Searching the Relaxion at Particle Accelerators

Martin W. Winkler

Phys. Lett. B727 (2013), Rept. Prog. Phys. 79 (2016) & work in progress

PLANCK 2017 Warsaw, May 25, 2017

Light Scalar Mixing with the Higgs

• simplest extension of SM: one singlet scalar

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}\mathsf{m}^2\phi^2 + \mathsf{A}\phi\mathsf{h}^2 + \dots$$

mixing with the Higgs induces coupling to SM fields

$$\mathcal{L} \supset s_{\theta} y_{f} \overline{f}f$$

universal
suppression

• considered mass range $m_{\phi} = 0.1 - 10~{
m GeV}$

Motivation: Relaxion

severe constraints on inflationary sector

$$\label{eq:H} H \lesssim m_h \qquad e-folds \gtrsim \frac{f^2\,H^2}{\Lambda^4} \frac{M^4}{m_h^4}$$

alleviated for Λ , f close to weak scale

 $\Rightarrow m_{\phi} \sim 0.1 - 10 \, {
m GeV}$

 light scalar also appears as mediator in dark matter models Kappl, Ratz, M.W. (2011)

inflation models with light inflaton

Bezrukov, Gorbunov, JHEP 1005 (2010)

Scalar Decay

large theoretical uncertainties on scalar decay

Clarke, Foot, Volkas, JHEP 1402 (2014)

Chiral Perturbation Theory

• decay rate of
$$\phi$$

 $\Gamma_{ff} \propto s_{\theta}^2 G_F m_{\phi} m_f^2$ (perturbative)
 $\Gamma_{\pi\pi} \propto s_{\theta}^2 \frac{G_F}{m_{\phi}} \left| \left\langle \pi \pi \left| \frac{2}{7} \Theta_{\mu}^{\mu} + m_u \bar{u}u + m_d \bar{d}d + m_s \bar{s}s \right| 0 \right\rangle \right|^2$

Voloshin, Sov.J.Nucl.Phys. 44 (1986)

Chiral Perturbation Theory

• decay rate of
$$\phi$$

 $\Gamma_{ff} \propto s_{\theta}^2 G_F m_{\phi} m_f^2$ (perturbative)
 $\Gamma_{\pi\pi} \propto s_{\theta}^2 \frac{G_F}{m_{\phi}} \left| \left\langle \pi \pi \left| \frac{2}{7} m_{\phi}^2 + \frac{11}{7} m_{\pi}^2 + \mathcal{O}\left(m_{\phi,\pi}^4\right) \right| 0 \right\rangle \right|^2$

Voloshin, Sov.J.Nucl.Phys. 44 (1986)

Chiral Perturbation Theory

• decay rate of
$$\phi$$

 $\Gamma_{ff} \propto s_{\theta}^2 G_F m_{\phi} m_f^2$ (perturbative)
 $\Gamma_{\pi\pi} \propto s_{\theta}^2 \frac{G_F}{m_{\phi}} \left| \left\langle \pi \pi \left| \frac{2}{7} m_{\phi}^2 + \frac{11}{7} m_{\pi}^2 + \mathcal{O}\left(m_{\phi,\pi}^4\right) \right| 0 \right\rangle \right|^2$

Voloshin, Sov.J.Nucl.Phys. 44 (1986)

Phase Shift Analysis

extract form factors from ππ phase shift data
 Raby, West, Phys.Rev. D38 (1988), Truong, Willey Phys.Rev. D40 (1989), Donoghue, Gasser,

Leutwyler, Nucl.Phys. B343 (1990)

 generalized to two-channel analysis to include KK Muskhelishvili (1965)

Martin W. Winkler (Nordita)

Phase Shift Analysis

disagreement Trung, Willey vs. Donoghue et al.

Phase Shift Analysis

disagreement Trung, Willey vs. Donoghue et al.

 we recalculated decay rates based on phase shift analysis by Hoferichter et al. JHEP 1206 (2012)

Martin W. Winkler (Nordita)

Searching the Relaxion

Decay Pattern

Rare Decays at LHCB

rare meson decays provide very sensitive probe

> $B \rightarrow K + \mathbf{\Phi}$ $K \rightarrow \ \pi + \varphi$ $\Upsilon \rightarrow \ \gamma + \varphi$

• LHCB search for $B \rightarrow K \mu \mu$ JHEP 1302 (2013)

not optimized for light scalar (vertex cuts)

• new searches for B decays to long-lived boson $B \rightarrow K^{(*)}\mu\mu$ (LHCB) $B \rightarrow X_s \pi\pi, KK$ (BaBar)

Phys.Rev.Lett. 115 (2015), Phys.Rev. D95 (2017)

Phys. Rev. Lett. 114 (2015)

new searches for B decays to long-lived boson $B \to K^{(*)}\mu\mu \text{ (LHCB)} \qquad B \to X_s \pi\pi, KK \text{ (BaBar)}$

Phys.Rev.Lett. 115 (2015), Phys.Rev. D95 (2017)

Phys. Rev. Lett. 114 (2015)

new searches for B decays to long-lived boson $B \to K^{(*)}\mu\mu \text{ (LHCB)} \qquad B \to X_s \pi\pi, KK \text{ (BaBar)}$

Phys.Rev.Lett. 115 (2015), Phys.Rev. D95 (2017)

Phys. Rev. Lett. 114 (2015)

Beam Dumps

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0

 dN_{ϕ}/dp_{\parallel} [GeV⁻¹]

- strongly displaced vertices testable at beam dumps
- example: CHARM Phys.Lett. 157B (1985)
- simulation with Pythia

20

Beam Dumps

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0

 dN_{ϕ}/dp_{\parallel} [GeV⁻¹]

- strongly displaced vertices testable at beam dumps
- example: CHARM Phys.Lett. 157B (1985)
- simulation with Pythia

Martin W. Winkler (Nordita)

Beam Dumps

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0

 dN_{ϕ}/dp_{\parallel} [GeV⁻¹]

- strongly displaced vertices testable at beam dumps
- example: CHARM Phys.Lett. 157B (1985)
- simulation with Pythia

CHARM vs. SHiP

	N _{POT}	E _P	Decay Region	Geom. Coverage
CHARM	2 x 10 ¹⁸	400 GeV	480 - 515 m	~0.3 - 1 % (B) ~0.1 - 0.2 % (K)
SHIP	2 x 10 ²⁰	400 GeV	69 - 120 m	~20 - 80 % (B) ~5 - 20 % (K)

Martin W. Winkler (Nordita)

Searching the Relaxion

CHARM vs. SHiP

	N _{POT}	E _P	Decay Region	Geom. Coverage
CHARM	2 x 10 ¹⁸	400 GeV	480 - 515 m	~0.3 - 1 % (B) ~0.1 - 0.2 % (K)
SHIP	2 x 10 ²⁰	400 GeV	69 - 120 m	~20 - 80 % (B) ~5 - 20 % (K)

Martin W. Winkler (Nordita)

CHARM vs. SHiP

	N _{POT}	E _P	Decay Region	Geom. Coverage
CHARM	2 x 10 ¹⁸	400 GeV	480 - 515 m	~0.3 - 1 % (B) ~0.1 - 0.2 % (K)
SHIP	2 x 10 ²⁰	400 GeV	69 - 120 m	~20 - 80 % (B) ~5 - 20 % (K)

Martin W. Winkler (Nordita)

Incomplete List of further Constraints

BABAR, Phys.Rev.Lett. 107 (2011)

Summary Plot

Martin W. Winkler (Nordita)

- light scalar (m_{\varphi} = 0.1-10 GeV) constitutes simple, well-motivated and predictive extension of the standard model
- uncertainties in its decay reduced to O(1) through pion phase shift analysis
- rare meson decays (with displaced vertices) provide the most sensitive probe