Higgs LFV decays in the model for Dirac neutrino masses and dark matter

Phys. Rev. D100 (2019) no.1, 015044 [arXiv:1904.07039]

Kazuki Enomoto (Osaka Univ.)

<u>Collaborators</u>

Shinya Kanemura (Osaka Univ.) Kodai Sakurai (Karlsruher Institut für Technologie) Hiroaki Sugiyama (Toyama Prefectural Univ.)

Summary of this talk

In previous works, it is shown that

if the Lepton Flavor Violating (LFV) decays of the Higgs boson are observed in the near future collider experiments, a wide class of models for neutrino masses can be excluded.

> S. Kanemura, H. Sugiyama, PLB (2016), S. Kanemura, K. Sakurai, H. Sugiyama, PLB (2016), M. Aoki, S. Kanemura, K. Sakurai, H. Sugiyama, PLB (2016)

In our work,

we built a new model which cannot be excluded in such a case, and show this model can explain tiny neutrino masses and the existence of dark matter under current constraint on LFV processes.

Table of Contents

- 1. Models for neutrino masse and classification of them
- 2. Higgs LFV decay in models for neutrino masses
- 3. Our model
- 4. Summary

What is the origin of tiny neutrino masses ?

Seesaw mechanisms

3 types, Majorana ν masses at tree level

Radiatively generated masses

Majorana or Dirac ν masses at loop level,

A candidate of dark matter (Additional Z_2 symmetry)

Various models

Classification of models and phenomenological study in group-by-group

Sep. 13th, 2019 Scalars 2019 @ Univ. of Warsaw

Type-I seesaw

Aoki,Kanemura, Seto ('09)

 \langle Classification of models for Majorana ν by new Yukawa int. \rangle S. Kanemura, H. Sugiyama PLB (2016) <u>Assumptions</u>

- New scalars : New scalars do not have color or flavor.
- New Symmetry : Exact Z₂ sym. (Dark matter)

Softly broken Z₂ sym. (Prohibit FCNC @ tree level)

- New Fermion : Gauge-singlet Z_2 -odd fermions ψ_R^a (a = 1,2,3).
- Models include only a minimum kind of scalars for ν masses.

Type I, III seesaw mechanisms are not included in this classification.
 Sep. 13th, 2019 Scalars 2019 @ Univ. of Warsaw

All new Yukawa interactions and new scalars

D:1:	/``\ N	New Scalar	s	Valaria Internetion	
Binnears	Fields	${\rm SU}(2)_{\rm L}$	$U(1)_{\rm Y}$	Yukawa Interaction	
$\overline{L^i_L}\ell^j_R$	ϕ_2	2	$+\frac{1}{2}$	$y_i\overline{L_L^i}\phi_2\ell_R^j$]
$\overline{\left(\ell_R^i ight)^c}\ell_R^j$	s ⁺⁺	1	+2	$\left(Y_s^S\right)_{ij} \overline{\left(\ell_R^i\right)^c} \ell_R^j s^{++}$	<u> </u>
$\frac{1}{(I_i)^c} I_j^j$	s_1^+	1	+1	$\left(Y_s^A\right)_{ij} \overline{\left(L_L^i\right)^c} L_L^j s_1^+$	
$(L_L) L_L$	Δ	3	+1	$\left(Y_{\Delta}^{S}\right)_{ij}\overline{\left(L_{L}^{i}\right)^{c}}\Delta L_{L}^{j}$	
$\overline{(\psi^a_R)^c}\ell^i_R$	s_2^+	1	+1	$(Y_s)_{ai} \overline{(\psi^a_R)^c} \ell^i_R s^+_2$	$\begin{bmatrix} SU(2) \\ U(1) \end{bmatrix}$
$\overline{L_L^i}\psi^a_R$	η /	2	$+\frac{1}{2}$	$\left(Y_{\eta} ight)_{ia}\overline{L_{L}^{i}}\eta^{c}\psi_{R}^{a}$	$\frac{0(1)}{Z_2}$
	_/				$\frac{1}{M1}$
Select	t scalai	r <mark>s for</mark> 1	[,] mass	diagram	M2
					M3
e.g.) M	1ass d	iagran	n in N	11	M4
U /					M5
s_1^-		$\ket{\phi^0}$ s^+	+ ($\phi^0\rangle$ s_1	M6
i			⊥ ` ↓ .		M7
$ u_L^{\iota} $	ℓ_L^{κ}	ℓ_R^{κ}	ℓ_R^l	$ \downarrow \ell_L^i \downarrow \nu_L^j $	M8
	· •				

 Z_2 -odd fields are in red letters

<u>Models for Majorana v masses</u>

	Δ	ϕ_2	s^{++}	$ s_L^+ $	η	s_2^+
$SU(2)_L$	3	2	1	1	2	1
$U(1)_{Y}$	+1	+1/2	+2	+1	+1/2	+1
Z_2		Eve	en		Od	d
M1			\checkmark	\checkmark		
M2		\checkmark	\checkmark			
M3			\checkmark			
M4	\checkmark					
M5				\checkmark		\checkmark
M6		\checkmark				\checkmark
M7						\checkmark
M8					\checkmark	

\langle In the case of Dirac neutrino masses \rangle

Additional assumptions

• New fermions :

 $\nu_R^i \; (i=1,2,3)$

• New symmetries :

Lepton # conservation

$$\mathbf{X} \quad \overline{\nu_R^i} \left(\nu_R^j \right)^c$$

Softly broken Z_2 sym.

S. Kanemura, K. Sakurai, H. Sugiyama, PLB (2016)

	Δ	ϕ_2	$\phi_{ u}$	s^{++}	s_R^+	s_L^+	s^0	η	s_2^+	s_2^0
$SU(2)_L$	3	2	2	1	1	1	1	2	1	1
$U(1)_{Y}$	+1	+1/2	+1/2	+2	+1	+1	0	+1/2	+1	0
Z_2				Even					Odd	
Lepton $\#$	-2	0	0	-2	-2	-2	-2	-1	-1	-1
Z'_2	Even	Even	Odd	Even	Odd	Even	Even	Even	Even	Odd
D1					\checkmark	\checkmark				
D2	\checkmark				\checkmark					
D3		\checkmark		\checkmark	\checkmark					
D4				\checkmark	\checkmark					
D5		\checkmark			\checkmark		\checkmark			
D6					\checkmark		\checkmark			
D7			\checkmark							
D8						\checkmark			\checkmark	\checkmark
D9	\checkmark								\checkmark	\checkmark
D10					\checkmark			\checkmark		
D11		\checkmark			\checkmark				\checkmark	
D12					\checkmark				\checkmark	
D13		\checkmark			\checkmark					\checkmark
D14					\checkmark					\checkmark
D15		\checkmark							\checkmark	\checkmark
D16									\checkmark	\checkmark
D17					\checkmark			\checkmark	\checkmark	
D18								\checkmark		\checkmark

Table of Contents

- 1. Models for neutrino masse and classification of them
- 2. Higgs LFV decay in models for neutrino masses
- 3. Our model
- 4. Summary

Current experimental constraints for LFV decays of the Higgs boson are not so strong, but from theoretical aspects, they have stronger constraints in some models for v masses.

In the models with a kind of scalars which contribute to LFV processes.

$$\begin{aligned} &(\lambda = O(1))\\ &\operatorname{Br}(h \to \ell \ell') \sim 10^{-1} \operatorname{Br}(\ell \to \ell' \gamma)\\ &\lesssim 10^{-9} - 10^{-14} \end{aligned}$$

If $h \rightarrow \ell \ell'$ are observed in near future collider experiments, such a simple model are excluded.

n

We need that two or more kind of scalars interact with left-handed (right-handed) leptons to realize $Br(h \to \ell \ell') > Br(\ell \to \ell' \gamma)$

$$\Gamma(\ell \to \ell' \gamma) \propto \left| \begin{array}{c} \varphi_1 & \varphi_1 & \varphi_2 &$$

If $\operatorname{sign}(\lambda_1) = -\operatorname{sign}(\lambda_2)$,

 ${\rm Br}(h\to\ell\ell')>{\rm Br}(\ell\to\ell'\gamma)\,$ in some parameter region

Which groups of models have this flavor structure ?

 \langle In the case of Majorana neutrino masses \rangle

Both mechanisms include only one LFV Yukawa interaction.

Which groups of models have this flavor structure ?

 \langle In the case of Majorana neutrino masses \rangle

Both mechanisms include

If LFV decays of the Higgs boson are observed without the signal of LFV decays of the charged lepton, M1 ~ M8 (all groups in the classification for Majorana v masses) and Type-I and –III seesaw mechanisms are excluded.

Only five groups (D3, 4, 11, 12, 17) have such a flavor structure.

In models in D3, 4, 11, 12 groups,

$$(m_{\nu})_{\ell i} = m_{\ell} (Y \cdots)_{\ell i}$$

 $m_{e} \ll m_{\mu} < m_{\tau}$
 $\Longrightarrow Y_{ea} \gg Y_{\mu a} > Y_{\tau a}$
 $(a = 1, 2, 3)$

$$\operatorname{Br}(\mu \to e\gamma) \lesssim 10^{-13}$$

	$ \Delta$	ϕ_2	$\phi_{ u}$	s^{++}	s_R^+	s_L^+	s^0	η	s_2^+	s_2^0
$SU(2)_L$	3	2	2	1	1	1	1	2	1	1
$U(1)_{Y}$	+1	+1/2	+1/2	+2	+1	+1	0	+1/2	+1	0
Z_2				Even					Odd	
Lepton $\#$	-2	0	0	-2	-2	-2	-2	-1	-1	-1
Z'_2	Even	Even	Odd	Even	Odd	Even	Even	Even	Even	Odd
D1					\checkmark	\checkmark				
D2	\checkmark				\checkmark					
D3		\checkmark		\checkmark	\checkmark					
D4				\checkmark	\checkmark					
D5		\checkmark			\checkmark		\checkmark			
D6					\checkmark		\checkmark			
D7			\checkmark							
D8						\checkmark			\checkmark	\checkmark
D9	\checkmark								\checkmark	\checkmark
D10					\checkmark			\checkmark		
D11		\checkmark			\checkmark				\checkmark	
D12					\checkmark				\checkmark	
D13		\checkmark			\checkmark					\checkmark
D14					\checkmark					\checkmark
D15		\checkmark							\checkmark	\checkmark
D16									\checkmark	\checkmark
D17					\checkmark			\checkmark	\checkmark	
D18								\checkmark		\checkmark

Only five groups (D3, 4, 11, 12, 17) have such a flavor structure.

In models in D3, 4, 11, 12 groups,

$$(m_{\nu})_{\ell i} = m_{\ell} (Y \cdots)_{\ell i}$$
$$m_{e} \ll m_{\mu} < m_{\tau}$$

$$\implies Y_{ea} \gg Y_{\mu a} > Y_{\tau a}$$

n a flavor structure.		$ \Delta$	ϕ_2	$\phi_{ u}$	s^{++}	s_R^+	s_L^+	s^0	η	s_2^+	s_2^0
	$SU(2)_L$	3	2	2	1	1	1	1	2	1	1
	$U(1)_{Y}$	+1	+1/2	+1/2	+2	+1	+1	0	+1/2	+1	0
IS IN D3, 4, 11, 12 groups,	Z_2				Even					Odd	
5 1 1	Lepton #	-2	0	0	-2	-2	-2	-2	-1	-1	-1
	<u>Z'</u>	Even	Even	Odd	Even	Odd	Even	Even	Even	Even	Odd
$p_{a} = m_{a} (Y \cdots)_{a}$	D1					\checkmark	\checkmark				
ℓ_{l} ℓ_{l} ℓ_{l}	D2	\checkmark				\checkmark					
	D3		\checkmark		V	V					
$m_{\star} \ll m_{\star} < m_{-}$	D4				\checkmark	V					
$m_e \ll m_\mu < m_\tau$	<u>D5</u>		\checkmark			√		 ✓ 			
	D6					V		✓		ļ	
	D;			✓							
$ \longrightarrow V \implies V \implies V $	<u></u> 						✓			 ✓ 	
\rightarrow rea \sim r μa \sim r τa	D9	√								✓	√
	D10					√			√		
	DII		V			V					<u> </u>
In models in D17 group, LFV decays of the Higgs boson											

can be large enough to detect the their signal in the near

future collider experiment (HL-LHC or ILC).

Table of Contents

- 1. Models for neutrino masse and classification of them
- 2. Higgs LFV decay in models for neutrino masses
- 3. Our model
- 4. Summary

K. Enomoto, S. Kanemura, K. Sakurai, H. Sugiyama, PRD(2019)

A new model for Dirac neutrino masses which have D17 group's flavor structure.

New fields

Neutrino masses

 $\mathcal{L} = (Y_1)_{\ell i} \overline{(\ell_R)^c} \nu_{R i} s_1^+ + (Y_2)_{\ell \alpha} \overline{(\ell_R)^c} \psi_{R \alpha} s_2^+ + (Y_\eta)_{\ell \alpha} \overline{L_\ell} \eta^c \psi_{R \alpha} + \text{h.c.}$ $V \ni \sigma_1 \Phi^{\dagger} \phi s_1^+ + \sigma_2 \Phi^{\dagger} \eta s_2^+ + \text{h.c.}$

K. Enomoto, S. Kanemura, K. Sakurai, H. Sugiyama, PRD(2019)

<u>LFV Processes</u> $(Y_1)_{\ell i} \overline{(\ell_R)^c} \nu_{Ri} s_1^+ + (Y_2)_{\ell \alpha} \overline{(\ell_R)^c} \psi_{R \alpha} s_2^+$

$$---- \operatorname{Br}(\tau \to \mu \gamma) = \operatorname{Br}(h \to \mu \tau)$$

$$---- \operatorname{Upper limit} \quad 4.4 \times 10^{-8}$$

$$---- \operatorname{Expected limit} \quad 1.0 \times 10^{-9}$$

$$---- \operatorname{Belle II} @ 50 \ \mathrm{ab}^{-1}$$

$$---- \operatorname{Belle II} @ 50 \ \mathrm{ab}^{-1}$$

$$---- \operatorname{Drange Points} \quad \lambda_{hs_1} = \lambda_{hs_2} = 2.0$$

Blue Points $\lambda_{hs_1} = -\lambda_{hs_2} = 2.0$

Red pointBenchmark scenario ≤ 3.0

K. Enomoto, S. Kanemura, K. Sakurai, H. Sugiyama, PRD(2019)

Dark matter candidates : η^0 , ψ^a (a = 1,2,3)

In the benchmark scenario, dark matter particle is

Table of Contents

- 1. Models for neutrino masse and classification of them
- 2. Higgs LFV decay in models for neutrino masses
- 3. Our model
- 4. Summary

4. Summary

• We built a new model for Dirac neutrino masses and dark matter.

Our model has a characteristic flavor structure,

and in some parameter region, it predicts the large branching ratio of

LFV decays of the Higgs boson.

It can be tested at near future collider experiment (HL-LHC or ILC).

Back Up Slides

CP violation terms in Scalar potential

 $\tau \rightarrow \bar{\mu}\mu\mu \text{ vs } h \rightarrow \mu\tau$

LFV processes in benchmark scenario

Processes	Numerical results
$\mu \to e\gamma$	2.36×10^{-15}
$\tau \to e\gamma$	8.26×10^{-14}
$ \tau \to \mu \gamma $	4.68×10^{-10}

Processes	Numerical results
$h \to \mu e$	1.43×10^{-16}
$h \to \tau e$	1.56×10^{-15}
$h \to \mu \tau$	4.05×10^{-5}

Processes	Numerical results
$\mu \to \overline{e}ee$	1.26×10^{-18}
$\tau \to \overline{e}ee$	4.28×10^{-18}
$\tau \to \overline{\mu} e \mu$	1.97×10^{-11}

Processes	Numerical results
$\mu \to \overline{e}\mu\mu$	1.26×10^{-18}
$\tau \to \overline{e}e\mu$	4.28×10^{-18}
$\tau \to \overline{\mu} e e$	1.97×10^{-11}
$\tau \to \overline{\mu}\mu\mu$	3.98×10^{-11}