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Top loop-corrections to the Higgs Effective Potential

destabilize the electroweak vacuum...

NOT IN SCALE

E W 

Instability 

EW Scale = v ∼ 246 GeV

For MH ∼ 125 GeV , Mt ∼ 173 GeV :

Instability Scale ∼ 1011 GeV
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Higgs One-Loop Effective Potential V 1l(φ)
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RG Improved Effective Potential V
RGI

(φ)

E W 

NOT IN SCALE

Instability 

 New Minimum

Depending on MH and Mt , the second minimum can be : (1) lower

than the EW minimum (as in the figure) : This is the case for MH ∼ 125
GeV , Mt ∼ 173 GeV ; (2) at the same level ... ; (3) higher ...

When the potential at the New Minimum is lower than the potential at

the EW Minimum ... EW vacuum Metastable State ⇒
... Calculate the Tunneling Time ...
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Tunneling time usually computed under the assumption

that New Physics Interactions although expected around the Planck scale

do not affect the EW vacuum lifetime τ (can be neglected when

computing τ). Argument:

Instability scale, Λinst ∼ 1011 GeV, much lower than Planck scale ⇒

⇒ suppression
(

Λinst

MP

)n
expected

E W = 246 GeV

NOT IN SCALE

Instability = 1011 GeV

M
P

New Physics Interactions 
at the Planck scale
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Flat Spacetime

Euclidean action for a single component real scalar field φ:

S[φ] =

∫
d4x

[
1

2
(∂µφ)2 + V (φ)

]
V (φ) potential with (false vacuum) at φ = φfv, and true vacuum at φ = φtv.

Bounce Solution

to the Euclidean Euler-Lagrange equation with O(4) symmetry. If r is the radial

coordinate, the equation takes the form (bounce equation):

φ̈(r) +
3

r
φ̇(r) =

dV

dφ
,

where the dot indicates derivative with respect to r, and the boundary condition are:

φ(∞) = 0 φ̇(0) = 0 .
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Bounce Solution
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Decay rate Γ (of the false vacuum):

Γ =
1

τ
= De−(S[φb]−S[φfv]) ≡ D e−B

B ≡ S[φb]− S[φfv] is the so called Tunneling Exponent.

The exponential of −B gives the “tree-level” contribution to the decay rate.

If V (φfv) = 0, S[φfv] vanishes, and the tunneling exponent is simply B = S[φb].

D is the quantum fluctuation determinant.

Size R of the bounce. Defined as the value of r such that:

φb(R) =
1

2
φb(0)

Good approximation to the prefactor: in terms of the bounce size R and of TU , the

age of the Universe. The EW vacuum tunneling time τ = Γ−1 turns out to be:

τ '
(
R4

T 3
U

)
eB
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Curved spacetime. Including the Einstein-Hilbert term, the Euclidean action is:

S[φ, gµν ] =

∫
d4x
√
g

[
− R

16πG
+

1

2
gµν∂µφ ∂νφ+ V (φ)

]
where R is the Ricci scalar and G is the Newton constant. Requiring again O(4)

symmetry, the (Euclidean) metric takes the form:

ds2 = dr2 + ρ2(r)dΩ2
3

where dΩ2
3 is the unit 3-sphere line element and ρ(r) is the volume radius of the

3-sphere at fixed r coordinate. The bounce is now given by φb(r) and ρb(r),

solutions of the coupled equations: (κ ≡ 8πG):

φ̈+ 3
ρ̇

ρ
φ̇ =

dV

dφ
ρ̇2 = 1 +

κρ2

3

(
1

2
φ̇2 − V (φ)

)
The first equation replaces the equivalent equation in the flat spacetime background,

while the second is the only Einstein equation left by the symmetry. For the decay of

a Minkowski false vacuum to a true AdS vacuum, the case of interest to us, the

boundary conditions are:

φ
b
(∞) = 0 φ̇

b
(0) = 0 ρ

b
(0) = 0 .
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Renormalization Group Improved Higgs Effective Potential

φ is the Higgs field and V (φ) is the Higgs renormalization group improved potential:

VSM(φ) ∼ 1

4
λSM(φ)φ4 ,

where λSM(φ) is the running coupling λSM(µ) with µ = φ, obtained by running the

system of RG equation of the SM couplings.
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Flat Spacetime case

τflat ∼ 10639TU

Obtained with MH ∼ 125 GeV, Mt ∼ 173 GeV
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More Generally we can explore the MH ,Mt parameter space

E W 

NOT IN SCALE

Instability 

 New Minimum

Depending on MH and Mt , the second minimum can be : (1) lower

than the EW minimum (as in the figure) : This is the case for MH ∼ 125
GeV , Mt ∼ 173 GeV ; (2) at the same level ... ; (3) higher ...

Considering these different cases, we can draw the Stability Diagram
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Stability Diagram in the MH −Mt plane

110 115 120 125 130 135 140

166

168

170

172

174

176

178

180

M H

M t

Instability

Metastability Stability

Stability region : Veff (v) < Veff (φ
(2)
min).

Meta-stability region : Veff (φ
(2)
min) < Veff (v) and τ > TU .

Instability region : Veff (φ
(2)
min) < Veff (v) and τ < TU .

Stability line : Veff (v) = Veff (φ
(2)
min).

Instability line : MH and Mt such that τ = TU .
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Curved Spacetime case

0 1000 2000 3000 4000 5000

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1000 2000 3000 4000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Profile of the bounce ϕb(x) in the presence of gravity and of the difference between

the curvature radius and its asymptotic value, ab(x)− x.

Asymptotically ab(x) reaches the Minkowskian aM(x) ∼ x+ Const.

τgrav ∼ 10661 TU
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Stability Diagram with and without gravity

Rajantie et al.
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Summary up to now ...
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• It was argued that even if at the Planck scale (or at some other very high

energy scale) New Physics is expected, the latter has no influence on the

Stability Diagram.

• Accordingly, the Tunnelling Time for the experimental values, MH ∼ 125

GeV, Mt ∼ 173 GeV :

τflat ∼ 10639 TU τgrav ∼ 10661 TU
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... However ... it has been shown that ...

110 115 120 125 130 135 140

166

168

170

172

174

176

178

180

M H

M t

Instability

Metastability Stability

contrary to this expectation, the Stability Diagram above is not universal:

even if New Physics shows up only at very high energies, the Stability

Diagram depends on it ...

VB, E. Messina, Phys.Rev.Lett.111, 241801 (2013);

VB, E. Messina, A. Platania, JHEP 1409 (2014) 182;

VB, E. Messina, M. Sher, Phys.Rev.D91 (2015) 1, 013003;

VB, E. Messina, EPL 117 (2017) 61002;

E. Bentivegna, VB, F. Contino, D. Zappalà, Impact of New Physics on the EW vacuum stability in a curved

spacetime background, (arXiv:1708.01138), to be published in JHEP.
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... and in fact ...

Let’s add New Physics around MP
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One way of parametrizing New Physics around MP :

V (φ) =
λ(φ)

4
φ4 +

λ6

6

φ6

M 2
P

+
λ8

8

φ8

M 4
P

0.0 0.1 0.2 0.3 0.4 0.5

-0.0003

-0.0002

-0.0001

0.0000

0.0001

Potential obtained with λ6 = −0.4 and λ8 = 2.
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Bounce profiles in the Flat Spacetime background

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

The blue curve is the profile of the bounce solution obtained for the potential with

λ6 = 0 and λ8 = 0, i.e. in the absence of new physics. The yellow curve is the

profile of the bounce solution for λ6 = −0.3 and λ8 = 0.3, while the green curve is

the profile of the bounce obtained for λ6 = −0.01 and λ8 = 0.01.
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Tunneling times for different values of λ6 and λ8

λ6 λ8 τflat/TU

0 0 10639

−0.05 0.1 10446

−0.1 0.2 10317

−0.3 0.3 10−52

−0.45 0.5 10−93

−0.7 0.6 10−162

−1.2 1.0 10−195

−2.0 2.1 10−206

Remember : τ ∼ eS[φb]

New bounce φ
(new)
b (r) , New action S[φ

(new)
b ] , New τ
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These results were however challenged

The two following points were raised
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- Point 1 -
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Flat Spacetime background → Curved Spacetime background

It was argued that when the presence of gravity is taken into account, the decay rate

induced by the new bounce solutions presented above is suppressed.
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Bounce profiles obtained in the presence of Gravity
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Left Panel. - Blue curve: profile of the bounce solution with λ6 = 0 and λ8 = 0, i.e.

in the absence of new physics. Yellow curve: profile of the bounce solution for

λ6 = −0.03 and λ8 = 0.03. Green curve: profile of the bounce solution for

λ6 = −0.04 and λ8 = 0.04.

Right Panel: Profile of the difference between the curvature radius and its

asymptotic value, a(x)− x.
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Tunneling times for different values of λ6 and λ8

λ6 λ8 τflat/TU τgrav/TU

0 0 10639 10661

−0.05 0.1 10446 10653

−0.1 0.2 10317 10598

−0.3 0.3 10−52 10287

−0.45 0.5 10−93 10173

−0.7 0.6 10−162 1047

−1.2 1.0 10−195 10−58

−2.0 2.1 10−206 10−121

It is true that Gravity tends to stabilize the EW vacuum (τgrav always higher than

τflat). However, New Physics has always a strong (that can be even devastating)

impact.
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Stability Diagram

τ < TU

τgrav > TU

τflat < TU

τ > TU

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4

0.4

0.6

0.8

1.0

1.2

1.4

In the blue region τ > TU both for the flat and curved spacetime analysis. In the

yellow region τ < TU for the flat spacetime background. In the red region τ < TU in

both cases.
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Non-Renormalizable New Phyisics → Renormalizable New Physics

... It was also argued that the fact that New Physics was parametrized in terms of

Non-Renormalizable operators actually could invalidate these results ...
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New Physics around MP in terms of renormalizable operators

Add to the SM potential a “New Boson S” and a “New Fermion ψ” :

∆V (φ, S, ψ) =
M2

S

2
S2 +

λS
4
S4 +

gS
4
φ2S2 +Mf ψ̄ψ +

gf√
2
φψ̄ψ

with Mf ∼ 1017 GeV and MS ∼ 1018 GeV.

Integrating out this new scalar and fermion fields we get the

Modified Higgs Potential

V (φ) =
1

2
m2φ2 +

λ

4
φ4 +

1

64π2

(
M2

S +
gS
2
φ2
)2
[
ln

(
M2

S + gS

2
φ2

µ2

)
− 3

2

]

− 1

16π2

(
M2

f +
g2
f

2
φ2

)2
ln

M2
f +

g2f
2
φ2
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− 3
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Modifided potential (yellow) against SM potential (blue)

0.0 0.2 0.4 0.6 0.8 1.0

-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0010

The values of the parameter are: MS = 2.0× 10−1MP , Mf = 10−3MP , gS = 0.95,

g2
f = 0.4.
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Bounce profiles for the Flat Spacetime Case

0 100 200 300 400

0.0

0.1

0.2

0.3

0.4

Profile of the bounce solutions ϕ(x) relative to the four cases: MS = 2.5× 10−1,

Mf = 3× 10−4, gS = 0.96, g2
f = 0.5 (yellow) ; MS = 2.0× 10−1, Mf = 10−4, gS = 0.9,

g2
f = 0.5 (blue); MS = 2.0× 10−1, Mf = 10−3, gS = 0.95, g2

f = 0.4 (green);

MS = 1.5× 10−1, Mf = 5× 10−3, gS = 0.92, g2
f = 0.4 (red).
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Bounce profiles for the Curved Spacetime Case

0 200 400 600 800 1000 1200 1400

0.00
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Left panel: Profile of the bounce solutions ϕ(x) relative to the four cases:

MS = 2.5× 10−1, Mf = 3× 10−4, gS = 0.96, g2
f = 0.5 (yellow) ; MS = 2.0× 10−1,

Mf = 10−4, gS = 0.9, g2
f = 0.5 (blue); MS = 2.0× 10−1, Mf = 10−3, gS = 0.95,

g2
f = 0.4 (green); MS = 1.5× 10−1, Mf = 5× 10−3, gS = 0.92, g2

f = 0.4 (red).

Right panel: difference between the curvature radius and its asymptotic value,

a(x)− x, for the same parameters as in the left panel.
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Tunneling times for different values of the parameters

MS Mf gS g2
f τflat/TU τgrav/TU

0 0 0 0 10639 10661

1.5× 10−1MP 5× 10−3MP 0.92 0.4 10293 10307

2.0× 10−1MP 10−3MP 0.95 0.4 1080 1094

2.5× 10−1MP 3× 10−4MP 0.96 0.5 10−80 10−65

2.0× 10−1MP 10−4MP 0.9 0.5 10−103 10−93

As for the case of the parametrization of New Phyiscs with

VNP (φ) =
λ6

6

φ6

M2
P

+
λ8

8

φ8

M4
P

we again observe that Gravity tends to stabilize the EW vacuum (τgrav always higher

than τflat). However, New Physics has always a strong (that can be even devastating)

impact.
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Back to the λ6 - λ8 parametrization
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Phase diagram with λ6 = −0.2 and λ8 = 0.5

110 115 120 125 130 135 140

166

168

170

172

174

176

178

180

M H

M t

Λ6 =- 0.2

Λ8 = 0.5
Instability

Metastability
Stability

The strips move downwards ... The Experimental Point no longer at 3σ

from the stability line ... Stability Diagram depends on new physics.
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Phase diagram with λ6 = −0.4 and λ8 = 0.7

110 115 120 125 130 135 140

166

168

170

172

174

176

178

180

M H

M t

Λ6 =- 0.4

Λ8 = 0.7

Instability

Metastability
Stability

Stability Diagram depends on new physics.
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As previously said ... These results came as a surprise ...

It was thought, in fact, that New Physics that lives at very high energies

(Planck Mass, or GUT scale, or ...) should not have an impact in the

computation of the tunnelling time and more generally in establishihg the

Stability Diagram

Why is that new physics at MP has such an impact on τ ?

Why the decoupling arguments do not apply ?
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1. New physics in terms of higher dimension operators φn

Mn
P

. Observing that

Λinst ∼ 1011 GeV, a decoupling effect was expected, so that their contribution was

expected to be suppressed as (Λinst

MP
)n. However: Tunnelling is a non-perturbative

phenomenon. We first select the saddle point, i.e. compute the bounce (tree level),

and then compute the quantum fluctuations (loop corrections) on the top of it.

Suppression in terms of inverse powers of MP (power counting theorem) concerns the

loop corrections, not the selection of the saddle point (tree level).

Remember : τ ∼ eS[φb]

New bounce φ
(new)
b (r) , New action S[φ

(new)
b ] , New τ

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r MP

Φ

MP
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Non-minimal coupling to gravity

39
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Curved Spacetime. Non-minimal coupling

S[φ] =

∫
d4x
√
g

[
− R

2κ
+

1

2
gµν∂µφ ∂νφ+ V (φ) +

1

2
ξφ2R

]
Again O(4) symmetry:

φ̈+ 3
ρ̇

ρ
φ̇ =

dV

dφ
+ ξφR ρ̇2 = 1− κ

3
ρ2
−1

2
φ̇2 + V (φ)− 6ξ ρ̇

ρ
φφ̇

1− κξφ2
,

with R given by:

R = κ
φ̇2(1− 6ξ) + 4V (φ)− 6ξφ dV/dφ

1− κξ(1− 6ξ)φ2
.

For ξ = 0 these Equations become the minimal coupling ones.

Asymptotics: For r →∞, ρ̇2
b = 1, so ρ(r) approaches the flat spacetime metric. In

the same limit, R→ 0.
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Curved Spacetime. Non-minimal coupling

-1000 -500 0 500 1000

2100

2200

2300

2400

2500

2600

-1.0 -0.5 0.0 0.5 1.0

2040

2060

2080

2100

B very sensitive to ξ. Outside the range [ξ = 0, ξ = 1/3], B(ξ) is greater than

B(ξ = 0), and non-minimal coupled gravity stabilizes the EW vacuum more than

minimally coupled gravity.

Minimum at ξmin ' 0.17, close to the conformal value ξ = 1/6. Actually for the scale

invariant potential V (φ) = λ
4
φ4 (constant λ) the minimum is reached at ξ = 1/6.

Tunneling exponent B for the flat space-time case and for the conformal case ξ = 1/6:

Bflat ≡ B(ξ = 0) = 2025.27 B(ξ = 1/6) = 2025.15 .
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What happens now if we Add New Physics at MP ?
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Add New Physics in the λ6 and λ8 case

ξ (τ/TU)SM (τ/TU)NP

−15 10736 10736

−10 10726 10726

−5 10710 10710

−1 10684 10680

−0.5 10677 10600

−0.3 10672 10358

−0.1 10666 1065

0 10661 10−58

ξ (τ/TU)SM (τ/TU)NP

0.3 10660 10−167

0.5 10668 1023

0.7 10674 10346

0.8 10676 10512

1 10679 10666

5 10709 10709

10 10725 10725

15 10735 10735

Values of τ with and without New Physics for different values of ξ, where λ6 = −1.2

and λ8 = 1.
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Tunneling exponent as a function of ξ

-1.0 -0.5 0.0 0.5 1.0 1.5
0

500

1000

1500

2000

Yellow: B(ξ) when the SM potential alone is considered. Blue: B(ξ) when the New

Physics potential with λ6 = −1.2 and λ8 = 1 is considered (questa e’ la coppia di

valori dive si ha il passaggio da maggiore a minore di TU).
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Stability Diagrams for ξ = −0.2 and ξ = 0.9
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Stability diagrams in the (λ6, λ8) plane with non-minimal coupling to gravity:

ξ = −0.2 (left), ξ = 0.9 (right). In both cases, for the range of λ6 and λ8 showed, the

EW vacuum is always stable (τ > TU), unlike the minimal coupling case.
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The ξ = 0 case for comparison

250
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-100
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The same range of values of λ6 and λ8 as in the previous slide.
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B as a function of ξ in the Boson-Fermion case

-10 -5 0 5 10

1200

1400

1600

1800

2000

2200

Yellow: B(ξ) when the SM potential alone is considered. Blue: B(ξ) when the New

Physics potential with MS = 1.5× 10−1, Mf = 5× 10−3, gS = 0.92, g2
f = 0.4 is

considered.
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... Rescue from New Physics destabilization ...

Non-minimal coupling of gravity with the Higgs field ... Note that:

• the dimension four operator ξφ2R naturally arises when quantization is carried

out in a curved space-time background ... in the SM the term ξ RH H∗ is

required in order to make the theory multiplicatively renormalizable in curved

spacetime.

• from an effective field theory point of view, this is just the leading order term in

an expansion of the action in the curvature, although very little is known about

the value of the dimensionless coupling ξ.

With the discovery of the Higgs boson it was possible to put only a very high upper

bound on its absolute value, |ξ| < 2.6× 1015 (X. Calmet) ⇒ this allows for different

scenarios that depend on different choices of ξ ... Higgs inflation requires a large

value of ξ ...

In view of the enormous stabilizing effect induced by the ξ φ2R term for values of ξ

outside the tiny range of values −1 . ξ . 1, and under the assumption that the

physical (yet unknown) value of ξ lies outside this range, we can be lead to formulate

the following
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“Direct Coupling Stability Conjecture”

... The quantum nature of physical laws and the very existence of gravity provide an

intrinsic stabilization mechanism that protects our universe against any potential

destabilization that could come from yet unknown New Physics ...

Actually one important and several times considered question is whether or not the

presence of new physics at high energy can destabilize the EW vacuum ...

The analysis presented above shows that, without taking into account the presence of

the term ξ φ2R, this is a possibility. We have seen that when the Higgs field is

non-minimally coupled to gravity (except for a tiny range of values of ξ) the possible

destabilizing effect of unknown New Physics is washed out by the presence of the

non-minimal coupling.
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Conclusions and Outlook

• New Physics at very high (Planckian) energy scales can destabilize the

EW vacuum. Stability analysis performed in a flat spacetime

background.

• Very recent work confirmed that the same is true even when the

analysis is performed in a curved spacetime background. Minimal

coupling to gravity shows a tendency toward stabilization, but for

large portions of New Physics parameter space, the destabilizing effect

of New Physics still wins against the stabilization effect of gravity.

• Non-minimal coupling to gravity, dictated by field quantization in a

curved spacetime background, except for a tiny range of values of ξ,

provides a very strong stabilization mechanism.

• This lead us to formulate a “Direct Coupling Stabilization Conjecture”.

• Search for other Stabilization Mechanisms.
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BACK UP SLIDES
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False Vacuum Decay
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Coleman analysis in flat space-time (1977)

Later (1980) Coleman - De Luccia considered the impact of gravity

In both cases... “Thin Wall” ...

52



'

&

$

%

In a gravitational background - Thin Wall Approximation

Comparing the action B in the gravitational background with the action

B0 in flat space-time

B =
B0[

1−
(
ξ0/(2Λ)

)2
]2

with

Λ = (8π G ·∆U/3)−1/2

and

∆U = U(φfv)− U(φtv)
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Out of Thin Wall
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Comparing the action B in the gravitational background with the action

B0 in flat space-time

In the Thin Wall Approximation and Out of “Thin Wall”
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LESSON

When U(φfv)− U(φtv) is not small, the intuition that we have

developed from the Coleman-DeLuccia analysis on the

Impact of Gravity does not apply !

It is no longer true that when the Bounce becomes larger and

larger, the probability of materialization of the bounce

becomes smaller and smaller ... eventually vanishing ...
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... “Old Ideas” ...

From: J.R. Espinosa, G.F. Giudice, A. Riotto, JCAP 0805 (2008) 002

“For most of the relevant values of the top and Higgs masses, the instability scale

Λinst is sufficiently smaller than the Planck mass, justifying the hypothesis of

neglecting effects from unknown Planckian physics.”

From: Isidori, Ridolfi, Strumia, Nucl.Phys. B609 (2001) 387

“The SM potential is eventually stabilized by unknown new physics around MP :

because of this uncertainty, we cannot really predict what will happen after

tunnelling has taken place. Nevertheless, a computation of the tunnelling

rate can still be performed, this result does not depend on the unknown

new physics at the Planck scale.”
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Turning points...

E W = 246 GeV

NOT IN SCALE

Instability = 1011 GeV

M
P

 ~1031 GeV !!!

This is QFT with “very many” dof, not 1 dof QM ⇒ the potential is not V (φ) in

figure with 1 dof, but...

L = 1
2
∂µφ∂

µφ− V (φ) = 1
2
φ̇2 − 1

2
(~∇φ)2 − V (φ) = 1

2
φ̇(~x, t)2 − U(φ(~x, t))

where U(φ(~x, t)) is : U(φ(~x, t)) = V (φ(~x, t)) + 1
2
(~∇φ(~x, t))2

Very many dof, not 1 dof... The Potential is :
∑

~x U(φ(~x, t))

The bounce is not a constant configuration ... Gradients do matter a lot.
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