Flavor Leptogenesis During Reheating Era

Arunansu Sil

Dept. of Physics

Indian Institute of Technology Guwahati

Based on:

Arghyajit Datta, Rishav Roshan and AS: arXiv:2206.10650

Arghyajit Datta, Rishav Roshan and AS: Phys. Rev. D 108 (2023) 3, 035029

Plan of the talk

• Matter antimatter asymmetry

• Thermal leptogenesis and flavor effect

• Post inflationary reheating and effect on flavor leptogenesis

Conclusion

Leptogenesis

Advantages: connects the origin of neutrino mass

Neutrino Mass
Lepton asymmetry

Type-I Seesaw mechanism

[Minkowsky, 1977] [Yanagida, 1979] (SM + 3 Right-Handed Neutrinos)

 $\mathbf{m_D} = rac{\mathbf{Y}_{
u}\mathbf{v}}{\sqrt{2}}$

[Gell-Mann,Ramond,Slansky,1979]

[Mohapatra, Senjanovic, 1980]

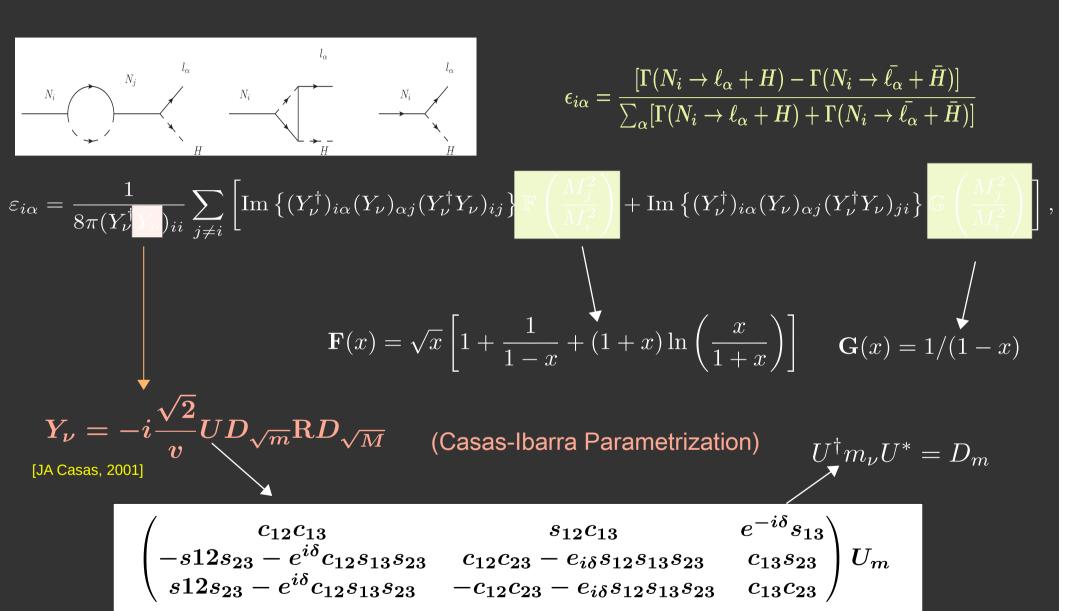
$$\mathcal{L}_{BSM} = Y_{\alpha i}^{\nu} \bar{\ell}_{L_{\alpha}} \tilde{H} N_{i} + \frac{M_{N}}{2} \bar{N_{i}}^{c} N_{i} + h.c \iff m_{\nu} = -m_{D} M_{N}^{-1} m_{D}^{T}$$

CP Violation

Lepton number

Violation

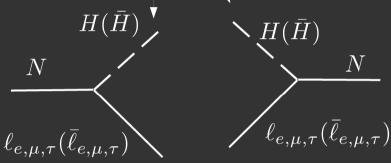
Out-of equilibrium dynamics



Decay of RHN at $T < M_N$

$$egin{aligned} [ar{\mathbf{N}} &
ightarrow \ell + \mathbf{H}] \ [\mathbf{N} &
ightarrow ar{\ell} + ar{\mathbf{H}}] \end{aligned}$$

$$\Delta L
eq 0$$
 Sphaleron Process $\Delta B
eq 0$


Quantifying CP asymmetry

Neutrino mass, mixing and Leptogenesis are related

Lepton & Baryon asymmetry

$$s\mathcal{H}zrac{dY_{N_1}}{dz} = \left(rac{Y_{N_1}}{Y_{N_1}^{
m eq}} - 1
ight)(\gamma_D + 2\gamma_{S_s} + 4\gamma_{S_t})$$

$$s\mathcal{H}zrac{dY_{B-L}}{dz} = -\left\{\left(rac{Y_{N_1}}{Y_{N_1}^{
m eq}} - 1
ight)arepsilon_1\gamma_D - rac{Y_{B-L}}{Y_\ell^{
m eq}}\left(2\gamma_N + 2\gamma_{S_t} + \gamma_{S_s}rac{Y_{N_1}}{Y_{N_1}^{
m eq}}
ight)$$

scattering Washout

Production

Washout

$$Y_B = \frac{28}{79} Y_{B-L}$$

 $Y_B = rac{28}{79} Y_{B-L}$ (At sphaleron decomposition) (At sphaleron decomposition) $T \sim 150 \; {
m GeV}$ (At sphaleron decoupling

$$* z = \frac{M_1}{T}$$

$$* Y_x = \frac{n_x}{s}$$

*
$$\gamma_D = \gamma(N \to \ell H) + \gamma(N \to \bar{\ell}\bar{H})$$

Flavor effect in Leptogenesis

$$\mathcal{L} = Y^{
u}_{lpha i} \overline{\ell}_{L_{lpha}} ilde{H} N_i + Y_{lpha} (\overline{\ell}_L)_{lpha} H(\ell_R)_{lpha} + h.c$$

[Credit to

Barbieria et. al.,2000; Nardi et. al., 2005, 2006; Blanchet, Bari, 2006, 2007; A. Abada et.al.,2007; ,and many more...]

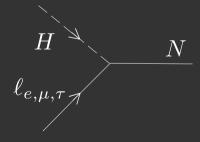
$$\Gamma_{\alpha} < \mathcal{H} \ (T >> 5 \times 10^{11} \ \mathrm{GeV})$$

Flavor effect in Leptogenesis

$$\mathcal{L} = Y^{
u}_{lpha i} \overline{\ell}_{L_{lpha}} ilde{H} N_i + Y_{lpha} (\overline{\ell}_L)_{lpha} H(\ell_R)_{lpha} + h.c$$

[Credit to

Barbieria et. al.,2000; Nardi et. al., 2005, 2006; Blanchet, Bari, 2006, 2007; A. Abada et.al.,2007; ,and many more...]

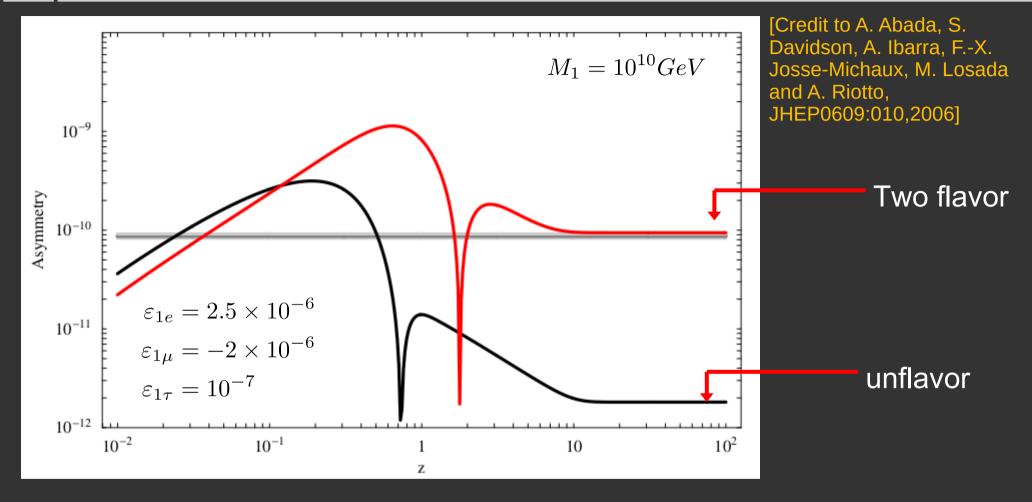

$$\Gamma_{lpha} < \mathcal{H} \ (T >> 5 imes 10^{11} \ {
m GeV})$$

$$\Gamma_{\tau}(\propto m_h^2(T)/T) > \mathcal{H}$$

[right-handed tau enters equilibrium]

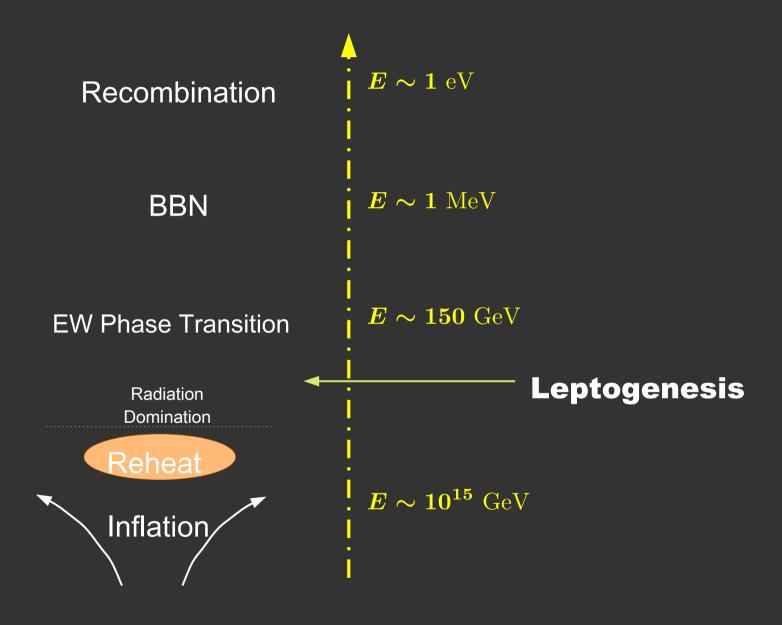
Washout along individual flavors become different

Flavor effect in Leptogenesis

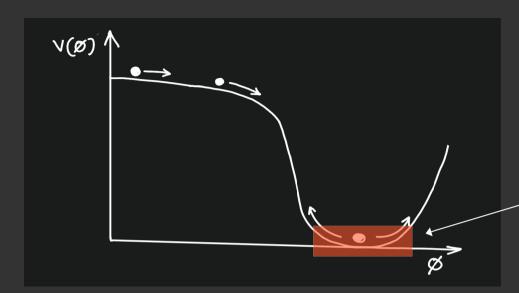

$$\mathcal{L} = Y^{
u}_{lpha i} \overline{\ell}_{L_{lpha}} ilde{H} N_i + Y_{lpha} (\overline{\ell}_L)_{lpha} H(\ell_R)_{lpha} + h.c$$

No Flavor
$$|\ell_1\rangle = \langle \ell_\alpha | \ell_1 \rangle | \ell_\alpha \rangle$$
 effect:

$$T_{\tau_R}^0 \sim [5 \times 10^{11} \text{ GeV}]$$
Two $|\ell_a\rangle, |\ell_\tau\rangle$ Flavor:
$$Y_{B-L} = Y_{B/3-L_a} + Y_{B/3-L_\tau}$$
Three $|\ell_e\rangle, |\ell_\mu\rangle, |\ell_\tau\rangle$ Flavor:
$$Y_{B-L} = Y_{B/3-L_e} + Y_{B/3-L_\mu} + Y_{B/3-L_\tau}$$


$$s\mathcal{H}zrac{dY_{B/3-L_lpha}}{dz} = -igg\{\left(rac{Y_{N_1}}{Y_{N_1}^{
m eq}}-1
ight)arepsilon_{\ell_lpha} + rac{1}{2}K_lpha^0\sum_eta(C_{lphaeta}^\ell+C_eta^H)rac{Y_{B/3-L_eta}}{Y_\ell^{
m eq}}igg\}\gamma_D$$

Importance of flavor effect



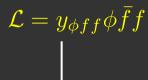
Almost one order shift in produced baryon asymmetry can be achieved

Timeline of Leptogenesis:

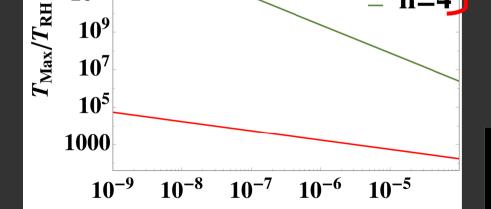
Inflationary Universe [exponential expansion: $a \sim e^{Ht}$]

Inflaton must decay to radiation

Reheating


- Beginning of the thermal history.
- All elemantary particles (of SM) are generated

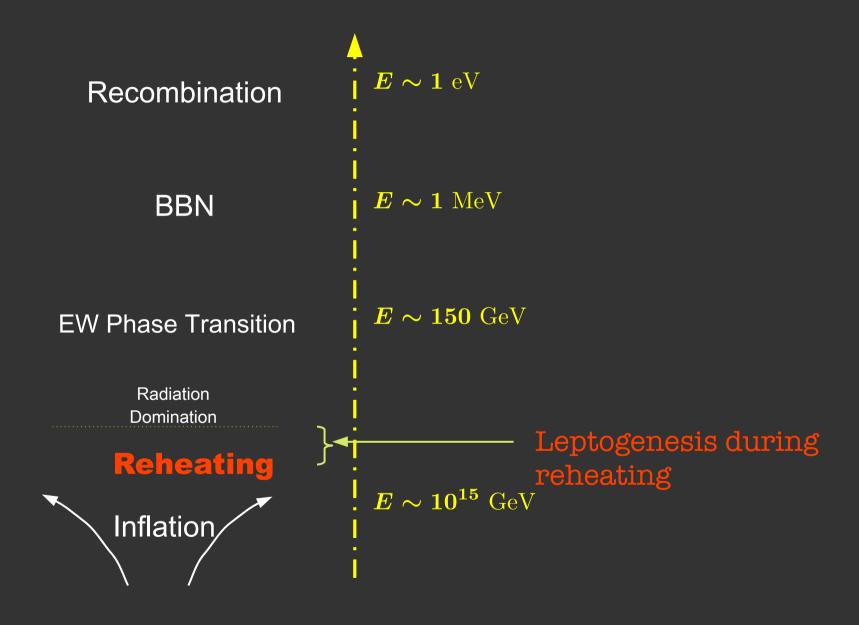
Era of rehating can be very rich.


Coupling between inflaton and SM

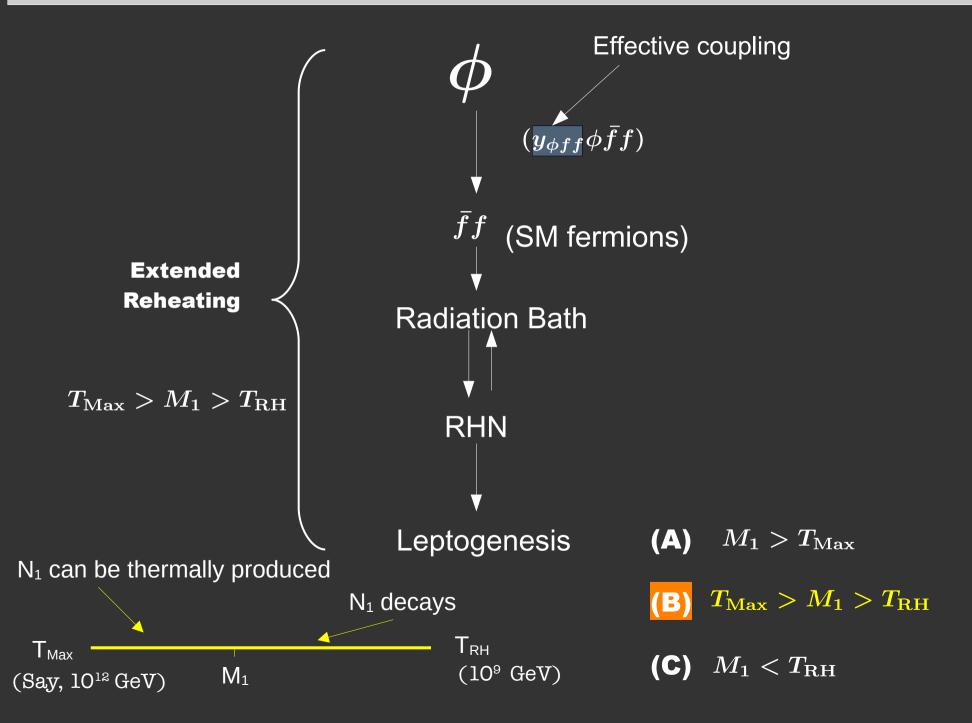
Power in inflaton potential

n=2

Produces radiation component ρ_R


 y_{ϕ} ff

 10^{13}

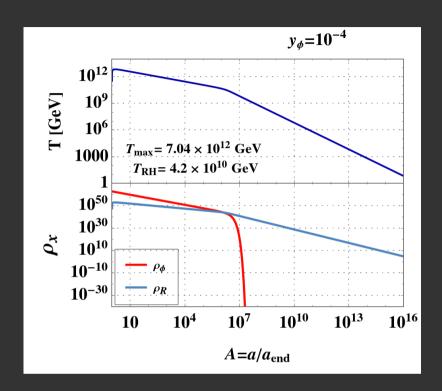

 10^{11}

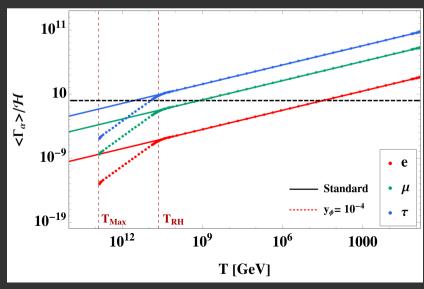
- Temperature varies differently.
- T_{max} T_{RH}: depends on effective coupling

Timeline of Leptogenesis:

Setup:

Equilibration of Charged lepton Yukawa:

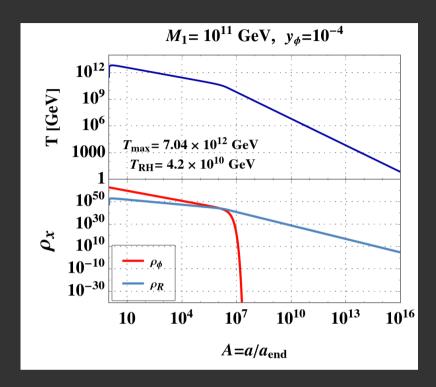

$$\frac{d(\rho_{\phi}a^3)}{da} = -\frac{\Gamma_{\phi}}{\mathcal{H}}\rho_{\phi}a^2$$

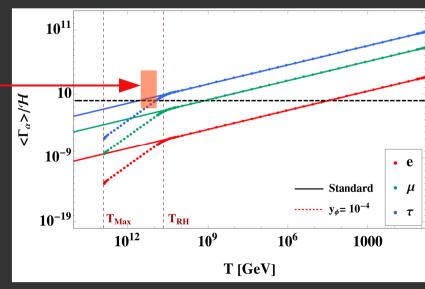

$$\frac{d\left(\rho_R a^4\right)}{da} = \frac{a^3}{\mathcal{H}} \Gamma_\phi \rho_\phi$$

$$\mathcal{H}^2 = \frac{\rho_\phi + \rho_R}{3M_P^2}$$

Thermal Mass of Higgs

$$\langle \Gamma_{lpha}
angle = rac{\pi Y_{lpha}^2}{192 \zeta(3)} rac{\overset{f{lpha}}{m_h^2(T)}}{T} = \mathcal{H}$$


Equilibration of Charged lepton Yukawa:


$$\frac{d(\rho_{\phi}a^3)}{da} = -\frac{\Gamma_{\phi}}{\mathcal{H}}\rho_{\phi}a^2$$

$$\frac{d\left(\rho_R a^4\right)}{da} = \frac{a^3}{\mathcal{H}} \Gamma_\phi \rho_\phi$$

$$\mathcal{H}^2 = \frac{\rho_\phi + \rho_R}{3M_P^2}$$

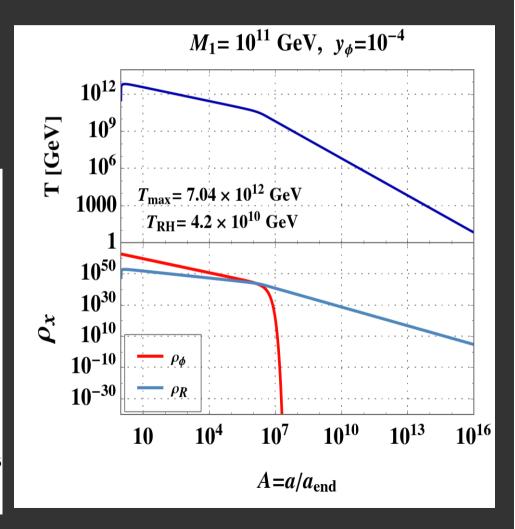
 Delayed equilibration of charged lepton Yukawa interactions

Shift in ET and effect on flavor leptogenesis

$$T_{\text{max}} > M_1 > T_{\text{RH}}$$

- Decay of N₁ would produce lepton asymmetry
 - However, flavor regimes are shifted

Need to relook into flavor leptogenesis


Bolzmann Equation and Temperature:

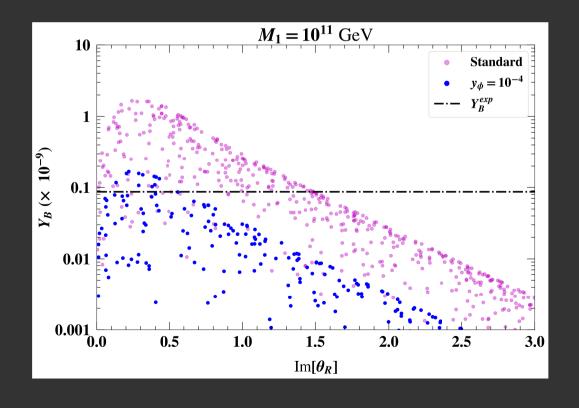
$$\frac{d(\rho_{\phi}a^{3})}{da} = -\frac{\Gamma_{\phi}}{\mathcal{H}}\rho_{\phi}a^{2}$$

$$\frac{d(\rho_{R}a^{4})}{da} = \frac{a^{3}}{\mathcal{H}}\Gamma_{\phi}\rho_{\phi} + \frac{a^{3}}{H}\langle\Gamma_{N_{1}}\rangle(\rho_{N_{1}} - \rho_{N_{1}}^{\text{eq}})$$

$$\frac{d(\rho_{N_{1}}a^{3})}{da} = -\frac{\langle\Gamma_{N_{1}}\rangle a^{2}}{\mathcal{H}}(\rho_{N_{1}} - \rho_{N_{1}}^{\text{eq}})$$

$$\mathcal{H}^2 = \frac{\rho_\phi + \rho_R + \rho_{N_1}}{3M_P^2}$$

Modification of Flavor effect


Modification of Baryon asymmetry

$$\frac{d(\rho_{\phi}a^{3})}{da} = -\frac{\Gamma_{\phi}}{\mathcal{H}}\rho_{\phi}a^{2}$$

$$\frac{d(\rho_{R}a^{4})}{da} = \frac{a^{3}}{\mathcal{H}}\Gamma_{\phi}\rho_{\phi} + \frac{a^{3}}{\mathcal{H}}\langle\Gamma_{N_{1}}\rangle(\rho_{N_{1}} - \rho_{N_{1}}^{\text{eq}})$$

$$\frac{d(\rho_{N_{1}}a^{3})}{da} = -\frac{\langle\Gamma_{N_{1}}\rangle a^{2}}{\mathcal{H}}(\rho_{N_{1}} - \rho_{N_{1}}^{\text{eq}})$$

$$\frac{d(\rho_{N_{1}}a^{3})}{da} = -\frac{\langle\Gamma_{N_{1}}\rangle a^{2}}{\mathcal{H}}(\rho_{N_{1}} - \rho_{N_{1}}^{\text{eq}})$$

Modification of Baryon asymmetry

- **Prolonged Reheating** was achieved by varying the inflaton-SM fermion coupling.
- Due to the nontrivial behaviour of Temperature in between T_{max} and T_{RH} , equilibration temperature of charged lepton Yukawa interactions shift from their standard thermal value.
- More stringent parameter space satisfying correct baryon asymmetry is observed due to the modified flavor effect as well as dilution of baryon asymmetry due to entropy injection from inflaton decay.

CONCLUSION

Leptogenesis takes place during an extended era of reheating

• Shift of Charged Lepton Yukawa Equilibrium Temperature

• Flavor Leptogenesis regime gets modified

