)$
e.g. non-renormalizable corrections explicitly breaking $U(1)_{P Q}$ used as source of kinetic misalignment mechanism e.g. [Co, Harigya, 19'], [co, Hall, Harigaya, 19'], [Co, Hall, Harigya, Olive, Verner, 20']

- In the talk we investigate other types of corrections...
(1) Introduction
(2) Corrections
(3) Φ evolution during inflation - geometric corrections

4 Φ evolution after inflation - thermal corrections
(5) (Numerical) Results: influence of ~each correction on (warm) n_{a}
6) Summary/Conclusions

Radiative potential (Coleman-Weinberg, CW)

- Gildener-Weinberg

$$
\begin{gathered}
\lambda_{\Phi}(\mu)=0 \\
\mathcal{L} \supset-\sum_{i} \frac{1}{2} \lambda_{\Phi \phi_{i}}|\Phi|^{2} \phi_{i}^{2}-\sum_{j} y_{j} \Phi \bar{\psi}_{j} \psi_{j} \\
V(\Phi)=\frac{1}{64 \pi^{2}} \sum_{\text {scalars }} M_{\phi_{i}}^{4}\left[\ln \left(\frac{M_{\phi_{i}}^{2}}{\mu^{2}}\right)-\frac{3}{2}\right]-\frac{4}{64 \pi^{2}} \sum_{\text {fermions }} M_{\psi_{j}}^{4}\left[\ln \left(\frac{M_{\psi_{j}}^{2}}{\mu^{2}}\right)-\frac{3}{2}\right] \\
M_{\phi_{i}}^{2}=m_{i}^{2}+\lambda_{\Phi \phi_{i}}|\Phi|^{2}, \quad M_{\psi_{j}}^{2}=y_{j}^{2}|\Phi|^{2}
\end{gathered}
$$

For simplicity we will assume:

$$
y_{j}=y, \quad \lambda_{\Phi \phi_{i}}=\lambda, \quad m_{i}^{2}=m^{2}, \quad\left(m^{2} / \mu^{2} \lesssim e\right)
$$

1. Geometric correction: relevant \sim only during inflation(\approx de Sitter)

The radiative potential receives corrections from curvature dependent invariants
[Markkanen, Nurmi, Rajantie, Stopyra, 18'], [Hardwick, Markkanen, Nurmi, 19']

$$
\begin{aligned}
& V(\Phi)= \frac{1}{64 \pi^{2}} \sum_{\text {bosons }}\left\{M_{\phi_{i}}^{4}\left[\ln \left(\frac{\left|M_{\phi_{i}}^{2}\right|}{\mu^{2}}\right)-\frac{3}{2}\right]+\frac{R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-R_{\mu \nu} R^{\mu \nu}}{90} \ln \left(\frac{\left|M_{\phi_{i}}^{2}\right|}{\mu^{2}}\right)\right\} \\
&-\frac{4}{64 \pi^{2}} \sum_{\text {fermions }}\left\{M_{\psi_{j}}^{4}\left[\ln \left(\frac{\left|M_{\psi_{j}}^{2}\right|}{\mu^{2}}\right)-\frac{3}{2}\right]-\frac{\frac{7}{8} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}+R_{\mu \nu} R^{\mu \nu}}{90} \ln \left(\frac{\left|M_{\psi_{j}}^{2}\right|}{\mu^{2}}\right)\right\} \\
& M_{\phi_{i}}^{2}=m^{2}+\lambda|\Phi|^{2}+\left(\xi-\frac{1}{6}\right) R, \quad M_{\psi_{j}}^{2}=y^{2}|\Phi|^{2}+\frac{1}{12} R
\end{aligned}
$$

where $\mathcal{L} \supset-\sum_{\text {scalars }} \frac{1}{2} \xi R \phi_{i}^{2}$
2. Thermal corrections, relevant at ~earlier post-inflationary stage due to ϕ_{i} and/or ψ_{j} in thermal bath (thermalization, thermal corrections to $V(\Phi)$) the goal is to check influence of 1., 2. on axion contribution to CDM and WDM
(1) Introduction
(2) Corrections
(3) Φ evolution during inflation - geometric corrections
4. Φ evolution after inflation - thermal corrections
(5) (Numerical) Results: influence of \sim each correction on (warm) n_{a}
6) Summary/Conclusions

Interesting dependence of $V_{\text {inf }}(\Phi)$ on H_{l}, if spectrum of particles is similar to supersymmetric one

$$
N_{s}=4 N_{f}, \quad y^{2}=(1-\delta) \lambda, \quad \delta \lesssim 1
$$

$$
P_{\mathrm{eq}}(S) \propto S \exp \left(-\frac{8 \pi^{2}}{3} \frac{V(S)}{H_{l}^{4}}\right) \quad \rightarrow \quad S_{i} \sim S_{i n f, \min }
$$

$$
S_{i n f, \min } \approx \frac{H_{l}}{\sqrt{\delta \lambda}}, \quad \quad \frac{H_{l}^{2}}{S_{i n f, \min }^{2}} \sim O(\delta \lambda) \lesssim 10^{-8}(\mathrm{DM} \text { isocurvature })
$$

We will assume $H_{l} \gtrsim m \Rightarrow$ therefore geometric corrections imply enhancement of S_{i}

Interesting dependence of $V_{\text {inf }}(\Phi)$ on H_{l}, if spectrum of particles is similar to supersymmetric one

$$
N_{s}=4 N_{f}, \quad y^{2}=(1-\delta) \lambda, \quad \delta \lesssim 1
$$

$$
P_{\mathrm{eq}}(S) \propto S \exp \left(-\frac{8 \pi^{2}}{3} \frac{V(S)}{H_{l}^{4}}\right) \quad \rightarrow \quad S_{i} \sim S_{i n f, \min }
$$

$$
S_{i n f, \min } \approx \frac{H_{l}}{\sqrt{\delta \lambda}}, \quad \quad \frac{H_{l}^{2}}{S_{i n f, \min }^{2}} \sim O(\delta \lambda) \lesssim 10^{-8}(\mathrm{DM} \text { isocurvature })
$$

We will assume $H_{I} \gtrsim m \Rightarrow$ therefore geometric corrections imply enhancement of S_{i} $\xi_{P Q}=0, \xi<1 / 4$

Interesting dependence of $V_{\text {inf }}(\Phi)$ on H_{l}, if spectrum of particles is similar to supersymmetric one

$$
N_{s}=4 N_{f}, \quad y^{2}=(1-\delta) \lambda, \quad \delta \lesssim 1
$$

$$
P_{\mathrm{eq}}(S) \propto S \exp \left(-\frac{8 \pi^{2}}{3} \frac{V(S)}{H_{l}^{4}}\right) \quad \rightarrow \quad S_{i} \sim S_{i n f, \min }
$$

$$
S_{i n f, \min } \approx \frac{H_{l}}{\sqrt{\delta \lambda}}, \quad \quad \frac{H_{l}^{2}}{S_{i n f, \min }^{2}} \sim O(\delta \lambda) \lesssim 10^{-8}(\mathrm{DM} \text { isocurvature })
$$

We will assume $H_{l} \gtrsim m \Rightarrow$ therefore geometric corrections imply enhancement of S_{i} $\xi_{P Q}=0, \xi<1 / 4 \quad$ soon after inflation $V(\Phi) \sim$ "the dashed curve" $\left(+\Delta V_{T}\right)$
(1) Introduction
(2) Corrections
(3) Φ evolution during inflation - geometric corrections

4 Φ evolution after inflation - thermal corrections
(5) (Numerical) Results: influence of \sim each correction on (warm) n_{a}

6 Summary/Conclusions

- We will assume ϕ_{i} and/or ψ_{j} are populated in thermal bath (unless too heavy):
- thermal effect crucial from the very beginning... onset of oscillations ($H \sim 3 m_{S}$, eff) due to thermal mass
- .. or only later onset of oscillations due to zero-temperature mass

We will focus of the former case:

- full potential can be approximated by a quadratic one $\frac{1}{2} \frac{\alpha}{24} T^{2} S^{2}$ \Rightarrow (s)axion production due to parametric resonance very strongly suppressed $\left(\dot{\omega}_{k} / \omega_{k}^{2} \lesssim 1\right)$
- resonant production of ϕ_{i} and/or ψ_{j} also ineffective

The picture:

- at early stages S oscillates in \sim quadratic potential, no resonant production
- the oscillation amplitude redshifts...

The picture breaks down around \tilde{T} such that $\partial^{2} V_{\text {full }}(S=0) / \partial S^{2} \approx 0 \ldots$

$$
\widetilde{T}^{2} \approx \frac{3}{4 \pi^{2}} \frac{N_{s}}{n_{\mathrm{eff}}(\widetilde{T})} \ln \left(\frac{e \mu^{2}}{m^{2}}\right) m^{2}
$$

when T approaches \widetilde{T}, full potential develops global minimum at $S \neq 0$ \Rightarrow Further evolution of S determined by $A_{S}(\widetilde{T}) / f_{a}$:
numerical simulations necessary

- scenario " A ": $\boldsymbol{A}_{\boldsymbol{S}}(\widetilde{\boldsymbol{T}}) \gg \boldsymbol{f}_{\boldsymbol{a}} \ldots$
- scenario " B ": $\boldsymbol{A}_{\boldsymbol{S}}(\tilde{\boldsymbol{T}}) \sim \boldsymbol{f}_{\boldsymbol{a}} \ldots$
- scenario " C ": $\boldsymbol{A}_{\boldsymbol{S}}(\widetilde{\boldsymbol{T}}) \ll \boldsymbol{f}_{\boldsymbol{a}}$:
- S oscillations decay very quickly due to tachyonic instability warm (s)axions produced
[Felder, Garcia-Bellido, Greene, Kofman, Linde, Tkachev, 00'], [Felder, Kofman, Linde, 01']
(1) Introduction
(2) Corrections
(3) Φ evolution during inflation - geometric corrections

4 Φ evolution after inflation - thermal corrections
(5) (Numerical) Results: influence of ~each correction on (warm) n_{a}
6) Summary/Conclusions

	λ	δ	m / μ	$\mu[\mathrm{GeV}]$	$H_{I}[\mathrm{GeV}]$	$n_{C W}$	$n_{C W+G}$	$n_{C W+T}$	$n_{C W+T+G}$
P_{1}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{9}}$	$\mathbf{1 0}^{\mathbf{1 1}}$	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_{2}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 0}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_{3}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 2}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_{4}	10^{-7}	0.1	$\mathbf{0 . 1}$	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_{5}	10^{-7}	0.1	$\mathbf{0 . 5}$	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_{6}	10^{-7}	0.1	$\mathbf{0 . 7}$	10^{11}	10^{13}	42.0	207	95	5.9
P_{7}	10^{-7}	0.1	$\mathbf{0 . 8}$	10^{11}	10^{13}	42.0	207	0	0
P_{8}	$10^{-\mathbf{7}}$	$\mathbf{0 . 0 3}$	0.5	10^{11}	10^{13}	84	$6.9 \cdot 10^{2}$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_{9}	10^{-7}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	$\mathbf{0 . 0 0 1}$	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	$\mathbf{1 0}$								
P_{13}	$\mathbf{1 0}$	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^{4}$	$8.3 \cdot 10^{4}$
P_{14}	$\mathbf{1 0}$	$\mathbf{1 0}$	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$

$n_{C W} \lesssim n_{C W+G}: n_{C W+G} / n_{C W} \sim O(5)$ for $\delta=0.1$ and $n_{C W+G} / n_{C W} \sim O(30)$ for $\delta=$ 0.001

	λ	δ	m / μ	$\mu[\mathrm{GeV}]$	$H_{I}[\mathrm{GeV}]$	$n_{C W}$	$n_{C W+G}$	$n_{C W+T}$	$n_{C W+T+G}$
P_{1}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{9}}$	$\mathbf{1 0}^{\mathbf{1 1}}$	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_{2}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 0}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_{3}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 2}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_{4}	10^{-7}	0.1	$\mathbf{0 . 1}$	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_{5}	10^{-7}	0.1	$\mathbf{0 . 5}$	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_{6}	10^{-7}	0.1	$\mathbf{0 . 7}$	10^{11}	10^{13}	42.0	207	95	5.9
P_{7}	10^{-7}	0.1	$\mathbf{0 . 8}$	10^{11}	10^{13}	42.0	207	0	0
P_{8}	10^{-7}	$\mathbf{0 . 0 3}$	0.5	10^{11}	10^{13}	84	$6.9 \cdot 10^{2}$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_{9}	10^{-7}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	$\mathbf{0 . 0 0 1}$	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	$\mathbf{1 0}$	$\mathbf{0}$	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^{4}$
P_{13}	$\mathbf{1 0}$	$8.3 \cdot 10^{4}$							
P_{14}	$\mathbf{1 0}$	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^{5}$

$\mathrm{P}_{1 \div 6,10,12 \div 14}$ scenario $C 2, n_{C W+T}, n_{C W+T+G} \ggg n_{C W}$

	λ	δ	m / μ	$\mu[\mathrm{GeV}]$	$H_{I}[\mathrm{GeV}]$	$n_{C W}$	$n_{C W+G}$	$n_{C W+T}$	$n_{C W+T+G}$
P_{1}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{9}}$	$\mathbf{1 0}^{\mathbf{1 1}}$	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_{2}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 0}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_{3}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 2}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{\mathbf{5}}$
P_{4}	10^{-7}	0.1	$\mathbf{0 . 1}$	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_{5}	10^{-7}	0.1	$\mathbf{0 . 5}$	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_{6}	10^{-7}	0.1	$\mathbf{0 . 7}$	10^{11}	10^{13}	42.0	207	95	5.9
P_{7}	10^{-7}	0.1	$\mathbf{0 . 8}$	10^{11}	10^{13}	42.0	207	0	0
P_{8}	10^{-7}	$\mathbf{0 . 0 3}$	0.5	10^{11}	10^{13}	84	$6.9 \cdot 10^{2}$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_{9}	10^{-7}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	$\mathbf{0 . 0 0 1}$	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	$\mathbf{1 0}$	$\mathbf{0}$	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^{4}$
P_{13}	$\mathbf{1 0}$	$8.3 \cdot 10^{4}$							
P_{14}	$\mathbf{1 0}$	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^{5}$

$\mathrm{P}_{1 \div 6,10,12 \div 14^{-}}$scenario $C 2$, strong dependence of $n_{C W+T}, n_{C W+T+G}$ on m / μ

- C2: barrier between global minimum and $S=0$ (for some temperatures) the global minimum of the full potential has a non-negligible depth at phase transition
- non-negligible number of particles may be produced

	λ	δ	m / μ	$\mu[\mathrm{GeV}]$	$H_{I}[\mathrm{GeV}]$	$n_{C W}$	$n_{C W+G}$	$n_{C W+T}$	$n_{C W+T+G}$
P_{1}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{9}}$	$\mathbf{1 0}^{\mathbf{1 1}}$	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_{2}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{10}$	$\mathbf{1 0}^{\mathbf{1 3}}$	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_{3}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{12}$	$\mathbf{1 0}^{\mathbf{1 3}}$	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_{4}	10^{-7}	0.1	$\mathbf{0 . 1}$	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_{5}	10^{-7}	0.1	$\mathbf{0 . 5}$	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_{6}	10^{-7}	0.1	$\mathbf{0 . 7}$	10^{11}	10^{13}	42.0	207	95	5.9
P_{7}	10^{-7}	0.1	$\mathbf{0 . 8}$	10^{11}	10^{13}	42.0	207	0	0
P_{8}	10^{-7}	$\mathbf{0 . 0 3}$	0.5	10^{11}	10^{13}	84	$6.9 \cdot 10^{2}$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_{9}	10^{-7}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	$\mathbf{0 . 0 0 1}$	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	$\mathbf{1 0}$	$\mathbf{0}$	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^{4}$
P_{13}	$\mathbf{1 0}$	$8.3 \cdot 10^{4}$							
P_{14}	$\mathbf{1 0}$	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^{5}$

$\mathrm{P}_{7}-$ scenario $C 1, n_{C W+T}, n_{C W+T+G} \approx 0$

- C1: no barrier between global minimum and $S=0$ full potential changes with temperature and it is very shallow at $T \sim \tilde{T}$
- the amount of warm axions very small

(1) Introduction
(2) Corrections
(3) Φ evolution during inflation - geometric corrections

4. Φ evolution after inflation - thermal corrections
(5) (Numerical) Results: influence of \sim each correction on (warm) n_{a}

6 Summary/Conclusions

- Non-trivial evolution of $\Phi_{P Q} \Rightarrow$ very rich and interesting WDM phenomenology (very small self-coupling)
- \Rightarrow Significant role is played by various corrections: radiative\&\&geometric, thermal
- If H_{l} is not too small, $V_{\text {inf }}$ develops a new deep minimum at large Φ
(i) DM isocurvature relaxed (ii) very long inflation might not be needed especially interesting are models in which ϕ_{i}, ψ_{j} have a quasi-susy spectrum
- Post-inflationary evolution of Φ may be quite complicated

Thermal corrections \Rightarrow
(i) the resonant production (s)axions strongly suppressed...
(ii) ...later produced due to the tachyonic instability
(iii) n_{a} orders of magnitude smaller or bigger than w/o thermal corrections
(iv) no extra ingredients... necessary for thermalization (of saxion remnants)

CDM: oscillating S carries the initial PQ phase $\theta_{i} \ldots$

BACK UP

$$
\operatorname{MD}\left(\lambda=10^{-7}, \delta=0.1\right)
$$

$$
\mathrm{RD}\left(\lambda=10^{-10}, \delta=10^{-2}\right)
$$

For parameters to the left from the black/red solid lines, the S oscillations start due to the thermal mass

Some examples - lines of constant $A_{S}(\widetilde{T}) / S_{\text {min }, 0}$

$$
\operatorname{MD}\left(\lambda=10^{-7}, \delta=0.1\right)
$$

$$
\operatorname{RD}\left(\lambda=10^{-10}, \delta=10^{-2}\right)
$$

\Rightarrow scenario B typically only when both H_{I} and m / μ are \sim maximal allowed
\Rightarrow scenario C typically when either H_{l} or m / μ is smaller

	λ	δ	m / μ	$\mu[\mathrm{GeV}]$	$H_{I}[\mathrm{GeV}]$	$n_{C W}$	$n_{C W+G}$	$n_{C W+T}$	$n_{C W+T+G}$
P_{1}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{9}}$	$\mathbf{1 0}^{\mathbf{1 1}}$	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_{2}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 0}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_{3}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 2}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_{4}	10^{-7}	0.1	$\mathbf{0 . 1}$	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_{5}	10^{-7}	0.1	$\mathbf{0 . 5}$	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_{6}	10^{-7}	0.1	$\mathbf{0 . 7}$	10^{11}	10^{13}	42.0	207	95	5.9
P_{7}	10^{-7}	0.1	$\mathbf{0 . 8}$	10^{11}	10^{13}	42.0	207	0	0
P_{8}	10^{-7}	$\mathbf{0 . 0 3}$	0.5	10^{11}	10^{13}	84	$6.9 \cdot 10^{2}$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_{9}	10^{-7}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	$\mathbf{0 . 0 0 1}$	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	$\mathbf{1 0}$								
P_{13}	$\mathbf{1 0}$	0.1	0.2	$10^{-\mathbf{8}}$	0.1	0.2	10^{10}	10^{12}	10^{12}
2.3	6.5	$8.4 \cdot 10^{4}$	$8.3 \cdot 10^{4}$						
P_{14}	$\mathbf{1 0}$		0.1	0.2	10^{10}	10^{12}	$4.2 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$7.9 \cdot 10^{5}$

[^0]| | λ | δ | m / μ | $\mu[\mathrm{GeV}]$ | $H_{I}[\mathrm{GeV}]$ | $n_{C W}$ | $n_{C W+G}$ | $n_{C W+T}$ | $n_{C W+T+G}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P_{1} | 10^{-7} | 0.1 | 0.1 | $\mathbf{1 0}^{\mathbf{9}}$ | $\mathbf{1 0}^{\mathbf{1 1}}$ | 0.042 | 0.20 | $4.57 \cdot 10^{5}$ | $4.57 \cdot 10^{5}$ |
| P_{2} | 10^{-7} | 0.1 | 0.1 | $\mathbf{1 0}^{10}$ | $\mathbf{1 0}^{\mathbf{1 3}}$ | 34 | 195 | $4.33 \cdot 10^{5}$ | $3.18 \cdot 10^{5}$ |
| P_{3} | 10^{-7} | 0.1 | 0.1 | $\mathbf{1 0}^{12}$ | $\mathbf{1 0}^{\mathbf{1 3}}$ | 56 | 223 | $4.28 \cdot 10^{5}$ | $3.04 \cdot 10^{5}$ |
| P_{4} | 10^{-7} | 0.1 | $\mathbf{0 . 1}$ | 10^{11} | 10^{13} | 41.6 | 206 | $4.3 \cdot 10^{5}$ | $3.1 \cdot 10^{5}$ |
| P_{5} | 10^{-7} | 0.1 | $\mathbf{0 . 5}$ | 10^{11} | 10^{13} | 41.9 | 207 | $5.0 \cdot 10^{3}$ | $2.2 \cdot 10^{3}$ |
| P_{6} | 10^{-7} | 0.1 | $\mathbf{0 . 7}$ | 10^{11} | 10^{13} | 42.0 | 207 | 95 | 5.9 |
| P_{7} | 10^{-7} | 0.1 | $\mathbf{0 . 8}$ | 10^{11} | 10^{13} | 42.0 | 207 | 0 | 0 |
| P_{8} | 10^{-7} | $\mathbf{0 . 0 3}$ | 0.5 | 10^{11} | 10^{13} | 84 | $6.9 \cdot 10^{2}$ | $1.9 \cdot 10^{3}$ | $3.0 \cdot 10^{3}$ |
| P_{9} | 10^{-7} | $\mathbf{0 . 0 1}$ | 0.5 | 10^{11} | 10^{13} | $1.6 \cdot 10^{2}$ | $2.0 \cdot 10^{3}$ | $1.2 \cdot 10^{3}$ | $8.9 \cdot 10^{3}$ |
| P_{10} | 10^{-6} | $\mathbf{0 . 0 1}$ | 0.5 | 10^{11} | 10^{13} | 9.0 | 120 | 490 | 47 |
| P_{11} | 10^{-6} | $\mathbf{0 . 0 0 1}$ | 0.5 | 10^{11} | 10^{13} | 36 | $1.1 \cdot 10^{3}$ | 370 | 940 |
| P_{12} | $\mathbf{1 0}$ | $\mathbf{0}$ | 0.1 | 0.2 | 10^{10} | 10^{12} | 1.3 | 6.5 | $8.4 \cdot 10^{4}$ |
| P_{13} | $\mathbf{1 0}$ | $8.3 \cdot 10^{4}$ | | | | | | | |
| P_{14} | $\mathbf{1 0}$ | 0.1 | 0.2 | 10^{10} | 10^{12} | 23 | 120 | $2.6 \cdot 10^{5}$ | $2.5 \cdot 10^{5}$ |

$\mathrm{P}_{8}, \mathrm{P}_{9}, \mathrm{P}_{11}$ - scenario B , geometric correction increase $n: n_{C W+T} \lesssim n_{C W+T+G}$

	λ	δ	m / μ	$\mu[\mathrm{GeV}]$	$H_{I}[\mathrm{GeV}]$	$n_{C W}$	$n_{C W+G}$	$n_{C W+T}$	$n_{C W+T+G}$
P_{1}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{9}}$	$\mathbf{1 0}^{\mathbf{1 1}}$	0.042	0.20	$4.57 \cdot 10^{5}$	$4.57 \cdot 10^{5}$
P_{2}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 0}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	34	195	$4.33 \cdot 10^{5}$	$3.18 \cdot 10^{5}$
P_{3}	10^{-7}	0.1	0.1	$\mathbf{1 0}^{\mathbf{1 2}}$	$\mathbf{1 0}^{\mathbf{1 3}}$	56	223	$4.28 \cdot 10^{5}$	$3.04 \cdot 10^{5}$
P_{4}	10^{-7}	0.1	$\mathbf{0 . 1}$	10^{11}	10^{13}	41.6	206	$4.3 \cdot 10^{5}$	$3.1 \cdot 10^{5}$
P_{5}	10^{-7}	0.1	$\mathbf{0 . 5}$	10^{11}	10^{13}	41.9	207	$5.0 \cdot 10^{3}$	$2.2 \cdot 10^{3}$
P_{6}	10^{-7}	0.1	$\mathbf{0 . 7}$	10^{11}	10^{13}	42.0	207	95	5.9
P_{7}	10^{-7}	0.1	$\mathbf{0 . 8}$	10^{11}	10^{13}	42.0	207	0	0
P_{8}	10^{-7}	$\mathbf{0 . 0 3}$	0.5	10^{11}	10^{13}	84	$6.9 \cdot 10^{2}$	$1.9 \cdot 10^{3}$	$3.0 \cdot 10^{3}$
P_{9}	10^{-7}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	$1.6 \cdot 10^{2}$	$2.0 \cdot 10^{3}$	$1.2 \cdot 10^{3}$	$8.9 \cdot 10^{3}$
P_{10}	10^{-6}	$\mathbf{0 . 0 1}$	0.5	10^{11}	10^{13}	9.0	120	490	47
P_{11}	10^{-6}	$\mathbf{0 . 0 0 1}$	0.5	10^{11}	10^{13}	36	$1.1 \cdot 10^{3}$	370	940
P_{12}	$\mathbf{1 0}$	$0^{\mathbf{- 7}}$	0.1	0.2	10^{10}	10^{12}	1.3	6.5	$8.4 \cdot 10^{4}$
P_{13}	$\mathbf{1 0}$	$8.3 \cdot 10^{4}$							
P_{14}	$\mathbf{1 0}$	0.1	0.2	10^{10}	10^{12}	23	120	$2.6 \cdot 10^{5}$	$2.5 \cdot 10^{5}$

$\mathrm{P}_{1 \div 6,10,12 \div 14}$ - scenario $C 2$, geometric correction decreases $n: n_{C W+T} \gtrsim n_{C W+T+G}$

- thermal corrections neglected - (s)axions produced by parametric resonance:
- $n_{C W+G} \gtrsim n_{C W}$

$$
n_{C W} \propto \delta^{-5 / 8} \lambda^{-5 / 4} H_{l}^{3 / 2} T^{3}, \quad n_{C W+G} \propto \delta^{-1} \lambda^{-5 / 4} H_{l}^{3 / 2} T^{3}
$$

dependence on m, μ very weak

- thermal corrections accounted -(s)axions produced by tachyonic instability:
- scenario C more natural than B and especially A
- $\mathrm{C} \rightarrow C 1$ (no barrier), $C 2$ (barrier for some T)
- scenario C1: $n_{C W+T}, n_{C W+T+G} \approx 0$
- scenario C2: $n_{C W+T}, n_{C W+T+G} \ggg n_{C W}$

$$
n_{C W+T}, n_{C W+T+G} \propto \lambda^{-1 / 2}\left(\frac{m}{\mu}\right)^{-2} T^{3}
$$

dependence on δ, μ and H_{l} much weaker, $n_{C W+T+G} \lesssim n_{C W+T}$

- dedicated numerical computations for $C 1-C 2$ transition region, scenario $B \ldots$
scenario D : early thermalization: $T_{\text {th }}>\tilde{T}$
- interactions with thermal plasma - modification to EOM:

$$
\begin{gathered}
\ddot{S}+\left(3 H+\Gamma_{\mathrm{th}}\right) \dot{S}+\frac{\partial V_{\mathrm{eff}}}{\partial S}=0 \\
\Gamma_{\mathrm{th}}^{(\phi)} \sim \frac{\lambda^{2} S^{2}}{\alpha_{\mathrm{th}} T}, \quad \quad \Gamma_{\mathrm{th}}^{(\psi)} \sim y^{2} \alpha_{\mathrm{th}} T \\
\Rightarrow \quad T_{\mathrm{th}} \sim \sqrt{\frac{45}{4 \pi^{3} g_{*}}} \alpha_{\mathrm{th}} \lambda M_{P I}
\end{gathered}
$$

early thermalization if:

$$
\frac{m^{2}}{\mu^{2}} \ln \left(\frac{e \mu^{2}}{m^{2}}\right) \lesssim \frac{15 n_{\mathrm{eff}}(\widetilde{T})}{\pi g_{*} N_{s}} \alpha_{\mathrm{th}}^{2} \lambda^{2} \frac{M_{P l}^{2}}{\mu^{2}}
$$

$\alpha_{\mathrm{th}}=\alpha_{\mathrm{s}} \sim 0.1 \Rightarrow$ RHS bigger than 1 , if $\mu \lesssim \lambda \cdot 10^{17} \mathrm{GeV}$

Figure: The ratio of densities of warm axions produced via a parametric resonance with (n_{CW}) and without ($n_{\text {tree }}$) radiative corrections taken into account as a function of m^{2} / μ^{2}. The relevant parameters are fixed as: $\delta=0.1$ (left panel) and $\delta=0.01$ (right panel); $H_{l} / \mu=5$ (red curves) and $H_{l} / \mu=10^{3}$ (black curves). The solid (dashed) lines correspond to situation when the axions are produced after (before) the end of the reheating process.

- We will focus on
- CW with only geometric corrections $(C W+G)$
- CW with only thermal corrections $(C W+T)$
- CW with both geometric and thermal corrections ($C W+T+G$)
$n_{C W}, n_{C W+G}, n_{C W+T}$ and $n_{C W+T+G}$ are rescaled to a common T (in units T^{3}) $n_{C W}$ vs $n_{\text {tree }}: n_{C W} / n_{\text {tree }} \lessgtr 1$ depending on $m / \mu, \delta$ and H_{l} / μ
- Two different approximations:
-

$$
n_{C W},\left.n_{C W+G} \sim \frac{1}{2} \frac{V_{C W}}{m_{S}}\right|_{S=s_{i}} \quad \text { (parametric resonance) }
$$

$$
n_{C W+T},\left.n_{C W+T+G} \sim \frac{1}{2} \frac{\Delta V_{t o t}}{m_{S}}\right|_{T \sim \widetilde{T}} \quad \text { (tachyonic instability) }
$$

$\Delta V_{\text {tot }}=\left(\right.$ available potential energy), $m_{S}=$ (mass at the global minimum)

- Cold axions produced via the conventional misalignment mechanism
- n_{a}, cold often determined by stochastic processes during inflation...
...despite $V_{\text {full }}(\Phi)$ is in the unbroken phase for some time
saxion keeps oscillating and carries the initial PQ phase θ_{i}
- in the end one should compare

$$
\rho_{a, \text { warm }}+\rho_{a, \text { cold }} \leftrightarrow \rho_{D M}, \text { observed }
$$

\Rightarrow extra flexibility:
if $\rho_{a, \text { warm }}$ too small (or vanishing...), often possible to complement with $\rho_{\mathrm{a}, \text { cold }}$ (choice of θ_{i})

Number densities (n.d.) of ALP WDM n_{i} (in units T^{3}):

(1) radiative corrections: $n_{C W}$ vs $n_{\text {tree }}$: $n_{C W} / n_{\text {tree }} \lessgtr 1$ (depending on $m / \mu, \delta$ and H_{l} / μ)

- $n_{C W} \equiv$ (n.d. of warm ALP for "pure" CW potential)
- $n_{\text {tree }} \equiv(\mathrm{n} . \mathrm{d}$. of warm ALP for the corresponding Mexican hat potential)
(2) We will take $n_{C W}$ as the reference and compare it with:
- $n_{C W+G} \equiv(C W$ with only geometric corrections)
- $n_{C W+T} \equiv(C W$ with only thermal corrections)
- $n_{C W+T+G} \equiv$ (CW with both geometric and thermal corrections)
$n_{C W}, n_{C W+G}, n_{C W+T}$ and $n_{C W+T+G}$ are rescaled to a common T
- We use the full thermal potential

$$
\begin{gathered}
V_{T}(\Phi)=\frac{T^{4}}{2 \pi^{2}}\left[\sum_{\text {bosons }} J_{+}\left(\frac{M_{\phi_{i}}}{T}\right)+4 \sum_{\text {fermions }} J_{-}\left(\frac{M_{\psi_{j}}}{T}\right)\right] \\
J_{ \pm}(y)= \pm \int_{0}^{\infty} x^{2} \ln \left[1 \mp \exp \left(-\sqrt{x^{2}+y^{2}}\right)\right] \mathrm{d} x
\end{gathered}
$$

Number densities (n.d.) of ALP WDM n_{i} :

(1) radiative corrections: $n_{C W}$ vs $n_{\text {tree }}$: $n_{C W} / n_{\text {tree }} \lessgtr 1$ (depending on $m / \mu, \delta$ and H_{l} / μ)

- $n_{C W} \equiv(\mathrm{n} . \mathrm{d}$. of warm ALP for "pure" Gildener-Weinberg potential)
- $n_{\text {tree }} \equiv(\mathrm{n} . \mathrm{d}$. of warm ALP for the corresponding Mexican hat potential)
(2) We will take $n_{C W}$ as the reference and compare it with:
- $n_{C W+G} \equiv(C W$ with only geometric corrections)
- $n_{C W+T} \equiv$ (CW with only thermal corrections)
- $n_{C W+T+G} \equiv$ (CW with both geometric and thermal corrections)
$n_{C W}, n_{C W+G}, n_{C W+T}$ and $n_{C W+T+G}$ are rescaled to a common T (and in units T^{3})

[^0]: $\mathrm{P}_{8}, \mathrm{P}_{9}, \mathrm{P}_{11}-$ scenario $\mathrm{B}, n_{C W+}, n_{C W+T+G} \gg n_{C W}$

