Extended Scalar Sectors at CLIC

Duarte Azevedo

Collaboration: P. Ferreira, M. M. Mühlleitner, R. Santos, J. Wittbrodt

Phys. Rev. D 99, 055013 (2019)

Department of Physics, Faculty of Sciences University of Lisbon

dazevedo@alunos.fc.ul.pt

Scalars 2019 Warsaw

Supported by: NSC, Poland, HARMONIA UMO-2015/18/M/ST2/00518

Duarte Azevedo

LISBOA CFTC

Extended Scalar Sectors at CLIC

Karlsruher Institut für Technologie

Overview

1 Introduction

- Standard Model...
- ...and Beyond

2 Extended Scalars Sectors

- CxSM
- (C)2HDM
- N2HDM
- NMSSM
- 3 Results
 - Compact Linear Collider (CLIC)
 - Higgs-like scalar
 - Other scalars

4 Conclusions

Standard Model... ...and Beyond

Introduction

Standard Model... ...and Beyond

Standard Model...

 \rightarrow Scalar particle discovered in 2012 with mass of \sim 125 GeV at the Large Hadron Collider (LHC). ATLAS, Phys.Lett. B716 (2012), and CMS, Phys. Lett. B 716 (2012).

The Standard Model (SM) is complete. There is no experimental result that strongly deviates from the predictions. Some mentionable exceptions:

- Muon's anomalous magnetic moment.
- B meson decay rate which *seem* incompatible with the SM prediction.

ATLAS-CONF-2018-031

 $\sigma \times B$ normalized to SM value

Standard Model.. ...and Beyond

...and Beyond

Still we know it cannot be the whole story.

- **Dark Matter:** Several indirect evidence: Galaxy rotation curves, Gravitational lensing, Cosmic microwave background, etc.
- Enough CP-violation: to support Sakharov's condition for baryogenesis.

Extended scalar sectors tackle these by introducing new Electroweak (EW) objects to the scalar sector!

- CxSM The Standard Model with an additional complex singlet.
- (C)2HDM The (Complex) two Higgs doublet model.
- N2HDM The next-to-minimal two Higgs doublet model. One additional singlet.
- NMSSM Next-to-minimal Super Symmetric model.

Extended Scalar Sectors

SM + Complex Singlet

- First introduced as DM candidate. Phys. Lett. 161B (1985), Phys. Rev. D50 (1994).
- Produce strong first order phase-transitions JHEP 0708 (2007), Phys. Rev. D86 (2012),...

Let S = S(x) + iA(x) be a complex a EW singlet. The scalar potential reads

$$V = \frac{m^2}{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^2 + \frac{\delta_2}{2}H^{\dagger}H|\mathbb{S}|^2 + \frac{b_2}{2}|\mathbb{S}|^2 + \frac{d_2}{4}|\mathbb{S}|^4 + \left(\frac{b_1}{4}\mathbb{S}^2 + a_1\mathbb{S} + c.c.\right)$$
(1)

with a softly-broken U(1) symmetry. If we assume that the new field has a vacuum expectation value (VEV),

$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h+iG^0) \end{pmatrix} \text{ and } \mathbb{S} = \frac{1}{\sqrt{2}}\left[v_S + s + i(v_A + a)\right], \quad (2)$$

 \rightarrow All states mix, we have three physical scalars (one to be identified as the Higgs)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(C)2HDM (Complex) Two Higgs Doublet Model

SM + Doublet

- One of the first BSM models with spontaneous CP-violation Phys. Rev. D 8 (1973) 1226
- Alternatively, can also provide a DM candidate.
- \rightarrow Consider a scalar sector with two EW doublets Φ_1 and $\Phi_2.$

$$V = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c.]$$
(3)

with real VEVs

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}}(v_{1} + \rho_{1} + i\eta_{1}) \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}}(v_{2} + \rho_{2} + i\eta_{2}) \end{pmatrix}$$
(4)

- No flavour changing neutral currents (FCNC) due to \mathbb{Z}_2 symmetry $\Phi_2 \to -\Phi_2.$
- Complex m_{12}^2 and λ_5 (with different phases) \implies **CP-violation** (C2HDM).
- We end up with three physical neutral scalars (one to be identified as the Higgs).
- ...and a pair of charged scalar!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ

N2HDM Next-to-minimal Two Higgs Doublet Model

SM + Doublet + Real singlet

• Minimal scalar extension to provide a DM candidate and CP-violation. JHEP 1811 (2018) The potential reads

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} m_{5}^{2} \Phi_{5}^{2} + \frac{\lambda_{6}}{8} \Phi_{5}^{4} + \frac{\lambda_{7}}{2} (\Phi_{1}^{\dagger} \Phi_{1}) \Phi_{5}^{2} + \frac{\lambda_{8}}{2} (\Phi_{2}^{\dagger} \Phi_{2}) \Phi_{5}^{2}$$
(5)

with real VEVS

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}}(v_{1} + \rho_{1} + i\eta_{1}) \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}}(v_{2} + \rho_{2} + i\eta_{2}) \end{pmatrix}, \quad \Phi_{5} = v_{5} + \rho_{5} , \quad (6)$$

- Same FCNC suppressing \mathbb{Z}_2 symmetry, $\Phi_2 \rightarrow -\Phi_2.$
- Additional \mathbb{Z}_2 symmetry, $\Phi_S \rightarrow -\Phi_S$.
- Mixing between 3 CP-even + 1 CP-odd state (does not mix) ⇒ four physical neutral scalars (CP-eigenstates, one CP-even set to be the Higgs).

nac

Yukawa interactions

 \rightarrow FCNCs are completely suppressed at tree-level due to the \mathbb{Z}_2 symmetry (extended to the Yukawa interactions).

Possibilities:

	<i>u</i> -type	<i>d</i> -type	leptons
Type I	Φ ₂	Φ ₂	Φ2
Type II	Φ2	Φ_1	Φ_1
Lepton-specific	Φ2	Φ2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2

After expanding in the physical basis

$$\mathcal{L}_{Y} = -\sum_{i=1}^{3} \frac{m_{f}}{v} \bar{\psi}_{f} \left[c^{e} (H_{i} f f) + i c^{o} (H_{i} f f) \gamma_{5} \right] \psi_{f} H_{i} , \qquad (7)$$

	<i>u</i> -type	<i>d</i> -type	leptons			
Type I	$rac{R_{i2}}{s_eta} - i rac{R_{i3}}{t_eta} \gamma_5$	$rac{R_{i2}}{s_{eta}} + i rac{R_{i3}}{t_{eta}} \gamma_5$	$rac{R_{i2}}{s_{eta}} + i rac{R_{i3}}{t_{eta}} \gamma_5$			
Type II	$rac{R_{i2}}{s_{eta}} - i rac{R_{i3}}{t_{eta}} \gamma_5$	$\frac{R_{i1}}{c_{\beta}} - it_{\beta}R_{i3}\gamma_5$	$\frac{R_{i1}}{c_{\beta}} - it_{\beta}R_{i3}\gamma_5$			
Lepton-specific	$rac{R_{i2}}{s_eta} - i rac{R_{i3}}{t_eta} \gamma_5$	$rac{R_{i2}}{s_{eta}} + i rac{R_{i3}}{t_{eta}} \gamma_5$	$rac{R_{i1}}{c_{eta}} - it_{eta}R_{i3}\gamma_5$			
Flipped	$rac{R_{i2}}{s_eta} - i rac{R_{i3}}{t_eta} \gamma_5$	$\frac{R_{i1}}{c_{\beta}} - it_{\beta}R_{i3}\gamma_5$	$rac{\widetilde{R}_{i2}}{s_eta} + i rac{R_{i3}}{t_eta} \gamma_5$	< ≣ > < ≣ >	1	୬ ¢
	Duarte Azevedo	Extended Scalar Sectors	at CLIC			

 \rightarrow Supersymmetry requires at least two doublets. If an additional real singlet is present, the μ problem is solved dynamically. (through a non-trivial vacuum) After EW phase transition, in the CP-conserving NMSSM we have

- Three CP-even and two CP-odd scalars.
- A pair of charged Higgs.

The NMSSM superpotential reads in terms of the hatted superfields

$$\mathcal{W} = \lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3 + h_t \widehat{Q}_3 \widehat{H}_u \widehat{t}_R^c - h_b \widehat{Q}_3 \widehat{H}_d \widehat{b}_R^c - h_\tau \widehat{L}_3 \widehat{H}_d \widehat{\tau}_R^c + \dots$$
(8)

We consider real VEVs

$$H_{d} = \begin{pmatrix} (v_{d} + h_{d} + ia_{d})/\sqrt{2} \\ h_{d}^{-} \end{pmatrix}, \ H_{u} = \begin{pmatrix} h_{u}^{+} \\ (v_{u} + h_{u} + ia_{u})/\sqrt{2} \end{pmatrix}, \ S = \frac{v_{s} + h_{s} + ia_{s}}{\sqrt{2}}$$
(9)

Results

Compact Linear Collider (CLIC) Higgs-like scalar Other scalars

Compact Linear Collider (CLIC) general for other colliders

 \rightarrow Future linear colliders will start at 250/350/380 GeV. CLIC will be upgradeable to 1.5 and 3 TeV.

- Expected $\mathcal{O}(1\%)$ precision in fermion, and vector boson couplings with Higgs.
- Measure trilinear and quartic Higgs couplings.
- Deviations from the Standard Model (SM) will be evidence of new physics.

 \rightarrow We scan the parameter space and check it against CLIC expectations.

CLIC expectations (The pessimistic slide)

Consider the *worst* scenario: the 125 GeV Higgs is SM-like. Given the precision what is the parameter space left for these models?

	$\kappa_{Hii} = $	$rac{\Gamma^{BSM}_{Hii}}{\Gamma^{SM}_{Hii}}=1$		
Parameter	R			
	350 GeV	+1.4 TeV	+3.0 TeV	'
	$500 \ \mathrm{fb}^{-1}$	$+1.5 \mathrm{~ab}^{-1}$	$+2.0 \text{ ab}^{-1}$	
ĸнzz	0.43%	0.31%	0.23%	
κ_{HWW}	1.5%	0.15%	0.11%	
$\kappa_{\it Hbb}$	1.7%	0.33%	0.21%	
κ_{Hcc}	3.1%	1.1%	0.75%	
κ_{Htt}	_	4.0%	4.0%	
$\kappa_{H au au}$	3.4%	1.3%	<1.3%	
$\kappa_{H\mu\mu}$	_	14%	5.5%	
κ_{Hgg}	3.6%	0.76%	0.54%	
$\kappa_{H\gamma\gamma}$	_	5.6%	< 5.6%	

[CLICdp, E. Sicking, Nucl. Part. Phys. Proc. 273-275, 801 (2016)]

 \rightarrow Benchmark scenarios: Sc1 (350 GeV), Sc2 (1.4 TeV) and Sc3 (3.0, TeV) $\rightarrow \mathbb{R}^{3}$

Compact Linear Collider (CLIC) Higgs-like scalar Other scalars

In the broken phase, the singlet admixture is given by

$$\Sigma_i^{\mathsf{CxSM}} = (R_{i2})^2 + (R_{i3})^2 \tag{11}$$

Currently at the LHC, the maximum allowed singlet admixture is given by the lower bound on the global signal strength μ , which is

$$\Sigma_{\max LHC}^{CxSM} \approx 1 - \mu_{\min} \approx 11\%$$
 (12)

At CLIC this result would be much more constrained

• CLIC Sc1 - Most accurate $\rightarrow \kappa_{HZZ}$

$$\Sigma^{\text{CxSM}}_{\text{max CLIC@350GeV}} \approx 0.85\% , \qquad (13)$$

• CLIC Sc3 - Most accurate $\rightarrow \kappa_{HWW}$

$$\Sigma^{\text{CxSM}}_{\text{max CLIC@3TeV}} \approx 0.22\% . \tag{14}$$

イロト イボト イヨト イヨト

Loop contributions need to be taken into account!

Compact Linear Collider (CLIC) Higgs-like scalar Other scalars

CP-violation Higgs-like scalar

Case where the lightest scalar is the 125 GeV Higgs.

 \rightarrow EDMs affect differently the model depending on which type of Yukawa interactions are considered.

 \rightarrow Type I.

Figure: Current EDM bounds [D. Fontes et al., JHEP 02, 073 (2018)] (left) and CLIC expected bounds (right). The blue points are for *Sc*1 but without the constraints from κ_{Hgg} and $\kappa_{H\gamma\gamma}$; the green points are for *Sc*1 including κ_{Hgg} and the red points are for *Sc*3 including κ_{Hgg} and $\kappa_{H\gamma\gamma}$.

DQC

Compact Linear Collider (CLIC) Higgs-like scalar Other scalars

CP-violation Higgs-like scalar

- \rightarrow Type II.
 - \rightarrow d-type quarks and leptons.

Figure: Current EDM bounds [D. Fontes et al., JHEP 02, 073 (2018)] (left) and CLIC expected bounds (right). The blue points are for *Sc*1 but without the constraints from κ_{Hgg} and $\kappa_{H\gamma\gamma}$; the green points are for *Sc*1 including κ_{Hgg} and the red points are for *Sc*3 including κ_{Hgg} and $\kappa_{H\gamma\gamma}$.

Wrong sign disappears

Compact Linear Collider (CLIC) Higgs-like scalar Other scalars

Production rates other scalars

Main production modes at lower energies:

900

WW-fusion becomes main production with higher energies.

Figure: Total rate for $e^+e^- \rightarrow \nu \bar{\nu} H_{\downarrow} \rightarrow \nu \bar{\nu} ZZ$ as a function of the lighter Higgs boson mass for $\sqrt{s} = 1.4$ TeV.

Compact Linear Collider (CLIC) Higgs-like scalar Other scalars

Production rates other scalars

 \rightarrow Effect of Sc1 on the signal rates:

- The CxSM is the most constrained due to the fewer degrees of freedom.
- Associated production rivals the other production modes when considering Se1. (\equiv) \equiv 990

Conclusions

Conclusions

We studied several scalar extensions under CLIC's measurement accuracies, considering the worst scenario.

- <u>SM-like Higgs</u>: CLIC results will severely constrain the possibility of singlet admixture and CP-odd Yukawa component.
- <u>Other scalars</u>: Computed the rates of production within each models, with and without exclusions.
- If we find some particle, some cases may be excluded.

Thank you!

Backup

ScannerS

\rightarrow A parameter space scanner for up-to dim 4 scalar potentials.

Developed in Lisbon in collaboration with: Aveiro University (Portugal) and Karlsruhe Institute for Technology (Germany). JHEP 1703 (2017) 094,...

- General potentials: User-friendly Mathematica interface.
- **Theoretical constraints:** Boundedness from below, global minimum, tree-level unitarity.
- HEP interfaces: SusHi, HDECAY (and variations), SuperISO, MicrOMEGAS.
- **Collider constraints**: STU parameters, production and decay rates bounds (HiggsBounds 5, HiggsSignals 2).
- User analysis: Easily editable C++ templates.
- \rightarrow Available at: scanners.hepforge.org

General remarks on the parameter scan

 \rightarrow One of the physical Higgs is to be identified with the discovered one. Fixing its mass to

$$m_{h_{125}} = 125.09 \text{ GeV}$$
 (15)

 \rightarrow Other two can have a mass in the range of]30,1000[GeV, except on $m_{h_{125}} \pm 5$ GeV window. This is to avoid interfering signals.

Theoretical constraints:

- Boundedness from below.
- Pertubative unitarity.
- Vacuum is global minimum.

Experimental constraints:

- Maximum 2σ deviation for the S,T and U electroweak precision observables.
- Production and decay rates under the 95% C.L. limits from LEP, Tevatron and LHC.
- For the NMSSM we also impose upper bounds on the relic density and direct detection rates for dark matter.

Parameters Range 1/3

CxSM

The VEVs v_A and v_S are varied in the range

$$1 \text{ GeV } \leq v_A, v_S < 1.5 \text{ TeV}$$
 (16)

The mixing angles $\alpha_{1,2,3}$ vary within the limits

$$-\frac{\pi}{2} \le \alpha_{1,2,3} < \frac{\pi}{2} . \tag{17}$$

(C)2HDM

The angles vary in the range

$$0.5 \le t_{\beta} \le 35 \qquad -\frac{\pi}{2} \le \alpha_{1,2,3} < \frac{\pi}{2} . \tag{18}$$

The value of $\operatorname{Re}(m_{12}^2)$ is in the range

$$0 \,\, {\rm GeV}^2 \le {\rm Re}(m_{12}^2) < 500000 \,\, {\rm GeV}^2 \;. \tag{19}$$

Parameters Range 2/3

 (\ldots) The charged Higgs mass is chosen in the range

80 GeV
$$\leq m_{H^{\pm}} < 1$$
 TeV (Type I)
580 GeV $\leq m_{H^{\pm}} < 1$ TeV (Type II) (20)

One of the H_i is restricted to

$$30 \text{ GeV} \le m_{H_i} < 1 \text{ TeV (Type I)}$$

$$500 \text{ GeV} \le m_{H_i} < 1 \text{ TeV (Type II)}$$

$$(21)$$

N2HDM

$$\begin{aligned} & -\frac{\pi}{2} \le \alpha_{1,2,3} < \frac{\pi}{2} & 0.25 \le t_{\beta} \le 35 \\ 0 \text{ GeV}^2 \le \text{Re}(m_{12}^2) < 500000 \text{ GeV}^2 & 1 \text{ GeV} \le v_S \le 1.5 \text{ TeV} , \\ 30 \text{ GeV} \le m_{H_i \ne m_{h_{125}}}, m_A \le 1 \text{ TeV} \\ 80 \text{ GeV} \le m_{H^{\pm}} < 1 \text{ TeV} \text{ (type I)} & 580 \text{ GeV} \le m_{H^{\pm}} < 1 \text{ TeV} \text{ (type II)} \end{aligned}$$
(22)

Parameters Range 3/3 NMSSM

For the NMSSM we used NMSSMTools for computation of the particle spectrum and its higher order corrections. It also enables a cross-check with:

- Low energy observables.
- HiggsBounds.
- MicrOMEGAs.

Signal strengths are computed from the SM processes multiplied by the effective couplings calculated with NMSSMTools.

Parameter range:

	t_{eta}	λ	κ	<i>M</i> 1	<i>M</i> ₂	<i>M</i> 3	A _t	A _b	$A_{ au}$ in Te	m _{Q̃3} eV	$m_{\tilde{L}_3}$	A_{λ}	A_{κ}	$\mu_{ m eff}$
min	1	0	-0.7	0.1	0.2	1.3	-6	-6	-3	0.6	0.6	-2	-2	-5
max	50	0.7	0.7		2	7	6	6	3	4	4	2	2	5

Table: Input parameters for the NMSSM scan.

Perturbative unitarity is ensured by enforcing the rough constraint

$$\lambda^2 + \kappa^2 < 0.7^2 \tag{23}$$