The Higgs, the top and the singlet scalar – gravity and the stability of the effective potential

Łukasz A. Nakonieczny in collaboration with Zygmunt Lalak and Olga Czerwińska

Based on arXiv:1508.03297 accepted for publication in JHEP.

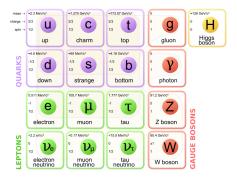
University of Warsaw, Faculty of Physics

December 6, 2015

December 6, 2015

1 / 13

Outline


• The Standard Model and the running of the constants

2 Gravity and the Higgs potential

- The Higgs, the mediator and the running
- The one-loop effective potential

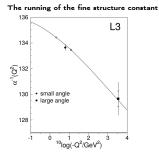
A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Standard Model

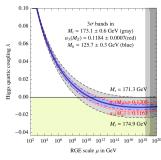
What is missing?

- dark matter
- inflaton
- dark energy

A B > A B >


gravity

'Standard Model of Elementary Particles' by MissMJ - Wikimedia Commons

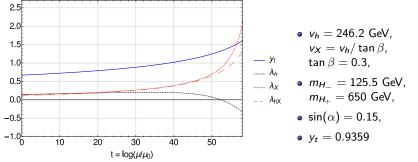

The running of the constants

Are the coupling constants constant in quantum field theory?

- To be meaningful quantum field theory requires renormalization.
- Renormalization introduces momentum/energy dependence to the renormalized constants.

L3 Collaboration, Phys. Lett. B 476 (2000) 40

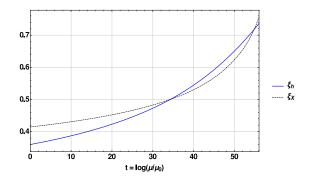
G. Degrassi et al. JHEP 08 (2012) 98


• • • • • • • • • • • •

The running of the Higgs quartic constant

The scalar singlet extension of the Standard Model:

$$V_{HX} = m_H^2 |H|^2 + \lambda_h |H|^4 + m_X^2 X^2 + \lambda_X X^4 + \lambda_{hX} |H|^2 X^2.$$


- A review of the properties of X and the flat spacetime stability of the extended SM in the context of LHC:
 T. Robens, T. Stefaniak, Europ. Phys. J. C 03 (2015) 75
- The running of the quartic and the top Yukawa couplings:

• Tree-level potential of scalars in the presence of gravity:

$$V_{HX} = m_{H}^{2} |H|^{2} + \lambda_{h} |H|^{4} - \xi_{h} |H|^{2} R + m_{X}^{2} X^{2} + \lambda_{X} X^{4} - \xi_{X} X^{2} R + \lambda_{hX} |H|^{2} X^{2}.$$

• The running of the non-minimal coupling of scalars to gravity – the $\xi_h = \xi_X = 0.5$ case



・ロト ・日子・ ・ヨト・

• Tree-level potential of scalars in the presence of gravity:

$$V_{HX} = m_H^2 |H|^2 + \lambda_h |H|^4 - \xi_h |H|^2 R + m_X^2 X^2 + \lambda_X X^4 - \xi_X X^2 R + \lambda_{hX} |H|^2 X^2.$$

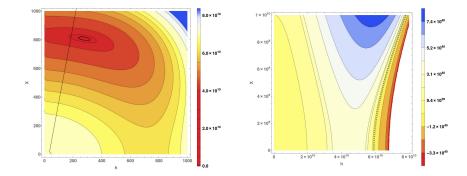
• The running of the non-minimal coupling of scalars to gravity – the $\xi_h = \xi_X = 0$ case

・ロト ・日子・ ・ヨト・

The one-loop effective potential for the Higgs-top-mediator sector:

$$\begin{split} \mathbf{V}^{(1)} &= - \Big\{ -\frac{1}{2} \left[\mathbf{m}_{h}^{2} - \xi_{h} \mathbf{R} \right] h^{2} - \frac{\lambda_{h}}{4} h^{4} - \frac{\lambda_{h} \mathbf{X}}{4} h^{2} \mathbf{X}^{2} - \frac{1}{2} \left[\mathbf{m}_{X}^{2} - \xi_{X} \mathbf{R} \right] \mathbf{X}^{2} - \frac{\lambda_{X}}{4} \mathbf{X}^{4} + \\ &+ \frac{\hbar}{64\pi^{2}} \Big[-\mathbf{a}_{+}^{2} \ln \left(\frac{\mathbf{a}_{+}}{\mu^{2}} \right) - \mathbf{a}_{-}^{2} \ln \left(\frac{\mathbf{a}_{-}}{\mu^{2}} \right) + \frac{3}{2} \left(\mathbf{a}_{+}^{2} + \mathbf{a}_{-}^{2} \right) + \mathbf{8}b^{2} \ln \left(\frac{b}{\mu^{2}} \right) - \mathbf{12}b^{2} + \frac{1}{3} \mathbf{y}_{t}^{2} h^{2} \ln \left(\frac{b}{\mu^{2}} \right) \mathbf{R} - \mathbf{y}_{t}^{4} h^{4} \ln \left(\frac{b}{\mu^{2}} \right) + \\ &- \frac{4}{\mathbf{180}} \left(-\mathbf{R}_{\alpha\beta} \mathbf{R}^{\alpha\beta} + \mathbf{R}_{\alpha\beta\mu\nu} \mathbf{R}^{\alpha\beta\mu\nu} \right) \left(\ln \left(\frac{\mathbf{a}_{+}}{\mu^{2}} \right) + \ln \left(\frac{\mathbf{a}_{-}}{\mu^{2}} \right) - 2 \ln \left(\frac{b}{\mu^{2}} \right) \right) - \frac{4}{3} \mathbf{R}_{\alpha\beta\mu\nu} \mathbf{R}^{\alpha\beta\mu\nu} \ln \left(\frac{b}{\mu^{2}} \right) \Big] \Big\}. \end{split}$$

$$\begin{split} &b = \frac{1}{2}y_t^2h^2 - \frac{1}{12}R, \\ &a_{\pm} = \frac{1}{2}\left\{ \left[m_X^2 + m_h^2 - \left(\xi_X + \xi_h - \frac{2}{6}\right)R + \left(3\lambda_h + \frac{1}{2}\lambda_{hX}\right)h^2 + \left(3\lambda_X + \frac{1}{2}\lambda_{hX}\right)X^2\right] + \right. \\ & \left. \pm \sqrt{\left[m_X^2 - m_h^2 - \left(\xi_X - \xi_h\right)R + \left(\frac{1}{2}\lambda_{hX} - 3\lambda_h\right)h^2 + \left(3\lambda_X - \frac{1}{2}\lambda_{hX}\right)X^2\right]^2 + 4\left(\lambda_{hX}hX\right)^2} \right\}. \end{split}$$


In the radiation dominated Friedmann-Lemaître-Robertson-Walker universe we have:

$$\boldsymbol{R} = \boldsymbol{0}, \quad -\boldsymbol{R}_{\alpha\beta}\boldsymbol{R}^{\alpha\beta} + \boldsymbol{R}_{\alpha\beta\mu\nu}\boldsymbol{R}^{\alpha\beta\mu\nu} = \frac{4}{3} \left(\tilde{\boldsymbol{M}}_{\boldsymbol{P}}^{-2} \rho \right)^2, \quad \boldsymbol{R}_{\alpha\beta\mu\nu}\boldsymbol{R}^{\alpha\beta\mu\nu} = \frac{8}{3} \left(\tilde{\boldsymbol{M}}_{\boldsymbol{P}}^{-2} \rho \right)^2.$$

э

イロト イヨト イヨト イヨト

The small and large field regimes of the one-loop effective potential; $\mu = \frac{\gamma_t}{\sqrt{2}}h$, $\rho = \sigma\nu^4 + \mu^4$ and $\sigma = 50$, $\nu = 10^9$ GeV:

・ロト ・回ト ・ヨト

The influence of gravity in the small field region (around the electroweak minimum):

・ロト ・回ト ・ヨト

How big curvature do we need?

۲

۲

$$V(h^{2}) = \left[\frac{1}{2}m_{h}^{2} + \frac{1}{64\pi^{2}}\frac{4}{180}\frac{4}{3}\left(\bar{M}_{P}^{-2}\rho\right)^{2}\frac{\tilde{b}}{h^{2}}\right]h^{2} = m_{eff}^{2}(h)h^{2},$$
$$\rho = 4\pi v_{h}|m_{h}|\sqrt{\frac{135}{2\tilde{b}}}\bar{M}_{P}^{2} \to \mu \sim 10^{10} \div 10^{11} \text{GeV}$$

$$V(h^{4}) = \frac{1}{4} \left[\lambda_{eff}(h) + \frac{4}{64\pi^{2}} \frac{4}{3} \frac{8}{3} \left(\bar{M}_{P}^{-2} \rho \right)^{2} \frac{\tilde{c}}{h^{4}} \right] h^{4} = \frac{1}{4} \bar{\lambda}_{eff}(h) h^{4},$$
$$\rho = 4\pi h_{0}^{2} \bar{M}_{P}^{2} \sqrt{\frac{9|\lambda_{eff}|}{32\tilde{c}}} \to \mu \sim 10^{13} \div 10^{14} \text{GeV}$$

Łukasz A. Nakonieczny

December 6, 2015 11 / 13

2

イロト イロト イヨト イヨト

- Using the flat spacetime method for obtaining the effective action above the energy scale of 10^{10} GeV may lead to inaccuracies.
- Classical gravity induces new terms in the effective action.
- These new terms may have an impact on the problem of the stability of the Standard Model vacuum.

イロト イポト イヨト イヨ

Thank you for your attention.

Ł.N. was supported by the Polish National Science Centre under grant FUGA DEC-2014/12/S/ST2/00332.

Łukasz A. Nakonieczny

December 6, 2015 13 / 13