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Why not an extended Higgs sector?

• The fermion and gauge boson sectors of the Standard Model

(SM) are not of minimal form (“Who ordered that?”). So,

why should the spin-0 (scalar) sector be minimal?

• Extended Higgs sectors can provide a dark matter candidate.

• Extended Higgs sectors can modify the electroweak phase

transition.

• Extended Higgs sectors can enhance vacuum stability.

• Models of new physics beyond the SM often require additional

scalar Higgs states. E.g., two Higgs doublets are required in

the minimal supersymmetric extension of the SM (MSSM).



Extended Higgs sectors are highly constrained

• The electroweak ρ parameter is very close to 1.

• One neutral Higgs scalar of the extended Higgs sector must
be SM-like (and identified with the Higgs boson at 125 GeV).

• Higgs-mediated flavor-changing neutral currents (FCNCs) are
suppressed.

• Charged Higgs exchange at tree level (e.g. in B̄ → D(∗)τ−ντ)
and at one-loop (e.g. in b → sγ) can significantly constrain
the charged Higgs masses and the Yukawa couplings.

• At present, only one Higgs scalar has been observed.

• If the scale that governs the non-SM like Higgs bosons is
close to the electroweak scale, is the naturalness problem of
electroweak symmetry breaking exacerbated?



Constraints on extended Higgs sectors

In light of the observation that the electroweak ρ-parameter is

very close to 1, it follows that a Higgs multiplet of weak-isospin

T and hypercharge Y must satisfy,1

ρ ≡ m2
W

m2
Z cos2 θW

= 1 ⇐⇒ (2T + 1)2 − 3Y 2 = 1 ,

independently of the Higgs vacuum expectation values (vevs).

The simplest solutions are Higgs singlets (T, Y ) = (0, 0) and

hypercharge-one complex Higgs doublets (T, Y ) = (12, 1). In this

talk, we shall neglect Higgs singlets and focus on models with

N Higgs doublet fields (NHDM).

1Y is normalized such that the electric charge of the scalar field is Q = T3 + Y/2.



Goals of the NHDM Study

• Identifying the physical parameters of the model

• Sum rules and unitarity bounds

• Dealing with CP-violation in the Higgs sector

The treatment of the Higgs-fermion interactions requires

additional attention, in part due to the constraints of tree-

level Higgs-mediated FCNCs. We defer this to another day, and

focus in this talk on the bosonic sector of the NHDM.



A Warmup with the 2HDM

Consider the 2HDM with hypercharge-one, doublet scalar fields Φ1 and Φ2.

After minimizing the scalar potential, 〈Φ0
i 〉 = vi/

√
2 (for i = 1, 2), where

|v1|2+|v2|2 = (246 GeV)2 and tanβ ≡ |v2|/|v1|; the latter is basis-dependent
and hence unphysical.

Introduce the Higgs basis fields,

H1 =

(
H+

1

H0
1

)
≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

(
H+

2

H0
2

)
≡ −v2Φ1 + v1Φ2

v
,

such that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. The Higgs basis is uniquely defined

up to an overall rephasing, H2 → eiχH2.

We can immediately identify the physical charged Higgs field, H+ ≡ H+
2 , and

the neutral and charged Goldstone fields, G0 =
√
2 ImH0

1 and G+ ≡ H+
1 .



In the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}
,

where Y1, Y2 and Z1,2,3,4 are real, whereas Y3, Z5,6,7 are potentially complex.

After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

Remarks:

1. Under the rephasing, H2 → eiχH2,

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 .

2. Under the rephasing, H2 → eiχH2, the charged Higgs boson field is

rephased, H± → e±iχH±

3. In the CP-conserving 2HDM, one can rephase the field H2 such that all

the parameters of the scalar potential are real.



Diagonalizing the neutral Higgs squared-mass matrix

The three physical neutral Higgs boson mass-eigenstates are determined by

diagonalizing the 3×3 real symmetric squared-mass matrix in the Higgs basis,

M2 = v2




Z1 ReZ6 −ImZ6

ReZ6
1
2(Z345 + Y2/v

2) −1
2ImZ5

−ImZ6 −1
2ImZ5

1
2(Z345 + Y2/v

2)− ReZ5


 ,

where Z345 ≡ Z3 + Z4 + ReZ5. The diagonalization matrix is a 3 × 3 real

orthogonal matrix that depends on three angles: θ12, θ13 and θ23,



h1

h2

h3


 =




c12c13 −s12c23 − c12s13s23 −c12s13c23 + s12s23

s12c13 c12c23 − s12s13s23 −s12s13c23 − c12s23

s13 c13s23 c13c23







√
2ReH0

1 − v
√
2ReH0

2√
2ImH0

2


 ,

where the hi are the mass-eigenstate neutral Higgs fields, cij ≡ cos θij and

sij ≡ sin θij. We shall also denote the neutral Goldsotne boson, h0 ≡ G0.



That is, for j = 0, 1, 2, 3, the neutral Goldstone boson and the mass-eigenstate

neutral Higgs fields are,

hj =
1√
2

{
q∗j1

(
H0

1 − v√
2

)
+ q∗j2H

0
2e

iθ23 + h.c.

}
,

where

j qj1 qj2

0 i 0

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

Under the rephasing, H2 → eiχH2,

θ12 , θ13 are invariant, and θ23 → θ23 − χ .

Thus the qjk are linear combinations of the invariant angles θ12 and θ13.



From the generic basis to the mass basis

In the generic basis,

〈Φi〉 =
v√
2

(
0

v̂i

)
,

where v ≃ 246 GeV and v̂ = (v̂1, v̂2) is a complex vector of unit norm. A

second unit vector, ŵ ≡ v̂∗i ǫij, can be defined that is orthogonal2 to v̂, where

ǫ12 = −ǫ21 = 1 and ǫ11 = ǫ22 = 0.

Note that the Higgs basis fields can be defined as H1 ≡ v̂∗iΦi and H2 ≡ ŵ∗
iΦi.

Under the rephasing H2 → eiχH2, the unit vector rephases, ŵi → e−iχŵi.

With this notation, one can express the Φi (for i = 1, 2) in terms of

mass-eigenstate fields,

Φi =




G+v̂i + H+ŵi

v
√
2
v̂i +

1
√
2

3∑

j=0

(
qj1v̂i + qj2e

−iθ23ŵi

)
hj


 .

2Orthogonality s defined in terms of the complex dot product,
∑

j v̂
∗
j ŵj = 0.



Interaction of the Higgs bosons and gauge bosons

These interaction arise from the kinetic energy term of the scalars (after
replacing the derivative with the gauge covariant derivative).

LV V H =

(
gmWW

+
µ W

µ−
+

g

2cW
mZZµZ

µ
)

qk1hk + (eMWA
µ − gMZs

2
WZ

µ
)(W

−
µ G

+
+ W

+
µ G

−
),

LV V HH =

[
1
4g

2
W

+
µ W

µ−
+

g2

8c2
W

ZµZ
µ

]
hkhk

+

[
1
2g

2W+
µ Wµ− + e2AµA

µ +
g2

c2
W

(
1
2 − s2W

)2
ZµZ

µ +
2ge

cW

(
1
2 − s2W

)
AµZ

µ

]
(G+G− + H+H−)

+

{(
1
2egA

µ
W

+
µ −

g2s2W
2cW

Z
µ
W

+
µ

)
(qk1G

−
+ qk2e

−iθ23H
−
)hk + h.c.

}
,

LV HH = −
g

4cW
ǫjkℓqℓ1Z

µ
hj

↔
∂µ hk − 1

2ig

[
W

+
µ (qk1G

−↔
∂ µ hk + qk2e

−iθ23H
−↔

∂ µ hk) + h.c.

]

+

[
ieAµ +

ig

cW

(
1
2 − s2W

)
Zµ
]
(G+↔

∂µ G− + H+↔
∂µ H−) ,

where sW ≡ sin θW , cW ≡ cos θW , and the sum over pairs of repeated indices

j, k = 0, 1, 2, 3 is implied.



Invariant parameter counting

Total number of parameters for the 2HDM: Y2, Z1,2,3,4, complex Z5,6,7

with one degree of freedom removed by rephasing, and Y1,3 fixed by the

scalar potential minimum conditions (in favor of the vev, v) yields 11 real

parameters.

Not including the four masses (m1, m2, m3 and mH±) and the vev v, this

leaves 6 independent invariant parameters required to describe the bosonic

interactions of the 2HDM.

Number of parameters governing the Higgs–gauge boson interactions: 2

2 invariant angles (θ12 and θ13).

Additional invariant parameters arising via the Higgs self-interactions: 4

2HDM analysis based on H.E. Haber and D. O’Neil, Phys. Rev. D 74, 015018 (2006)

[Erratum: Phys. Rev. D 74, 059905 (2006)] [hep-ph/0602242].



Analysis of the NHDM

Consider the NHDM with hypercharge-one, doublet scalar fields Φi, for

i = 1, 2, . . . , N . After minimizing the scalar potential, 〈Φ0
i 〉 = vi/

√
2, where

∑
i |vi|2 = (246 GeV)2 .

Introduce the Higgs basis field,

H1 =

(
H+

1

H0
1

)
≡ 1

v

N∑

i=1

v∗iΦi ,

and the N − 1 scalar fields, Hi (i = 2, 3, . . . , N) are all orthogonal to H1,

such that 〈H0
1〉 = v/

√
2 and 〈H0

i 〉 = 0 for i = 2, 3, . . . , N .

The Goldstone bosons reside in H1, i.e. G
+ = H+

1 and G0 =
√
2 ImH0

1 . But

there is still too much freedom in defining the doublets orthogonal to H1.



The charged Higgs basis

We shall perform a unitary transformation on the scalar doublet fields Hi

(i = 2, 3, . . . , N), such that the upper components of these doublets are

charged mass eigenstates. We shall assume that these eigenstates are non-

degenerate in mass (the degenerate case requires a separate consideration).

We call this choice of basis the charged Higgs basis. The corresponding

Higgs doublet fields are denoted by HC
i . Note that in this basis, the neutral

components of the HC
i are typically not neutral Higgs mass-eigenstates.

The charged Higgs basis is unique up to the separate rephasing of the N − 1

Higgs doublet fields,

HC
i → eiχiHC

i , for i = 2, 3, . . . , N.

The phase of HC
1 = H1 is fixed by the condition that the vev v is real and

positive.



U and V matrices

In the generic basis,

Φk =

(
ϕ+
k

1√
2
(vk + ϕ0

k)

)
, for k = 1, . . . , N .

The charged Higgs basis is obtained via,

Φj =
N∑

k=1

UjkH
C
k ,

with HC
1 ≡ H1, U is an N ×N unitary matrix such that Uj1 = vj/v, and

HC
1 =




G+

1√
2

(
v + ϕC0

1

)


 , HC

2 =




H+
2

1√
2
ϕC0

2


 , . . . , HC

N =




H+
N

1√
2
ϕC0

N


 ,

where ϕC0
1 ≡ H0 + iG0 and the H+

i are charged Higgs mass eigenstates.



Diagonalizing the neutral Higgs squared-mass matrix

The neutral Higgs mass eigenstates will be denoted by hk where h0 ≡ G0 and

hk for k = 1, 2, . . . , 2N − 1 are the physical neutral scalars. This is achieved

by introducing the N × 2N matrix V ,

ϕ0
j =

2N−1∑

k=0

Vjkhk, for j = 1, 2, . . . , N.

It is more convenient to first transform to the charged Higgs basis and then

determine the neutral Higgs mass eigenstates,

ϕC0
j =

2N−1∑

k=0

Bjkhk, for j = 1, 2, . . . , N,

where B = U †V defines an N × 2N matrix. The 2N × 2N matrix,

B̃ ≡
(
ReB

ImB

)
,

is real orthogonal. In particular, B̃T is the matrix that converts the neutral

scalars in the charged Higgs basis to the neutral Higgs mass eigenstates.



A and B matrices

B = U †V is an N × 2N matrix. Under the separate rephasing of the

N − 1 Higgs doublet fields in the charged Higgs basis, HC
i → eiχiHC

i for

i = 2, 3, . . . , N , the matrix elements of B rephase as,

Bjk → eiχjBjk , for j = 2, 3, . . . , N and k = 0, 1, . . . 2N − 1,

and B1k is invariant. Since B̃T B̃ = Re(B†B) = 12N×2N , it follows that

B†B = 12N×2N + iA ,

where A ≡ Im(B†B) is a real orthogonal antisymmetric 2N × 2N matrix.

The matrix A is invariant under the separate rephasing of the N − 1 charged

Higgs basis fields.

Finally, the following two properties are noteworthy,

Bj0 = iδj1 , B1k = −A0k + iδ0k ,

corresponding to identifying the neutral Goldstone boson eigenstate.



Interaction of the Higgs bosons and gauge bosons

LV V H =

(
gmWW

+
µ W

µ−
+

g

2cW
mZZµZ

µ
)

Ak0hk + (eMWA
µ − gMZs

2
WZ

µ
)(W

−
µ G

+
+ W

+
µ G

−
), ,

LV V HH =

[
1
4g

2W+
µ Wµ− +

g2

8c2W
ZµZ

µ

]
hkhk

+

[
1
2g

2
W

+
µ W

µ−
+ e

2
AµA

µ
+

g2

c2
W

(
1
2 − s

2
W

)2
ZµZ

µ
+

2ge

cW

(
1
2 − s

2
W

)
AµZ

µ

]
H

+
j H

−
j

+

{(
1
2egA

µW+
µ −

g2s2W
2cW

ZµW+
µ

)
BjkH

−
j hk + h.c.

}
,

LV HH = −
g

4cW
AkℓZ

µ
hk

↔
∂µ hℓ − 1

2g

[
iBjkW

+
µ H

−
j
↔
∂ µ hk + h.c.

]

+

[
ieAµ +

ig

cW

(
1
2 − s2W

)
Zµ
]
H+

j
↔
∂µ H−

j ,

where H+
1 ≡ G+, j = 1, . . . , N , and k, ℓ = 0, 1, . . . , 2N − 1. Note that A

and the combination BjkH
−
j are invariant under the separate rephasing of

the N − 1 Higgs doublet fields in the charged Higgs basis, HC
i → eiχiHC

i for

i = 2, 3, . . . , N , as expected for the physical couplings.



Recovering the 2HDM results

The matrices U and V are,

U =

(
v̂1 ŵ1

v̂2 ŵ2

)
, Vij = qj1v̂i + qj2e

−iθ23ŵi .

This immediately yields the matrix B,

B = U †V =

(
i q11 q21 q31

0 q12e
−iθ23 q22e

−iθ23 q32e
−iθ23

)
.

Consider the 4 × 4 real orthogonal matrix B̃ = ( Re B
Im B ). Note that B̃31 = 1

and all other elements appearing in the third row and first column vanish.3

Removing the third row and first column from B̃, and taking the transpose

of the resulting matrix, one recovers the 3 × 3 real orthogonal matrix that

diagonalizes the neutral Higgs squared-mass matrix.
3The third row and first column of B̃ are associated with the neutral Goldstone boson eigenstate.



Finally, the matrix A is invariant with respect to the rephasing of the Higgs

field H2,

A = Im(B†B) =




0 −q11 −q21 −q31

q11 0 Im(q∗12q22) Im(q∗12q32)

q21 −Im(q∗12q22) 0 Im(q∗22q32)

q31 −Im(q∗12q32) −Im(q∗22q32) 0




,

Using the values of the qjk yields,

A =




0 −c12c13 −s12c13 −s13

c12c13 0 s13 −s12c13

s12c13 −s13 0 c12c13

s13 s12c13 −c12c13 0




.

which is the most general 4× 4 real orthogonal antisymmetric matrix.



Invariant parameter counting

Instead of B, consider the 2N×2N real orthogonal matrix B̃ = (Re B
Im B ). After

removing the Goldstone boson eigenstate, one is left with a 2N − 1× 2N − 1

real orthogonal matrix.

A = Im(B†B) is a real orthogonal antisymmetric 2N × 2N matrix.

matrix parameters unphysical phases physical parameters

B (N − 1)(2N − 1) N − 1 2(N − 1)2

A N(N − 1) 0 N(N − 1)

Note that since A is determined by B, the number of parameters governing

A cannot be larger than the parameters that govern B. Indeed,

2(N − 1)2 ≥ N(N − 1),

with equality when N = 1 or 2, and inequality for N > 2.



To determine the total number of real parameters that govern the NHDM,

start with the Higgs scalar potential in the charged Higgs basis,

V = Yij(H
C†
i HC

j ) + 1
2Zij,kℓ(H

C†
i HC

j )(HC†
k HC

ℓ ).

magnitudes phases constraints parameters

Y 1
2N(N + 1) 1

2N(N − 1) 2(N − 1) N2 − 2N + 2

Z 1
4N

2(N2 + 3) 1
4N

2(N2 − 1) N − 1 1
2(N

4 + N2 − 2N + 2)

Y and Z 1
4(N

4 + 5N2 + 2N) 1
4(N

4 + N2 − 2N) 3N − 3 1
2(N

4 + 3N2 − 6N + 6)

We still have to impose the scalar potential minimum conditions,

Y1j +
1
2v

2Z1j,11 = 0 , for j = 1, 2, . . . , N.

We can trade in Y11 (which is real) for v2. The N − 1 complex quantities

Y1j for j = 2, 3, . . . , N can be re-expressed in terms of the Z1j;11, which

yields 2(N − 1) real constraints. Finally, the complex elements of Zij;kℓ can

be rephased by HC
ℓ → eiχℓHC

ℓ for ℓ = 2, 3, . . . , N , thereby removing N − 1

phases.



Final scorecard

number of parameters governing the Higgs–vector boson couplings: 2(N−1)2

number of charged Higgs masses: N − 1

number of neutral Higgs masses: 2N − 1

Higgs vev (v): 1

additional parameters associated with the Higgs self-couplings:

1
2(N − 1)(N3 +N2 − 4)

Total number of parameters governing the NHDM:

1
2(N

4 + 3N2 − 6N + 6)

.



Scalar couplings involving the

Goldstone boson

In general the scalar self-interactions involve additional (pseudo-)invariant

quantities beyond A and B. Remarkably, certain scalar couplings involving

the Goldstone bosons again depend only on A and B (and the Higgs masses).

coupling −iv×Feynman rule

G0hihj (i 6= j) (m2
j −m2

i )Aij

G+H−
j hk (m2

H±
j

−m2
k)Bjk

G−H+
j hk (m2

H±
j

−m2
k)B

†
jk

G+G−hk m2
kA0k

G0G0hk m2
kA0k

G+G−hk m2
kA0k

The couplings, G0H+
i H−

j , G0hihi, G0G±H∓
j , G0G0G0 , and G0G+G−,

vanish.



The quartic scalar couplings involving two or more Goldstone boson fields

depend only on A, B and Y (and the Higgs masses). For example,

coupling −iv2×Feynman rule

G+G−G+G− 2
∑2N−1

k=1 m2
k(A0k)

2

G+G−G0G0
∑2N−1

k=1 m2
k(A0k)

2

G0G0G0G0 3
∑2N−1

k=1 m2
k(A0k)

2

G+G+H−
i H−

j 2
∑2N−1

k=1 m2
kBikBjk

G−G−H+
i H+

j 2
∑2N−1

k=1 m2
kB

∗
ikB

∗
jk

G+G−H+
i H−

j

∑2N−1
k=1 m2

kB
∗
ikBjk − 2Yji

G+G−hkhℓ 2
[
(B†D2

±B)kℓ − (B†Y B)kℓ
]

G0G0H+
i H−

j 2
[
(D2

±)ji − Yji

]

G0G0hkhℓ 2
[
(AD2

0A)kℓ − (B†Y B)kℓ
]

where D2
± and D2

0 are the diagonal charged and neutral Higgs squared-mass

matrices, respectively. Using H±
1 = G± and h0 = G0, we can check for

consistency after noting that Yj1 =
1
2

∑2N−1
k=1 m2

kA0kBjk .



Scalar coupling sum rules

Given the NHDM Lagrangian, one can read off a variety of useful scalar

coupling sum rules. Ultimately, these sum rules are a consequence of

unitarity. Perhaps the most well known sum rule of this type is
∑

k

[hkV V ]2 = 1 ,

where V V = W+W− or ZZ, and [hkV V ] is our notation for the coefficient

of the corresponding term that appears in the Lagrangian up to an overall

normalization (taken to be that of the Standard Model, if it exists). Other

sum rules of interest are (recall that H±
1 = G± and h0 = G0):

N∑

j=1

∣∣[hkW
∓H±

j ]
∣∣2 = 1 ,

2N−1∑

k=0

[Zhkhℓ]
2 = 1 ,

2N−1∑

k=0

[W+H−
j hk][Zhkhℓ] = −i[W+H−

j hℓ] .



A somewhat related sum rule is,

[hℓV V ]2 +
2N−1∑

k=1

[Zhkhℓ] = 1 ,

which is valid for ℓ = 0, 1, 2, . . . , 2N − 1.

We have also uncovered a number of interesting sum rules involving quartic

scalar couplings,

N∑

j=1

[G+G−H+
i H−

i ] = Tr(D2
0)− 2Tr(Y ) ,

2N−1∑

k=1

[G+G−hkhk] = 2
N∑

j=1

[G0G0H+
j H−

j ] = 2Tr(D2
±)− 2Tr(Y ) .



Unitarity bounds for specific processes

Focusing on specific processes of the NHDM will yield necessary (but not

sufficient) conditions that the tree-level unitarity bounds are satisfied. We

use the equivalence theorem to replace the W and Z with the respective

Goldstone bosons G± and G0. After computing the relevant scattering matrix

element M, we shall impose the condition, |ReM| ≤ 8π .

Example 1: W+W− → W+W−

Here we compute the matrix element for G+G− → G+G−. The leading

order contribution is due to the corresponding quartic coupling,

M
(
G+G− → G+G−) = − 2

v2

2N−1∑

k=1

m2
k [A0k]

2 = − 2

v2

2N−1∑

k=1

m2
k [hkV V ]2 .

which the yields the bound,
∣∣∣∣∣

2N−1∑

k=1

m2
k [hkV V ]

2

∣∣∣∣∣ ≤ (872GeV)
2
.



Example 2: ZH+
j → ZH+

j

Here we compute the matrix element for G0H+
j → G0H+

j − (for j ≥ 2). The

leading order contribution is due to the corresponding quartic coupling,

M(G0H+
j → G0H+

j ) = − 2

v2
(
m2

H±
j
− Yjj

)
,

which yields a bound on the NHDM parameters,
∣∣m2

H±
j

− Yjj

∣∣ ≤ 4πv2.

Example 3: W+H−
j → W+H−

j

Following the previous example,

M
(
G+H−

j → G+H−
j

)
= − 1

v2
[
(BD2

0B
†)jj − 2Yjj

]
,

The resulting bound,
∣∣(BD2

0B
†)jj − 2Yjj

∣∣ ≤ 8πv2, can be rewritten in terms

of one of the V HH couplings,
∣∣∣∣∣

2N−1∑

k=1

m2
k [W

+H−
j hk] [W

−H+
j hk]− 2Yjj

∣∣∣∣∣ ≤ 8πv2 .

This provides an explicit constraint on the cubic couplings shown above.



Higgs sector CP-violation—a conjecture

If the charged Higgs bosons are non-degenerate in mass, then the Higgs

scalar potential and the vacuum conserve CP if and only if one can find an

appropriate rephasing of the doublet Higgs fields in the charged Higgs basis,

HC
ℓ → eiχℓHC

ℓ for ℓ = 2, 3, . . . , N , such that all the Yij and Zij;kℓ are real.

An interesting “counterexample” due to I. Ivanov and J.P. Sllva is the 3HDM
with order-4 CP-symmetry, with λ8 and λ9 complex.

V = − m2
11(Φ

†
1Φ1) − m2

22(Φ
†
2Φ2 + Φ

†
3Φ3) + λ1(Φ

†
1Φ1)

2 + λ2

[
(Φ

†
2Φ2)

2 + (Φ
†
3Φ3)

2
]

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2 + Φ

†
3Φ3) + λ′

3(Φ
†
2Φ2)(Φ

†
3Φ3) + λ4

[
(Φ

†
1Φ2)(Φ

†
2Φ1) + (Φ

†
1Φ3)(Φ

†
3Φ1)

]

+ λ′
4(Φ

†
2Φ3)(Φ

†
3Φ2) +

[
λ5(Φ

†
3Φ1)(Φ

†
2Φ1) +

λ6

2

[
(Φ

†
2Φ1)

2 − (Φ
†
1Φ3)

2
]

+ λ8(Φ
†
2Φ3)

2
+ λ9(Φ

†
2Φ3)(Φ

†
2Φ2 − Φ

†
3Φ3) + h.c.

]
,

Although this 3HDM exhibits a generalized CP symmetry, there exists no basis in which all

the scalar potential parameters are real. However, this model does exhibit mass-degenerate

charged Higgs bosons, and thus is not in contradiction to the conjecture stated above.


