Low-energy lepton physics and SCALARS

Dominik Stöckinger, TU Dresden

SCALARS, 13th September 2023

Dominik Stöckinger

1/15

< < > < < > < < >

muon
$$(g-2)$$

muon g - 2 BSM survey: [Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, '21]

leptoquark LFV: [Khasianevich,DS,Stöckinger-Kim,Wünsche '23]

neutrino mass (Grimus-Neufeld) LFV: [Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

muon
$$(g-2)$$

lepton flavour violation

muon g - 2 BSM survey: [Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, '21]

leptoquark LFV: [Khasianevich, DS, Stöckinger-Kim, Wünsche '23]

neutrino mass (Grimus-Neufeld) LFV: [Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

-

イロン イヨン イヨン イヨン

muon
$$(g-2)$$

neutrino mass

lepton flavour violation

muon g - 2 BSM survey: [Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, '21]

leptoquark LFV: [Khasianevich, DS, Stöckinger-Kim, Wünsche '23]

neutrino mass (Grimus-Neufeld) LFV: [Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

-

イロン イヨン イヨン イヨン

Outline

1 Muon g - 2 — situation and BSM

2 Lepton flavour violation constraints on leptoquarks

3 Neutrino masses via 2HDM and LFV

伺 と く ヨ と く ヨ と

Difficult situation for muon g - 2

・ 同 ト ・ ヨ ト ・ ヨ ト

Difficult situation for muon g - 2

(日) (同) (三) (三)

Question for Δa_{μ} : Which new physics model(s) could explain $\Delta a_{\mu} = 25 \times 10^{-10}$? \rightarrow here: focus on MSSM and leptoquarks

Note: conclusions qualitatively unchanged for $\Delta a_{\mu} \approx 10 \times 10^{-10}$

・ 同 ト ・ ヨ ト ・ ヨ ト

SUSY (MSSM): can explain g - 2 and dark matter

• • = • • = •

SUSY (MSSM): can explain g - 2 and dark matter

 $m_{L,R} = M_1 + 25 \text{ GeV}, M_1 = 250 \text{ GeV}, \tan\beta = 40$

Dominik Stöckinger

SUSY (MSSM): can explain g - 2 and dark matter

- Bino-LSP, nearby sleptons
- DM via Slepton- or Wino-coannihilation
- LHC limits easily evanded
- can easily accommodate Δa_{μ}

 $m_{L,R} = M_1 + 25 \text{ GeV}, M_1 = 250 \text{ GeV}, \tan\beta = 40$

Dominik Stöckinger

Muon g - 2 — situation and BSM

5/15

Leptoquark S_1 model with couplings μ -top or μ -charm

a_{μ} from LQ $\mathcal{L}_{S_1} = -\left(\lambda_{QL}Q_3 \cdot L_2S_1 + \lambda_{t\mu}t\mu S_1^*\right)$

Specific LQ type

with L- and R-couplings

 $t_R, c_R \downarrow t_I, c_I$

- LHC: lower mass limits
- Kaon constraints on charm [Kowalska, Sessolo, Yamamoto '19]
- Charm case more favorable for smaller Δa_{μ}

[Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, 2104.03691]

[Khasianevich_DS,Stöckinger-Kim,Wünsche 23]

Outline

1 Muon g - 2 — situation and BSM

2 Lepton flavour violation constraints on leptoquarks

3 Neutrino masses via 2HDM and LFV

(E)

Lepton flavour violation: experimental constraints

SINDRUM-II: $< 7 \times 10^{-13} \longrightarrow$ planned COMET-I: $< 7 \times 10^{-15}$

Two important general points on g-2

Two important general points on g-2

Connection to chirality flip, and structure of BSM

$$a_{\mu} \sim m_{\mu} \times \underbrace{(\text{some VEV}) \times (\mu_{L \leftrightarrow R} - \text{flipping param.})}_{\text{related to muon mass generation, potential enhancement!}} \times \frac{(\text{other couplings})}{M_{\text{typical}}^2}$$

changed by new physics? → strong effects on flavour? (see MSSM, LQ examples) → strong LFV constraints? Danger: lepton flavour violation — explore for LQ

Question for LQ model:

Given a_{μ} : how non-universal does the flavour structure have to be?

Danger: lepton flavour violation — explore for LQ

Question for LQ model: Given a_{μ} : how non-universal does the flavour structure have to be?

Example for LQ with muon-charm explanation of a_{μ}

Assume Δa_{μ} is explained by muon–charm couplings

and derive upper limits on electron-charm couplings

[Khasianevich, DS, Stöckinger-Kim, Wünsche '23]

Explore flavour constraints for LQ

$q ackslash \ell$	е	μ	au	valid
u	$\lambda_L^{11} \lambda_R^{11} \lambda_L^{12} \lambda_R^{12} < 6.5 \cdot 10^{-12} \rightarrow 3.7 \cdot 10^{-14}$			
	$\lambda_L^{11}(\lambda_R^{12} - 0.65) < 2.9 \cdot 10^{-6} \rightarrow$	λ_L^{12} < 0.82		all
	$\lambda_L^{11}(\lambda_R^{12} - 0.40) < 2.4 \cdot 10^{-7}$			
с	$\lambda_L^{21} \lambda_R^{21} < 1.2 \cdot 10^{-10} \rightarrow 1.8 \cdot 10^{-11}$	$0.18 < \lambda_L^{22} \lambda_R^{22} < 0.56$	$\lambda_L^{23} \lambda_R^{23} < 2.1 \cdot 10^{-2} \rightarrow 4.7 \cdot 10^{-4}$	
	$\lambda_{L,R}^{21} < 1.3 {\cdot} 10^{-4} \rightarrow 5.0 {\cdot} 10^{-5}$	$5.1 \cdot 10^{-2} < \lambda_{L,R}^{22} < \sqrt{4\pi}$	$\lambda_{L,R}^{23} < 1.7 \rightarrow 0.23$	sc. 2
	$\lambda_L^{21}{<}4.6{\cdot}10^{-6}{\rightarrow}1.7{\cdot}10^{-6}$	$\lambda_L^{22} < 0.13 \; , \; 1.5 < \lambda_R^{22}$	$\lambda_L^{23} < 6.0 {\cdot} 10^{-2} \rightarrow 8.9 {\cdot} 10^{-3}$	
t	$\lambda_L^{31} \lambda_R^{31} < 2.1 \cdot 10^{-12} \rightarrow 2.9 \cdot 10^{-13}$	$3.1 \cdot 10^{-3} < \lambda_L^{32} \lambda_R^{32} < 9.3 \cdot 10^{-3}$	$\lambda_L^{33} \lambda_R^{33} < 3.5 \cdot 10^{-4} \rightarrow 7.8 \cdot 10^{-6}$	sc. 1
	$\lambda_{L,R}^{31} \! < \! 1.3 \! \cdot \! 10^{-4} \! \rightarrow \! 4.9 \! \cdot \! 10^{-5}$	$8.7 \cdot 10^{-4} < \lambda_{L,R}^{22} < \sqrt{4\pi}$	$\lambda_{L,R}^{33} < 1.7 \rightarrow 0.25$	

[Khasianevich, DS, Stöckinger-Kim, Wünsche '23]

[see also Felipe, Goncalves, Morais et al '22, Hiller et al '16]

muon g - 2 explained by top-loop constraint from $\mu \rightarrow e\gamma$ (MEG and future MEG-II) constraint from $\mu \rightarrow e$ conversion (SINDRUM and future COMET-I)

LQ couplings must be strongly non-universal!

 $(\mu
ightarrow e \gamma$ constraint would relax by factor 2 if Δa_{μ} goes down)

Outline

- 1 Muon g 2 situation and BSM
- 2 Lepton flavour violation constraints on leptoquarks
- 3 Neutrino masses via 2HDM and LFV

• • = • • = •

2HDM plus single RH neutrino

$$\mathcal{L} \ni M_N \bar{N} N + y_i \bar{L}_i \Phi_v N + d_i \bar{L}_i \Phi_\perp N$$

2HDM plus single RH neutrino

$$\mathcal{L} \ni M_N \bar{N} N + y_i \bar{L}_i \Phi_v N + d_i \bar{L}_i \Phi_\perp N$$

seesaw

2HDM plus single RH neutrino

2HDM plus single RH neutrino

$$\mathcal{L} \ni M_N \bar{N} N + y_i \bar{L}_i \Phi_v N + d_i \bar{L}_i \Phi_\perp N$$

loop-level: 2nd massive ν

2HDM plus single RH neutrino

$$+ d_i \bar{L}_i \Phi_\perp N$$

2HDM plus single RH neutrino

Given m_{ν_i} : what does LFV imply for the Higgs sector/Z₂-symmetry?

[Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

Given m_{ν_i} : what does LFV imply for the Higgs sector/ Z_2 -symmetry?

Answer:

• Parametrization at each point in the ω_{22} -*r*-plane: m_{ν_i} are explained and Yukawas scale only with $\Lambda m_{H_-}^2 \propto \lambda_5$

[Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

Given m_{ν_i} : what does LFV imply for the Higgs sector/ Z_2 -symmetry?

Answer:

• $\mu \rightarrow e\gamma$ strongest constraint and provides lower limits \downarrow on $\Lambda m_{H_{-}}^2 \propto \lambda_5$

[Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

Given m_{ν_i} : what does LFV imply for the Higgs sector/ Z_2 -symmetry?

Answer:

- $\mu \rightarrow e\gamma$ strongest constraint and provides lower limits \downarrow on $\Lambda m_{H_{-}}^2 \propto \lambda_5$
- except small regions where τ-decays could be observed.

[Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

Given m_{ν_i} : what does LFV imply for the Higgs sector/ Z_2 -symmetry?

Answer:

- $\mu \rightarrow e\gamma$ strongest constraint and provides lower limits \downarrow on $\Lambda m_{H_{-}}^2 \propto \lambda_5$
- except small regions where τ-decays could be observed.

[Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

absolute bound: $|\lambda_5| > 1 \cdot$ typical bound: (no $\tau \to e\gamma/\mu\gamma$ expected): $|\lambda_5| \gtrsim \frac{\text{ke}\lambda}{m_{\ell}}$

$$\begin{split} |\lambda_5| &> 1 \cdot 10^{-2} \frac{\text{keV}}{m_4} \,, \\ |\lambda_5| &\gtrsim \frac{\text{keV}}{m_4} \,. \end{split}$$

Conclusions

• muon g - 2 after FNAL Run-2/3: $\Delta a_{\mu} = (?10...25??) \times 10^{-10}$

- \blacktriangleright MSSM, leptoquark \sim chiral enhancements \rightsquigarrow viable explanations
- chiral enhancements \Rightarrow new flavour structure, constrained by LFV
- leptoquarks: large $\Delta a_{\mu} \Rightarrow$ strongly non-universal couplings
- neutrino mass via 2HDM+loops: GNM
 - LFV implies specific Higgs sector, outlook: LFV τ -decays
- technical tool for LFV: FlexibleSUSY + NPointFunctions [Khasianevich '22]

< - □

- (E) (E)