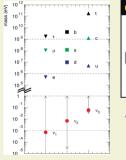
The Basis Invariant Flavor Puzzle

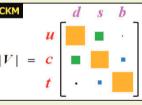
Andreas Trautner

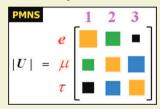
MAX-PLANCK-GESELLSCHAF1

The Standard Model Flavor Puzzle

- Why three generations of matter Fermions?
- Why hierarchical masses of Fermions?
- Why small transition probabilities for $q_i^{\text{up}} o q_{j \neq i}^{\text{down}}$? $\left(\propto |V_{ij}^{\text{CKM}}|^2 \right)$
- Why large transition probabilities for $\ell_i \rightarrow \nu_j$? $\left(\propto |U_{ij}^{\rm PMNS}|^2 \right)$





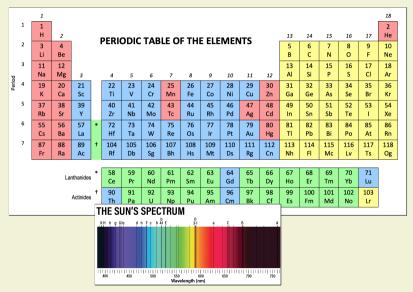


• Why CP violation only in combination with flavor violation?

Parametrization independent measure of CP violation:

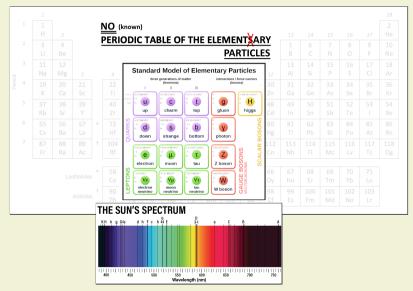
$$J_{33} = \det \left[M_u \, M_u^{\dagger}, M_d \, M_d^{\dagger} \right] \propto Im \left[V_{ud}^* V_{cs}^* V_{us} V_{cd} \right] = 3.08^{+0.15}_{-0.13} imes 10^{-5}$$

The Standard Model Flavor Puzzle



Andreas Trautner

The Standard Model Flavor Puzzle



Andreas Trautner

Why use Basis Invariants (BIs)?

- Physical observables <u>must</u> be given as function of BIs.
- Flavor puzzle is *plagued* by *unphysical* choice of basis and parametrization.
- BI necessary and sufficient conditions for CPV in SM....
 [Greenberg '85; Jarlskog '85]
 - ... and BSM: Multi-scalar 2/3/NHDM, 4th gen., Dirac vs. Majorana v's, ...

[Bernabeau et al. '86], [Branco, Lavoura, Rebelo '86], [Botella, Silva '95], [Davidson, Haber '05], [Yu, Zhou '21],...

- Bls and their relations, incl. CP-even Bls, allow to detect symmetries in general. [Ivanov, Nishi, Silva, AT '19], [de Meideiros Varzielas, Ivanov '19], [Bento, Boto, Silva, AT '20]
- BI formulation simplifies RGE's, RGE running, and derivation of RGE invariants.

[Harrison, Krishnan, Scott '10], [Feldmann, Mannel, Schwertfeger '15], [Chiu, Kuo '15], [Bednyakov '18], [Wang, Yu, Zhou '21], ...

No quantitative BI analysis of the flavor puzzle exist.

 \sim This allows an entirely new perspective on the flavor puzzle!

Why hasn't it been done? Technically challenging:

How to construct BI's? When to stop?

general answers and technique based on example of 2HDM [AT '18]

Outline

Motivation

I will focus entirely on the quark sector here!

- Standard Model quark sector flavor covariants
- Construction of the complete ring of quark sector orthogonal basis invariants
- Determine the invariants from experimental data
- \Rightarrow This gives an entirely basis invariant picture of the quark flavor puzzle.
- CP transformation of invariants & comments

$$-\mathcal{L}_{\text{Yuk.}} = \overline{Q}_{\text{L}} \widetilde{H} \boldsymbol{Y}_{\boldsymbol{u}} u_{\text{R}} + \overline{Q}_{\text{L}} H \boldsymbol{Y}_{\boldsymbol{d}} d_{\text{R}} + \text{h.c.},$$

$$\begin{array}{ccc} -\mathcal{L}_{\mathrm{Yuk.}} &= & \overline{Q}_{\mathrm{L}} \, \widetilde{H} \, \boldsymbol{Y_{u}} \, \boldsymbol{u}_{\mathrm{R}} \, + \, \overline{Q}_{\mathrm{L}} \, H \, \boldsymbol{Y_{d}} \, \boldsymbol{d}_{\mathrm{R}} \, + \, \mathrm{h.c.} \; , \\ \hline & & Y_{u} \, \widehat{=} \, (\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1}) \\ & & Y_{d} \, \widehat{=} \, (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3}) \end{array} \mathsf{of} \qquad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}} \end{array}$$

$-\mathcal{L}_{ ext{Yuk.}} \;=\; \overline{Q}_{ ext{L}} \widetilde{H} oldsymbol{Y}_{oldsymbol{e}}$	$\boldsymbol{_{\boldsymbol{\mu}}} u_{\mathrm{R}} + \overline{Q}_{\mathrm{L}} H \boldsymbol{Y}_{\boldsymbol{d}} d_{\mathrm{R}} + \mathrm{h.c.} ,$
$Y_u \widehat{=} (\overline{f 3}, {f 3}, {f 1})$ of	${ m SU}(3)_{Q_{ m L}}\otimes { m SU}(3)_{u_{ m R}}\otimes { m SU}(3)_{d_{ m R}}$
$Y_d \mathrel{\widehat{=}} (\overline{3}, 1, 3)$	$SU(3)Q_{\rm L} \otimes SU(3)u_{\rm R} \otimes SU(3)d_{\rm R}$
$H_u := Y_u Y_u^{\dagger} , H_d := Y_d Y_d^{\dagger}$	both trafo as $\overline{3}\otimes 3$ of $\mathrm{SU}(3)_{Q_{\mathrm{L}}}$.

$-\mathcal{L}_{\mathrm{Yuk.}} = \overline{Q}_{\mathrm{L}} \widetilde{H} \boldsymbol{Y_u} u_{\mathrm{R}} + \overline{Q}_{\mathrm{L}} H \boldsymbol{Y_d} d_{\mathrm{R}} + \mathrm{h.c.} ,$
$\begin{array}{ll} Y_u \widehat{=} (\overline{3}, 3, 1) \\ Y_d \widehat{=} (\overline{3}, 1, 3) \end{array} \text{of} \qquad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}} \end{array}$
$H_u:=Y_uY_u^\dagger, H_d:=Y_dY_d^\dagger$ both trafo as $\overline{f 3}\otimes {f 3}$ of ${ m SU}(3)_{Q_{ m L}}.$
$\overline{3}\otimes 3 \hspace{0.5cm} = \hspace{0.5cm} 1 \hspace{0.5cm} \oplus \hspace{0.5cm} 8 .$
$H_u = \frac{1}{N} \rightarrow (H_u) + \frac{1}{T_r} \rightarrow (H_u) .$
$(t^{a})_{j}^{i} = \underbrace{\overset{a}{\underset{j}{\overset{a}{\overset{a}{\overset{a}{\overset{a}{\overset{a}{\overset{a}{\overset{a}{\overset$

Andreas Trautner

Orthogonal Covariant Projection Operators

What does orthogonal mean here?

Orthogonality on the level of projection operators!

$$P_{(1)}$$
 $P_{(8)}$
 $P_{(1)} \cdot P_{(8)} = 0 \ (\propto \operatorname{Tr} t^a)$

Projection operators: $P_i^2 = P_i$, $\operatorname{Tr} P_i = \dim(r_i)$,

Orthogonality: $P_i \cdot P_j = 0$.

Using orthogonal singlet projectors we find invariants that are ortogonal to each other!

.

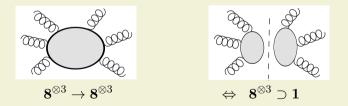
What is necessary to construct Basis Invariants

$$\mathbf{8}_u\otimes \mathbf{8}_u\otimes \ldots \mathbf{8}_d\otimes \mathbf{8}_d\otimes \cdots = \mathbf{8}_u^{\otimes k}\otimes \mathbf{8}_d^{\otimes \ell} = \sum_\oplus oldsymbol{r}_i$$

Singlet projection operators:

$$\mathbf{8}_{u}^{\otimes k} \otimes \mathbf{8}_{d}^{\otimes \ell} \supset \mathbf{1}_{(1)} \oplus \mathbf{1}_{(2)} \oplus \dots$$

Singlet projection operators are characterized by *factorization*. For example:



How many *independent* singlets exist? (here: in contractions $\mathbf{s}_{u}^{\otimes k} \otimes \mathbf{s}_{d}^{\otimes \ell}$ for all k, ℓ)

Andreas Trautner

Jargon of invariant theory

• Algebraic (in-)dependence:

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots$ are *algebraically dependent* if and only if

 $\exists \quad \text{Polynomial} (\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0 .$

($\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are algebraically independent iff $\nexists Pol$)

Jargon of invariant theory

• Algebraic (in-)dependence:

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are *algebraically dependent* if and only if

 $\exists \quad \text{Polynomial} (\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0 .$

($\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are algebraically independent iff $\nexists Pol$)

• *Primary* invariants:

A maximal set of algebraically independent invariants.

of primary invariants = # of physical parameters.

(a choice of primary invariants is not unique, but the number of invariants is)

Jargon of invariant theory

• Algebraic (in-)dependence:

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are *algebraically dependent* if and only if

 $\exists \quad \text{Polynomial} (\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0 .$

($\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are algebraically independent iff $\nexists Pol$)

• *Primary* invariants:

A maximal set of algebraically independent invariants.

of primary invariants = # of physical parameters.

(a choice of primary invariants is not unique, but the number of invariants is)

• Generating set of invariants \equiv all primary + secondary invariants.

Secondary invariants: all \mathcal{I} 's that *cannot* be written as polynomial of other invariants,

 $\mathcal{I}_i \neq \text{Polynomial}(\mathcal{I}_j, \dots)$.

 \Rightarrow All invariants can be written as a polynomial in the *generating set* of invariants,

 $\mathcal{I} = \operatorname{Polynomial}\left(\mathcal{I}_1, \mathcal{I}_2, \dots\right)$.

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants? Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants? Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

Andreas Trautner

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants? Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

Andreas Trautner

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants? Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.
- HS/PL input: covariants are $\mathbf{8}_u$ and $\mathbf{8}_d$ of SU(3).
- ∧ HS/PL output:

[Jenkins & Manohar '09]

- # of primary invariants and their sub-structure (covariant content):

$$egin{array}{rcl} (u) & (d) \ u^2 & d^2 & ud \ u^3 & d^3 & u^2d & ud^2 \ u^2d^2 \end{array}$$

(10 primary invariants $\hat{=}$ 10 physical parameters).

- -1 secondary invariant of structure: $u^3 d^3$.
- Relation (**Syzygy**) of order $u^6 d^6$ between primaries and the secondary.

Note: The HS/PL does not tell us how to construct the invariants or the relations.

Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

Those can be constructed via *birdtrack* diagrams [Cvitanovic '76 '08, K

[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

[AT '18]

Note: The HS/PL does not tell us <u>how</u> to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

Those can be constructed via birdtrack diagrams

[AT '18] [Cvitanovic '76 '08, Keppeler and Siödahl '13]

.

• $8^{\otimes 2} \rightarrow 1$

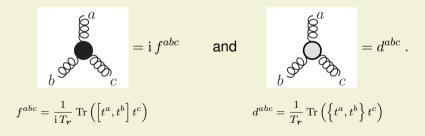
Note: The HS/PL does not tell us <u>how</u> to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

Those can be constructed via birdtrack diagrams

[AT '18] [Cvitanovic '76 '08, Keppeler and Siödahl '13]

- $8^{\otimes 2} \rightarrow 1$
- $\mathbf{8}^{\otimes 3}
 ightarrow \mathbf{1}$



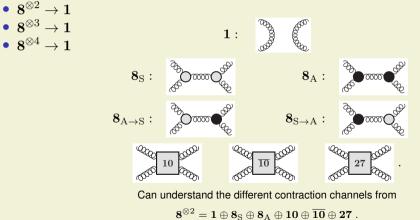
Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

Those can be constructed via birdtrack diagrams

[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

[AT '18]



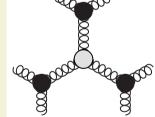
Note: The HS/PL does **not** tell us **how** to construct the invariants or the relations.

For this we use orthogonal projection operators. (here in adjoint space of $SU(3)_{O_T}$)

Those can be constructed via **birdtrack** diagrams

IAT '18] [Cvitanovic '76 '08, Keppeler and Siödahl '13]

• $8^{\otimes 2} \rightarrow 1$ many operators exist in $\mathbf{8}^{\otimes 6} \rightarrow \mathbf{1}$, we only need one: • $8^{\otimes 3} \rightarrow 1$ • $8^{\otimes 4} \rightarrow 1$ • $8^{\otimes 6} \rightarrow 1$

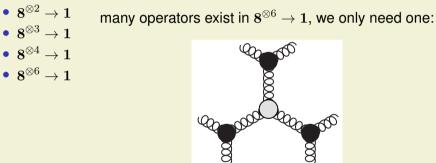


Note: The HS/PL does not tell us <u>how</u> to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

Those can be constructed via *birdtrack* diagrams

[AT '18] [Cvitanovic '76 '08, Keppeler and Siödahl '13]



All of these operators are **orthogonal** to each other. We now use them to construct the orthogonal invariants.

The 10 algebraically independent and orthogonal invariants are given by:

$$I_{10} \propto \left(H_u \right)$$
 and $I_{01} \propto \left(H_d \right)$.

The 10 algebraically independent and orthogonal invariants are given by:

$$I_{10} \propto H_{u} \qquad \text{and} \qquad I_{01} \propto H_{d} \qquad .$$

$$I_{20} \propto H_{u} \qquad I_{02} \propto H_{d} \qquad I_{11} \propto H_{u} \qquad .$$

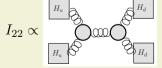
$$I_{30} \propto \int_{H_{u}}^{H_{u}} \int_{U_{u}}^{H_{u}} \int_{U_{u$$

The 10 algebraically independent and orthogonal invariants are given by:

$$I_{10} \propto H_{u} \quad \text{and} \quad I_{01} \propto H_{d} \quad .$$

$$I_{20} \propto H_{u} \mod I_{02} \propto H_{d} \mod I_{11} \propto H_{u} \mod H_{d} \quad .$$

$$I_{30} \propto \int_{H_{u}}^{H_{u}} \int_{H_{u}}^{H_{u}}$$



The 10 algebraically independent and orthogonal invariants are given by:

$$I_{10} \propto H_{u} \qquad \text{and} \qquad I_{01} \propto H_{u} \qquad .$$

$$I_{20} \propto H_{u} \qquad I_{02} \sim H_{u} \qquad I_{11} \propto H_{u} \qquad H_{u} \qquad .$$

$$I_{30} \propto H_{u} \qquad I_{33} \sim H_{u} \qquad I_{33} \sim H_{u} \qquad I_{12} \sim H_{u} \qquad .$$

$$I_{22} \propto H_{u} \qquad H_{u} \qquad H_{u} \qquad H_{u} \qquad I_{21} \sim H_{u} \qquad I_{33} \sim H_{u} \qquad .$$

Andreas Trautner

The 10 algebraically independent and orthogonal invariants are given by:

$$I_{10} := \operatorname{Tr} \widetilde{H}_u$$
 and $I_{01} := \operatorname{Tr} \widetilde{H}_d$.

$$\begin{split} I_{20} &:= \operatorname{Tr}(H_u^2) \,, \quad I_{02} := \operatorname{Tr}(H_d^2) \,, \quad I_{11} := \operatorname{Tr}(H_u H_d) \,, \\ I_{30} &:= \operatorname{Tr}(H_u^3) \,, \quad I_{03} := \operatorname{Tr}(H_d^3) \,, \quad I_{21} := \operatorname{Tr}(H_u^2 H_d) \,, \quad I_{12} := \operatorname{Tr}(H_u H_d^2) \,, \\ I_{22} &:= 3 \operatorname{Tr}(H_u^2 H_d^2) - \operatorname{Tr}(H_u^2) \operatorname{Tr}(H_d^2) \,. \end{split}$$

Secondary invariant: exactly the Jarlskog invariant,

$$J_{33} := \operatorname{Tr}(H_u^2 H_d^2 H_u H_d) - \operatorname{Tr}(H_d^2 H_u^2 H_d H_u) \equiv \frac{1}{3} \operatorname{Tr}[H_u, H_d]^3.$$

Note: Here $\widetilde{H}_u \equiv Y_u Y_u^{\dagger}$, $\widetilde{H}_d \equiv Y_d Y_d^{\dagger}$, and $H_{u,d} \equiv \widetilde{H}_{u,d} - \mathbb{1} \operatorname{Tr} \frac{\widetilde{H}_{u,d}}{3}$.

"Traces of traceless matrices"

Andreas Trautner

The Syzygy

With our orthogonal invariants, the syzygy is given by

$$\begin{split} (J_{33})^2 &= -\frac{4}{27}I_{22}^3 + \frac{1}{9}I_{22}^2I_{11}^2 + \frac{1}{9}I_{22}^2I_{02}I_{20} + \frac{2}{3}I_{22}I_{30}I_{03}I_{11} - \frac{2}{3}I_{22}I_{21}I_{12}I_{11} - \frac{1}{9}I_{22}I_{11}^2I_{20}I_{02} \\ &\quad + \frac{2}{3}I_{22}I_{21}^2I_{02} + \frac{2}{3}I_{22}I_{12}^2I_{20} - \frac{2}{3}I_{22}I_{30}I_{12}I_{02} - \frac{2}{3}I_{22}I_{03}I_{21}I_{20} \\ &\quad - \frac{1}{3}I_{30}^2I_{03}^2 + I_{21}^2I_{12}^2 + 2I_{30}I_{03}I_{21}I_{12} - \frac{4}{9}I_{30}I_{03}I_{11}^3 \\ &\quad + \frac{1}{18}I_{30}^2I_{02}^3 + \frac{1}{18}I_{03}^2I_{20}^3 - \frac{4}{3}I_{30}I_{12}^2 - \frac{4}{3}I_{03}I_{21}^2 \\ &\quad - \frac{1}{3}I_{30}I_{21}I_{11}I_{02}^2 - \frac{1}{3}I_{03}I_{12}I_{11}I_{20}^2 + \frac{2}{3}I_{30}I_{12}I_{12}^2 + \frac{2}{3}I_{03}I_{21}I_{12}I_{12} \\ &\quad - \frac{2}{3}I_{21}I_{12}I_{20}I_{02}I_{11} - \frac{1}{108}I_{20}^3I_{02}^3 + \frac{1}{36}I_{20}^2I_{02}^2I_{11}^2 + \frac{1}{6}I_{21}^2I_{20}I_{02}^2 + \frac{1}{6}I_{12}^2I_{02}I_{20}^2 \,. \end{split}$$

This is the **shortest relation ever** expressed for the SM quark flavor ring and has 27 terms. (this should be compared to result of [Jenkins&Manohar'09] with 241 terms using non-orthogonal invariants).

Andreas Trautner

Measuring the Invariants

In order to evaluate the invariants, one can use *any* parametrization. We use PDG:

$$egin{array}{rcl} \widetilde{H}_u &=& {
m diag}(\,y_u^2\,,\,y_c^2\,,\,y_t^2\,) \ \\ {
m and} && \widetilde{H}_d \;=\; V_{
m CKM}\,{
m diag}(\,y_d^2\,,\,y_s^2\,,\,y_b^2\,)\,V_{
m CKM}^{\dagger}\,, \end{array}$$

1. Explore the *possible* parameter space: scan $\mathcal{O}(10^7)$ uniform random points

- $s_{12}, s_{13}, s_{23} \in [-1, 1]$ and $\delta \in [-\pi, \pi]$ together with:
- A) Linear measure: $y_{u,c} \in [0,1]y_t, y_{d,s} \in [0,1]y_b$.
- B) Log measure: $(m_{u,c}/\text{MeV}) \in 10^{[-1,\log(m_t/\text{MeV})]}, (m_{d,s}/\text{MeV}) \in 10^{[-1,\log(m_b/\text{MeV})]}.$

2. "Measure" the parameter point realized in Nature.

We use PDG data and errors and evaluate at the EW scale $\mu = M_Z$. see e.g. [Huang, Zhou '21]

Measuring the Invariants

In order to evaluate the invariants, one can use *any* parametrization. We use PDG:

$$egin{array}{rcl} \widetilde{H}_u &=& {
m diag}(\,y_u^2\,,\,y_c^2\,,\,y_t^2\,) \ \\ {
m and} && \widetilde{H}_d \;=\; V_{
m CKM}\,{
m diag}(\,y_d^2\,,\,y_s^2\,,\,y_b^2\,)\,V_{
m CKM}^{\dagger}\,, \end{array}$$

1. Explore the *possible* parameter space: scan $\mathcal{O}(10^7)$ uniform random points

- $s_{12}, s_{13}, s_{23} \in [-1, 1]$ and $\delta \in [-\pi, \pi]$ together with:
- A) Linear measure: $y_{u,c} \in [0,1]y_t, y_{d,s} \in [0,1]y_b$.
- B) Log measure: $(m_{u,c}/\text{MeV}) \in 10^{[-1,\log(m_t/\text{MeV})]}, (m_{d,s}/\text{MeV}) \in 10^{[-1,\log(m_b/\text{MeV})]}.$

2. "Measure" the parameter point realized in Nature.

We use PDG data and errors and evaluate at the EW scale $\mu = M_Z$. see e.g. [Huang, Zhou '21]

For convenience of the presentation we normalize the invariants as

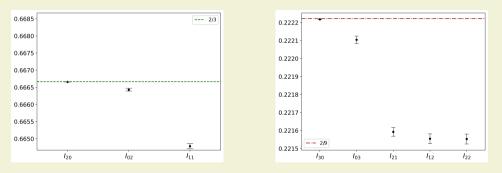
$$\hat{I}_{ij} := \frac{I_{ij}}{(y_t^2)^i (y_b^2)^j}$$

Experimental values

$$\hat{I}_{11} \approx \hat{I}_{20} \approx \hat{I}_{02} \approx \frac{2}{3},$$

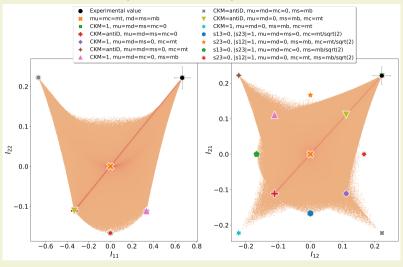
 $\hat{I}_{30} \approx \hat{I}_{03} \approx \hat{I}_{21} \approx \hat{I}_{12} \approx \hat{I}_{22} \approx \frac{2}{9}.$

$$\begin{pmatrix} \hat{I}_{ij} := \frac{I_{ij}}{(y_t^2)^i (y_b^2)^j}. \end{pmatrix}$$



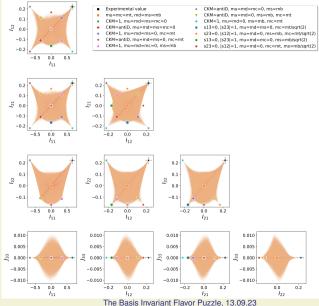
- Deviations from maximal values are significant.
- Deviations from each other, e.g. $\hat{I}_{21} \hat{I}_{12} \neq 0$ and $\hat{I}_{12} \hat{I}_{22} \neq 0$, are significant.

Parameter space and experimental values



Error bars: $1\sigma imes 1000$

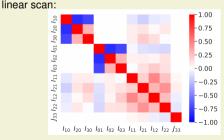
Parameter space and experimental values

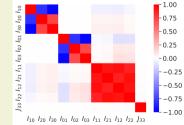


Andreas Trautner

Results and empirics

- Observed primary invariants are *very close to* maximal with small but <u>significant</u> deviations.
- Explaining the value of the invariants and their misalignment from maximal point amounts to solving the flavor puzzle in the language of invariants.
- Exact maximization would correspond to $SU(2)_{Q_L}$ flavor symmetry.
- Small deviations from max. correspond to 1/2nd gen. masses and mixings.
- The invariants are *strongly correlated* (for the observed hierarchical parameters).





This is not true for anarchical parameters, or points with increased symmetry.

Comments

- *I*₀₁, *I*₀₂, *I*₀₃, *I*₁₀, *I*₂₀, *I*₃₀ correspond to masses.
- CP-even I_{11} , I_{21} , I_{12} , I_{22} correspond to mixings.
- CPV requires interplay of 8 CP-even primary invariants (all besides the "trivial" invariants *I*₁₀, *I*₀₁).
- Non-trivial \hat{I}_{ij} 's being close to maximal forces the Jarlskog invariant to be **small**.
- Any explanation of the flavor structure will have to explain the value of the invariants.
- Any reduction of # of parameters corresponds to relation between invariants.
- All flavor observables can be expressed as

 $\mathcal{O}_{\text{flavor}} = \text{Polynomial}_1(I_{ij}) + J_{33} \times \text{Polynomial}_2(I_{ij}).$

This is guaranteed since our primary and secondary invariants form a "Hironaka decomposition" of this ring.

CP transformation of covariants and invariants

CP is trafo under $Out(SU(N)) = \mathbb{Z}_2$. Covariants:

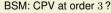
 $egin{array}{lll} m{u}^a &\mapsto & - R^{ab} \, m{u}^b \, , \ m{d}^a &\mapsto & - R^{ab} \, m{d}^b \, , \end{array}$

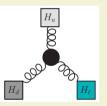
 ${
m SU}(3)$ tensors (projection ops.):

 $\begin{array}{lll} f^{abc} \ \mapsto \ R^{aa'} \, R^{bb'} \, R^{cc'} \, f^{a'b'c'} \ = \ f^{abc} \, , \\ d^{abc} \ \mapsto \ R^{aa'} \, R^{bb'} \, R^{cc'} \, d^{a'b'c'} \ = \ - \, d^{abc} \, . \end{array}$

R = diag(-1, +1, -1, -1, +1, -1, +1, -1) (GM basis).

Only CP-odd in SM: J₃₃ ~





 $\mathrm{i} f^{abc} \mathrm{Tr}[t^a H_u] \mathrm{Tr}[t^b H_d] \mathrm{Tr}[t^c H_\ell]$

CP trafo of invariants is easily read-off:

Invariants are CP even / CP odd iff their projection operator contains and even / odd # of f tensors.

Outlook

- Ambiguity in choice of *I*₂₂ needs to be clarified. Contributions to different contraction channels could be very relevant to decipher flavor puzzle.
- Relative alignments of 8-plet covariants are in 1:1 relation with invariant relations. see other examples [Merle, Zwicky '12], [Bento, Boto, Silva, AT '20]
- Maximization and strong correlation of invariants could point to possible information theoretic argument to set parameters!

see e.g. [Carena, Low, Wagner, Xiao '23] and talk by Carena.

- Extension to lepton sector with orthogonal invariants. for HS/PL and non-orthogonal invariants see [Hanany, Jenkins, Manhoar, Torri '10], [Wang, Yu, Zhou '21], [Yu, Zhou '21].
- Our invariants provide easy targets for fits of any BSM model to SM flavor structure.
- Our procedure is *completely general*, can be applied to all BSM scenarios.

Conclusion

- We have for the first time obtained a quantitative analysis of the flavor puzzle in terms of basis invariants.
- This uncovers an entirely new angle on the flavor puzzle that must (and will) be explored in the future.
- The (quark) flavor puzzle in invariants amounts to explaining:
 - Why are the invariants very close to maximal?
 - What explains their tiny deviations from the maximal values?
 - Why are the (orthogonal, a priori independent) invariants so strongly correlated?
- Any explanation of the flavor structure will have to answer these questions.

This is just the beginning of an entirely new exploration of the flavor puzzle.

Thank You!

Backup slides

General Procedure / Algorithm

for the construction of basis invariants.

Three steps:

- 1. Construction of basis covariant objects: "building blocks".
 - Determine CP transformation behavior of the building blocks.
- 2. Derive Hilbert series & Plethystic logarithm.
 - \Rightarrow # and order of primary invariants.
 - \Rightarrow # and structure of generating set of invariants.
 - \Rightarrow interrelations between invariants (\equiv syzygies).
- 3. Construct all invariants and interrelations explicitly.

Application here: Characterize SM flavor sector invariants.

Hilbert Series and Plethystic Logarithm

Covariant building blocks as **input** for the ring:

$$\mathbf{8}_u \widehat{=} u$$
, $\mathbf{8}_d \widehat{=} d$.

From input, compute Hilbert series (HS) and Plethystic logarithm (PL):

$$\mathfrak{H}(u,d) = \int_{\mathrm{SU}(3)} d\mu_{\mathrm{SU}(3)} \operatorname{PE}\left[z_1, z_2; u; \mathbf{8}\right] \operatorname{PE}\left[z_1, z_2; d; \mathbf{8}\right],$$
$$\operatorname{PL}\left[\mathfrak{H}\left(u, d\right)\right] := \sum_{k=1}^{\infty} \frac{\mu(k) \, \ln \mathfrak{H}\left(u^k, d^k\right)}{k} \,.$$

introduced in math: [Getzler, Kapranov '94], physics [Benvenuti, Feng, Hanany, He '06]

$$\mathfrak{H}(u,d) = \frac{1+u^3 d^3}{(1-u^2)(1-d^2)(1-ud)(1-u^3)(1-d^3)(1-ud^2)(1-u^2d)(1-u^2d^2)}$$

$$PL[\mathfrak{H}(u,d)] = u^2 + ud + d^2 + u^3 + d^3 + u^2d + ud^2 + u^2d^2 + u^3d^3 - u^6d^6.$$

Andreas Trautner

CKM in PDG parametrization

 $V_{\rm CKM} := V_{u,L}^{\dagger} V_{d,L}$ is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In PDG parametrization

$$V_{\rm CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} ,$$

Experimental values of the invariants

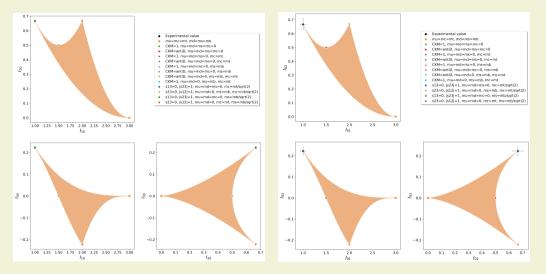
Invariant	best fit and error	Normalized invariant	best fit and error
I_{10}	0.9340(83)	\hat{I}_{10}	$1.00001358(^{+85}_{-88})$
I_{01}	$2.660(49) \times 10^{-4}$	\hat{I}_{01}	$1.000351(^{+63}_{-71})$
I_{20}	0.582(10)	\hat{I}_{20}	$0.66665761(^{+59}_{-57})$
I_{02}	$4.71(17) \times 10^{-8}$	\hat{I}_{02}	$0.666432(^{+47}_{-42})$
I_{11}	$1.651(45) \times 10^{-4}$	\hat{I}_{11}	$0.664783(^{+91}_{-87})$
I_{30}	0.1811(48)	\hat{I}_{30}	$0.22221769(^{+29}_{-28})$
I_{03}	$4.18(23) \times 10^{-12}$	\hat{I}_{03}	$0.222105(^{+24}_{-21})$
I_{21}	$5.14(^{+18}_{-19}) \times 10^{-5}$	\hat{I}_{21}	$0.221593(^{+30}_{-29})$
I_{12}	$1.463(^{+65}_{-68}) \times 10^{-8}$	\hat{I}_{12}	$0.221555(^{+38}_{-36})$
I_{22}	$1.366(^{+73}_{-76}) \times 10^{-8}$	\hat{I}_{22}	$0.221554(^{+38}_{-36})$
J_{33}	$4.47(^{+1.23}_{-1.58}) \times 10^{-24}$	\hat{J}_{33}	$2.92(^{+0.74}_{-0.93}) \times 10^{-13}$
J	$3.08(^{+0.16}_{-0.19}) \times 10^{-5}$		

 Tabelle: Experimental values of the quark sector basis invariants evaluated using PDG data. Uncertainties are 1σ. Left: orthogonal invariants at face value. Right: the same invariants normalized to the largest Yukawa

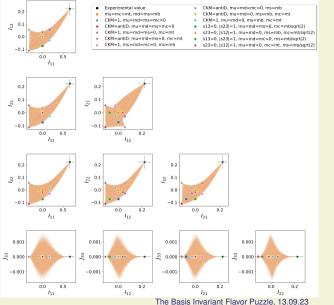
 Andreas
 Coupplings.

 The Basis Invariant Flavor Puzzle, 13.09.23

Correlation of "mass" invariants I_{10} , I_{20} , I_{30} , I_{01} , I_{02} , I_{03}



Parameter space and experimental values

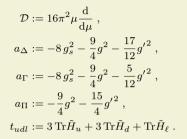


Arguably even "more basis invariant" alternative choice of normalization:

$$\hat{I}_{ij}^{\text{alt}} := rac{I_{ij}}{I_{10}^i I_{01}^j} \; .$$

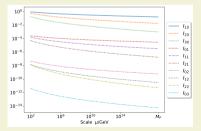
Andreas Trautner

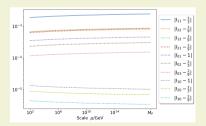
RGE running of invariants



$$\begin{split} \mathcal{D}\tilde{H}_u &= 2\left(a_{\Delta} + t_{udl}\right)\,\tilde{H}_u + 3\,\tilde{H}_u^2 - \frac{3}{2}\left(\tilde{H}_d\tilde{H}_u + \tilde{H}_u\tilde{H}_d\right)\,,\\ \mathcal{D}\tilde{H}_d &= 2\left(a_{\Gamma} + t_{udl}\right)\,\tilde{H}_d + 3\,\tilde{H}_d^2 - \frac{3}{2}\left(\tilde{H}_d\tilde{H}_u + \tilde{H}_u\tilde{H}_d\right)\,,\\ \mathcal{D}\tilde{H}_\ell &= 2\left(a_{\Pi} + t_{udl}\right)\,\tilde{H}_\ell + 3\,\tilde{H}_\ell^2\,, \end{split}$$

$$\mathcal{D}g_s = -7 g_s^3$$
, $\mathcal{D}g = -\frac{19}{6}g^3$, $\mathcal{D}g' = \frac{41}{6}g'^3$.





Birdtrack Identities

We mostly use the conventions of [Keppeler '17] with the following identities