SM Background in Rare \boldsymbol{B}-Meson Decays

Mikołaj Misiak
University of Warsaw
HARMONIA meeting, April 26-30th 2018, Warsaw

1. B-physics "anomalies"
2. $\bar{B} \rightarrow X_{s} \gamma-$ progress in perturbative calculations
3. $B_{s, d} \rightarrow \ell^{+} \ell^{-}$- a phenomenological update
4. Charm-quark loops $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$
5. Summary
$\boldsymbol{R}(\boldsymbol{D})$ and $\boldsymbol{R}\left(\boldsymbol{D}^{*}\right)$ "anomalies" [HFAG, arXiv:1612.07233] (3.9 $\left.\sigma\right)$

$$
\boldsymbol{R}\left(D^{(*)}\right)=\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \mu \bar{\nu}\right)
$$

$b \rightarrow s \ell^{+} \ell^{-}$"anomalies" $(>5 \sigma)$ [W. Altmanshofer, February 2018, talk at the Munich workshop]

$$
\begin{aligned}
& Q_{9}^{\ell}={\stackrel{i}{\mathrm{~b}_{\mathbf{L}}}{ }^{\gamma_{\alpha}} / l}_{\mathrm{s}_{\mathrm{L}}}^{l} \\
& Q_{10}^{\ell}={\stackrel{ }{\mathrm{b}_{\mathrm{L}}} \gamma^{\lambda} \gamma_{5} / l}_{\mathrm{s}_{\mathrm{L}}} \\
& \ell=e \text { or } \mu
\end{aligned}
$$

Information on electroweak-scale physics in the $b \rightarrow s \gamma$ transition is encoded in an effective low-energy local interaction:

$b \in \bar{B} \equiv\left(\bar{B}^{0}\right.$ or $\left.B^{-}\right)$

Information on electroweak-scale physics in the $b \rightarrow s \gamma$ transition is encoded in an effective low-energy local interaction:

The inclusive $\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{s} \gamma$ decay rate for $\boldsymbol{E}_{\gamma}>\boldsymbol{E}_{0}$ is well approximated by the corresponding perturbative decay rate of the b-quark:

$$
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\Gamma\left(b \rightarrow X_{s}^{p} \gamma\right)+\binom{\text { non-perturbative effects }}{(3 \pm 5) \%}
$$

[G. Buchalla, G. Isidori and S.-J. Rey, Nucl. Phys. B511 (1998) 594]
[M. Benzke, S.J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099] (BLNP)
provided E_{0} is large ($E_{0} \sim m_{b} / 2$)
but not too close to the endpoint $\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)$.
Conventionally, $E_{0}=1.6 \mathrm{GeV} \simeq m_{b} / 3$ is chosen.

Updated SM estimate for the CP- and isospin-averaged branching ratio of $\bar{B} \rightarrow X_{s} \gamma$ [arXiv:1503.01789, arXiv:1503.01791]:

$$
\mathcal{B}_{s \gamma}^{\mathrm{SM}}=(3.36 \underbrace{ \pm 0.23}_{ \pm 6.9 \%}) \times 10^{-4} \quad \text { for } E_{\gamma}>1.6 \mathrm{GeV}
$$

Contributions to the total TH uncertainty (summed in quadrature):
5% non-perturbative, $\quad 3 \%$ from the interpolation in m_{c}
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right), \quad 2 \%$ parametric

Updated SM estimate for the CP- and isospin-averaged branching ratio of $\bar{B} \rightarrow X_{s} \gamma$ [arXiv:1503.01789, arXiv:1503.01791]:
$\mathcal{B}_{s \gamma}^{\mathrm{SM}}=(3.36 \underbrace{ \pm 0.23}_{ \pm 6.9 \%}) \times 10^{-4} \quad$ for $E_{\gamma}>1.6 \mathrm{GeV}$
Contributions to the total TH uncertainty (summed in quadrature):
5% non-perturbative,
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right), \quad 2 \%$ parametric
It is very close the the experimental world average:

$$
\mathcal{B}_{s \gamma}^{\exp }=(3.32 \underbrace{ \pm 0.15}_{ \pm 4.5 \%}) \times 10^{-4}
$$

[HFAG, arXiv:1612.07233]

Experiment agrees with the SM well within $\sim 1 \sigma$.

Updated SM estimate for the CP- and isospin-averaged branching ratio of $\bar{B} \rightarrow X_{s} \gamma \quad[a r X i v: 1503.01789$, arXiv:1503.01791]:
$\mathcal{B}_{s \gamma}^{\mathrm{SM}}=(3.36 \underbrace{ \pm 0.23}_{ \pm 6.9 \%}) \times 10^{-4} \quad$ for $E_{\gamma}>1.6 \mathrm{GeV}$
Contributions to the total TH uncertainty (summed in quadrature):
5% non-perturbative,
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right), \quad 2 \%$ parametric
It is very close the the experimental world average:

$$
\mathcal{B}_{s \gamma}^{\exp }=(3.32 \underbrace{ \pm 0.15}_{ \pm 4.5 \%}) \times 10^{-4}
$$

[HFAG, arXiv:1612.07233]

Experiment agrees with the SM well within $\sim 1 \sigma$.
\Rightarrow Strong bound on the $H^{ \pm}$mass in the Two-Higgs-Doublet-Model II:
$M_{H^{ \pm}}>580 \mathrm{GeV}$ at 95% C.L. [MM, м. Steinhauser, EPJC 77 (2017) 201]

Decoupling of $W, Z, t, H^{0} \Rightarrow$ effective weak interaction Lagrangian: $L_{\text {weak }} \sim \sum_{i} C_{i} Q_{i}$
Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{\mathrm{SM}}$ when the NLO ${ }^{i}$ EW and/or CKM-suppressed effects are neglected:

Decoupling of $W, Z, t, H^{0} \Rightarrow$ effective weak interaction Lagrangian: $L_{\text {weak }} \sim \sum_{i} C_{i} Q_{i}$
Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{S M}$ when the NLO $\stackrel{i}{\text { EN }}$ and/or CKM-suppressed effects are neglected:

$\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)_{\gamma}>E_{0}=\left|C_{7}\left(\mu_{b}\right)\right|^{2} \Gamma_{77}\left(E_{0}\right)+($ other $) \quad\left(\mu_{b} \sim m_{b} / 2\right)$

Optical theorem:
$\frac{d \Gamma_{77}}{d E_{\gamma}} \sim \operatorname{Im}\{\underbrace{\bar{A}}_{\bar{X}}$

Integrating the amplitude \boldsymbol{A} over \boldsymbol{E}_{γ} :

$\underset{\text { the ring }}{\text { OPE on }} \Rightarrow$ Non-perturbative corrections to $\Gamma_{77}\left(E_{0}\right)$ form a series in $\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}$ and $\boldsymbol{\alpha}_{s}$ that begins with

$$
\frac{\mu_{\pi}^{2}}{m_{b}^{2}}, \frac{\mu_{G}^{2}}{m_{b}^{2}}, \frac{\rho_{D}^{3}}{m_{b}^{3}}, \frac{\rho_{L S}^{3}}{m_{b}^{3}}, \ldots ; \frac{\alpha_{s} \mu_{\pi}^{2}}{\left(m_{b}-2 E_{0}\right)^{2}}, \frac{\alpha_{s} \mu_{G}^{2}}{m_{b}\left(m_{b}-2 E_{0}\right)} ; \ldots,
$$

where $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{L S}=\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ are extracted from the semileptonic $\bar{B} \rightarrow X_{c} e \overline{\boldsymbol{\nu}}$

NNLO QCD corrections to $\bar{B} \rightarrow X_{s} \gamma$
The relevant perturbative quantity $P\left(E_{0}\right)$:
$\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{0}}}{\Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{u b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \underbrace{\sum_{i, j} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) K_{i j}}_{P\left(E_{0}\right)}$

NNLO QCD corrections to $\bar{B} \rightarrow X_{s} \gamma$
The relevant perturbative quantity $P\left(E_{0}\right)$:

$$
\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{0}}}{\Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{u b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \underbrace{\sum_{i, j} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) K_{i j}}_{P\left(E_{0}\right)}
$$

Expansions of the Wilson coefficients and $K_{i j}$ in $\widetilde{\alpha}_{s} \equiv \frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}$:
$C_{i}\left(\mu_{b}\right)=C_{i}^{(0)}+\widetilde{\alpha}_{s} C_{i}^{(1)}+\widetilde{\alpha}_{s}^{2} C_{i}^{(2)}+\ldots$
$K_{i j}=K_{i j}^{(0)}+\widetilde{\alpha}_{s} K_{i j}^{(1)}+\widetilde{\alpha}_{s}^{2} K_{i j}^{(2)}+\ldots$

NNLO QCD corrections to $\bar{B} \rightarrow X_{s} \gamma$
The relevant perturbative quantity $P\left(E_{0}\right)$:

$$
\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{0}}}{\Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{u b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \underbrace{\sum_{i, j} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) K_{i j}}_{P\left(E_{0}\right)}
$$

Expansions of the Wilson coefficients and $K_{i j}$ in $\widetilde{\alpha}_{s} \equiv \frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}$:
$C_{i}\left(\mu_{b}\right)=C_{i}^{(0)}+\widetilde{\alpha}_{s} C_{i}^{(1)}+\widetilde{\alpha}_{s}^{2} C_{i}^{(2)}+\ldots$
$K_{i j}=K_{i j}^{(0)}+\widetilde{\alpha}_{s} K_{i j}^{(1)}+\widetilde{\alpha}_{s}^{2} K_{i j}^{(2)}+\ldots$
Most important at the NNLO: $K_{77}^{(2)}, K_{27}^{(2)}$ and $K_{17}^{(2)}$.
They depend on $\frac{\mu_{b}}{m_{b}}, \delta=1-\frac{2 E_{0}}{m_{b}}$ and $z=\frac{m_{c}^{2}}{m_{b}^{2}}$.

Towards complete $\boldsymbol{K}_{17}^{(2)}$ and $\boldsymbol{K}_{27}^{(2)}$ for arbitrary $\boldsymbol{m}_{\boldsymbol{c}} \quad$ [MM, A. Rehman, M. Steinhauser, ,..]

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of 585309 four-loop two-scale scalar integrals with unitarity cuts (437 families).
2. Reduction to master integrals with the help of Integration By Parts (IBP).

Available public C++ codes:

$$
\begin{array}{ll}
\text { REDUZE } & \text { [C. Studerus, arXiv:0912.2546], } \\
\text { FIRE } & \text { [A.V. Smirnov, arXiv:1408.2372]. }
\end{array}
$$

A useful Mathematica code: LiteRed [R.N. Lee, arXiv:1212.2685] (symmetries...).
At the moment (MM), 147 families (166509 integrals) still await for reduction. Expected needs for the most difficult families: 100 GB RAM \& 1 month CPU.
3. Extending the set of master integrals I_{n} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} I_{n}=\Sigma_{k} w_{n k}(z, \epsilon) I_{k} \tag{*}
\end{equation*}
$$

where $w_{n k}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $m_{c} \gg m_{b}$.
5. Calculating three-loop single-scale master integrals for the boundary conditions. Methods...
6. Solving the system $(*)$ numerically [A.C. Hindmarsch, http://www.netlib.org/odepack] along an ellipse in the complex z plane. Doing so along several different ellipses allows us to estimate the numerical error.

The same method has been applied to the 3-loop counterterm diagrams [MM, A. Rehman, M. Steinhauser, PLB 770 (2017) 431]

Master integrals:

Results for the bare NLO contributions up to $\mathcal{O}(\epsilon)$:

$\hat{G}_{27}^{(1) 2 P}=-\frac{92}{81 \epsilon}+f_{0}(z)+\epsilon f_{1}(z) \xrightarrow{z \rightarrow 0}-\frac{92}{81 \epsilon}-\frac{1942}{243}+\epsilon\left(-\frac{26231}{729}+\frac{259}{243} \pi^{2}\right)$

Dots: solutions to the differential equations and/or the exact $z \rightarrow 0$ limit. Lines: large- and small- z asymptotic expansions

Small- z expansions of $\hat{G}_{27}^{(1) 2 P}$:

f_{0} from C. Greub, T. Hurth, D. Wyler, hep-ph/9602281, hep-ph/9603404,
A. J. Buras, A. Czarnecki, MM, J. Urban, hep-ph/0105160,
f_{1} from H.M. Asatrian, C. Greub, A. Hovhannisyan, T. Hurth and V. Poghosyan, hep-ph/0505068.

Analogous results for the 3 -body final state contributions $(\delta=1)$:

$$
\hat{G}_{27}^{(1) 3 P}=g_{0}(z)+\epsilon g_{1}(z) \xrightarrow{z \rightarrow 0}-\frac{4}{27}-\frac{106}{81} \epsilon
$$

Dots: solutions to the differential equations and/or the exact $z \rightarrow 0$ limit.
Lines: exact result for g_{0}, as well as large- and small- z asymptotic expansions for g_{1}.
$g_{0}(z)= \begin{cases}-\frac{4}{27}-\frac{14}{9} z+\frac{8}{3} z^{2}+\frac{8}{3} z(1-2 z) s L+\frac{16}{9} z\left(6 z^{2}-4 z+1\right)\left(\frac{\pi^{2}}{4}-L^{2}\right), & \text { for } z \leq \frac{1}{4} \\ -\frac{4}{27}-\frac{14}{9} z+\frac{8}{3} z^{2}+\frac{8}{3} z(1-2 z) t A+\frac{16}{9} z\left(6 z^{2}-4 z+1\right) A^{2}, & \text { for } z>\frac{1}{4}\end{cases}$
where $s=\sqrt{1-4 z}, \quad L=\ln (1+s)-\frac{1}{2} \ln 4 z, \quad t=\sqrt{4 z-1}, \quad$ and $A=\arctan (1 / t)$.

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is proportonal to $f_{B_{q}}^{2} \sim \frac{\Lambda^{3}}{M_{B_{q}}}$.
As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections scale like Λ^{2} :

Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.
Their explicit calculation implies that the previous results for all the $B_{q} \rightarrow \ell^{+} \ell^{-}$branching ratios need to be multiplied by

$$
0.993 \pm 0.004
$$

Thus, despite the $\frac{M_{B_{q}}}{\Lambda}$-enhancement, the effect is well within the previously estimated $\pm 1.5 \%$ non-parametric uncertainty.

However, it is larger than $\pm 0.3 \%$ stemming from scale-variation of the Wilson coefficient $C_{A}\left(\mu_{b}\right)$.

SM predictions for all the branching ratios $\overline{\mathcal{B}}_{q \ell} \equiv \overline{\mathcal{B}}\left(B_{q}^{0} \rightarrow \ell^{+} \ell^{-}\right)$
[C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser, PRL 112 (2014) 101801]

$$
\begin{aligned}
& \overline{\mathcal{B}}_{s e} \times 10^{14}=(8.54 \pm 0.13) \boldsymbol{R}_{t \alpha} R_{s}, \\
& \overline{\mathcal{B}}_{s \mu} \times 10^{9}=(3.65 \pm 0.06) R_{t \alpha} R_{s}, \\
& \overline{\mathcal{B}}_{s \tau} \times 10^{7}=(7.73 \pm 0.12) \boldsymbol{R}_{t \alpha} R_{s}, \\
& \overline{\mathcal{B}}_{d e} \times 10^{15}=(2.48 \pm 0.04) R_{t \alpha} R_{d}, \\
& \overline{\mathcal{B}}_{d \mu} \times 10^{10}=(1.06 \pm 0.02) R_{t \alpha} R_{d}, \\
& \overline{\mathcal{B}}_{d \tau} \times 10^{8}=(2.22 \pm 0.04) R_{t \alpha} R_{d},
\end{aligned}
$$

where

$$
\begin{aligned}
R_{t \alpha} & =\left(\frac{M_{t}}{173.1 \mathrm{GeV}}\right)^{3.06}\left(\frac{\alpha_{s}\left(M_{Z}\right)}{0.1184}\right)^{-0.18} \\
R_{s} & =\left(\frac{f_{B_{s}}[\mathrm{MeV}]}{227.7}\right)^{2}\left(\frac{\left|V_{c b}\right|}{0.0424}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t s} / V_{c b}\right|}{0.980}\right)^{2} \frac{\tau_{H}^{s}[\mathrm{ps}]}{1.615} \\
R_{d} & =\left(\frac{f_{B_{d}}[\mathrm{MeV}]}{190.5}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t d}\right|}{0.0088}\right)^{2} \frac{\tau_{d}^{\mathrm{av}}[\mathrm{ps}]}{1.519}
\end{aligned}
$$

Inputs from FLAG, arXiv:1607.00299, Figs. 20 and 30 (+ web page update)

$0.041(1)$
$0.03927(76) \quad(2.7 \sigma$ tension with the inclusive)
$\longrightarrow 0.04200$ (64) from P. Gambino, K. J. Healey and S. Turczyk Phys.Lett.B 763 (2016) 60.

Update of the input parameters

	2014 paper	this talk	source
$M_{t}[\mathrm{GeV}]$	$173.1(9)$	$174.30(65)$	CDF \& D0, arXiv:1608.01881
$\alpha_{s}\left(M_{Z}\right)$	$0.1184(7)$	$0.1182(12)$	PDG 2016
$f_{B_{s}}[\mathrm{GeV}]$	$0.2277(45)$	$0.2240(50)$	FLAG 2016
$f_{B_{d}}[\mathrm{GeV}]$	$0.1905(42)$	$0.1860(40)$	FLAG 2016
$\left\|V_{c b}\right\|$	$0.04240(90)$	$0.04089(44)$	naive average excl. \& incl.
$\left\|V_{t b}^{*} V_{t s}\right\| /\left\|V_{c b}\right\|$	$0.9800(10)$	$0.9819(4)$	derived from CKMfitter 2016
$\left\|V_{t b}^{*} V_{t d}\right\|$	$0.0088(3)$	$0.0087(2)$	derived from CKMfitter 2016
$\tau_{H}^{s}[\mathrm{ps}]$	$1.615(21)$	$1.619(9)$	HFLAV 2017
$\tau_{H}^{d}[\mathrm{ps}]$	$1.519(7)$	$1.518(4)$	HFLAV 2017
$\overline{\mathcal{B}}_{s \mu} \times 10^{9}$	$3.65(23)$	$3.35(18)$	
$\overline{\mathcal{B}}_{d \mu} \times 10^{10}$	$1.06(9)$	$1.00(7)$	

Sources of uncertainties	$f_{B_{q}}$	CKM	τ_{H}^{q}	M_{t}	α_{s}	other parametric	non- parametric	\sum
$\overline{\mathcal{B}}_{s \ell}$	4.5%	2.2%	0.6%	1.2%	0.1%	$<0.1 \%$	1.5%	5.4%
$\overline{\mathcal{B}}_{d \ell}$	4.3%	4.6%	0.3%	1.2%	0.1%	$<0.1 \%$	1.5%	6.7%

If the inclusive $\left|V_{c b}\right|=0.04200(64)$ alone is used instead of the naive average, then $\overline{\mathcal{B}}_{s \mu} \times 10^{9}=3.54(21)$.

Comparison with the measurements

Previous averages, CMS and LHCb, Nature 522 (2015) 68: $\overline{\mathcal{B}}_{s \mu}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}, \overline{\mathcal{B}}_{d \mu}=\left(3.9_{-1.4}^{+1.6}\right) \times 10^{-10}$. New results of LHCb, PRL 118 (2017) 191801: $\overline{\mathcal{B}}_{s \mu}=\left(3.0 \pm 0.6_{-0.2}^{+0.3}\right) \times 10^{-9}, \overline{\mathcal{B}}_{d \mu}=\left(1.5_{-1.0}^{+1.2+0.1}\right) \times 10^{-10}$. ATLAS in EPJC 76 (2016) 513 gives 95% C.L. bounds: $\overline{\mathcal{B}}_{s \mu}<3.0 \times 10^{-9}$ and $\overline{\mathcal{B}}_{d \mu}<4.2 \times 10^{-10}$.

Comparison with the measurements

Previous averages, CMS and LHCb, Nature 522 (2015) 68: $\overline{\mathcal{B}}_{s \mu}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}, \overline{\mathcal{B}}_{d \mu}=\left(3.9_{-1.4}^{+1.6}\right) \times 10^{-10}$. New results of LHCb, PRL 118 (2017) 191801: $\overline{\mathcal{B}}_{s \mu}=\left(3.0 \pm 0.6_{-0.2}^{+0.3}\right) \times 10^{-9}, \overline{\mathcal{B}}_{d \mu}=\left(1.5_{-1.0}^{+1.2+0.1}\right) \times 10^{-10}$. ATLAS in EPJC 76 (2016) 513 gives 95% C.L. bounds: $\overline{\mathcal{B}}_{s \mu}<3.0 \times 10^{-9}$ and $\overline{\mathcal{B}}_{d \mu}<4.2 \times 10^{-10}$.

Non-local charm loops in $\bar{B} \rightarrow X_{s} \gamma$ and $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$

Background-subtracted $\bar{B} \rightarrow X_{s+d} \gamma$ photon energy spectrum in the $\Upsilon(4 S)$ rest frame, from Fig. 1 of the Belle analysis in arXiv:1608.02344.

For $M_{X} \lesssim 3 \mathrm{GeV}$ and in the absence of 4-quark ops, we have local OPE $\Rightarrow \mathcal{O}\left(\Lambda^{2} / m_{b}^{2}\right)$.

In the presence of 4 -quark ops:
Light quark loops - suppressed by $C_{3, \ldots, 6}$ or CKM;
Charm loops - factorizable or local if m_{c}^{2} is sufficiently large w.r.t. $m_{b} \Lambda$. Numerically, $\mathcal{O}(3 \%)$ non-fact. effects found in $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ and $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)$with $q^{2} \in[1,6] \mathrm{GeV}$. [Buchalla, Isidori, Rey, NPB 511 (1998) 594]

However, m_{c}^{2} is not sufficiently large \Rightarrow Treat it as $\mathcal{O}\left(m_{b} \Lambda\right)$ and use SCET, so far up to $\mathcal{O}\left(\Lambda / m_{b}\right)$: For $\mathcal{B}\left(\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \gamma\right)$ with $\boldsymbol{E}_{\gamma}>1.6 \mathrm{GeV}$ [Benzke, Lee, Neubert, Paz, JHEP 1008 (2010) 099] [$\mathbf{- 4 . 8 \%},+\mathbf{5 . 6 \%}$] uncert. range. For $\mathcal{B}\left(\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{s} \ell^{+} \boldsymbol{\ell}^{-}\right)$with $\boldsymbol{q}^{\mathbf{2}} \in[\mathbf{1 , 6}] \mathbf{G e V}$ [Benzke, Hurth, Turczyk, JHEP 1710 (2017) 031] $[\mathbf{- 2 . 7 \%},+\mathbf{1 . 8 \%}]$ range.
(On the top of the factorizable and/or local effects, including the Λ^{2} / m_{c}^{2} ones.)
Corrections not involving Q_{7} and Q_{8} are of higher order, i.e. $\mathcal{O}\left[\left(\frac{\Lambda}{m_{b}}\right)^{a}\right]$ with $a \geq \frac{3}{2}$ and/or $\mathcal{O}\left(\frac{\alpha_{s} \Lambda}{m_{b}}\right)$. That's what we miss using the purely perturbative expression for $\left|C_{9}^{\text {eff }}\left(q^{2}\right)\right|^{2}$ and the local $1 / m_{c}^{2}$ effects. However, the applied SCET power counting works only for small M_{X} and small $\boldsymbol{q}^{2}-$ verte.

SCET power counting in the $\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \ell^{+} \boldsymbol{\ell}^{-}$analysis of Benzke, Hurth and Turczyk, JHEP 1710 (2017) 031.
 region if we restricted to $q^{2} \in[1,5] \mathrm{GeV}$. On the other hand, the cut on M_{X} could be somewhat larger than 2 GeV .

The factorization formula:
$d \Gamma=\sum_{n=0}^{\infty} \frac{1}{m_{b}^{n}} \sum_{i} H_{i}^{(n)} J_{i}^{(n)} \otimes S_{i}^{(n)}+\sum_{n=1}^{\infty} \frac{1}{m_{b}^{n}}\left[\sum_{i} H_{i}^{(n)} J_{i}^{(n)} \otimes S_{i}^{(n)} \otimes \bar{J}_{i}^{(n)}+\sum_{i} H_{i}^{(n)} J_{i}^{(n)} \otimes S_{i}^{(n)} \otimes \bar{J}_{i}^{(n)} \otimes \bar{J}_{i}^{(n)}\right]$

Remarks:

1. Not proven. Contradictions observed in the $Q_{8}-Q_{8}$ case, claimed to be phenomenologically irrelevant.
2. Relates unknowns to unknowns. Models of soft functions needed (constraints available).
3. Corrections beyond $\mathcal{O}\left(\Lambda / m_{b}\right)$ are likely to be relevant because $\left|C_{9,10} / C_{7}\right| \sim 13$ (work in progress) [BHT].
4. Other observables - after including the above corrections.
5. Different power counting than in the previous SCET analyses where no "resolved photons" were included [Lee, Stewart, PRD74 (2006) 014005], [Bell, Beneke, Huber, Li, NPB843 (2011) 143].

Sample (previous) SM predictions for $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) \times 10^{6}$

 with $q^{2} \in[1,6] \mathrm{GeV}$ and no cut on M_{X} :$$
\left.\begin{array}{l}
1.64 \pm 0.11, \quad \ell=\boldsymbol{e} \\
1.59 \pm 0.11, \quad \ell=\boldsymbol{\mu}
\end{array}\right\} \text { parametric and perturbative uncert. only } \quad \text { [Huber, Lunghi, MM, Wyler, NPB } 740 \text { (2006) 105] }
$$

The corresponding semi-inclusive experimental results,

 averaged over $\ell=e, \mu$:$1.60_{-0.39-0.13}^{+0.41+0.17} \pm 0.18$, Babar, PRL112 (2014) $211802,471 \times 10^{6} B \bar{B}$, extrapolated from $M_{X}<1.8 \mathrm{GeV}$,
$1.493 \pm 0.504_{-0.321}^{+0.41}, \quad$ Belle, PRD72 (2005) 092005, $152 \times 10^{6} B \bar{B}$.

Remarks:

1. The Krüger-Sehgal (factorizable) contribution should be retained even after the SCET estimates for the resolved photon contributions are included in the future. What about $\mathcal{O}\left(\alpha_{s}\right)$?
2. Given the presence of resolved photon contributions, neither $\bar{B} \rightarrow X_{s} \gamma$ nor $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$are useful for precise determination of the HQET parameters. The semileptonic observables alone should be sufficient.
3. Suggestion: use $M_{X}<3 \mathrm{GeV}$ as a default cut to which the experimental $\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}$results are being extrapolated, similarly to $E_{\gamma}>1.6 \mathrm{GeV}$ in the $\bar{B} \rightarrow X_{s} \gamma$ case. The leading shape function is identical in both processes.

Summary

- Large deviations from the SM are observed in tree-level LFU-violating observables $R_{D^{(*)}}$, as well as in the loop generated transition $b \rightarrow s \ell^{+} \ell^{-}$. On the other hand, several sensitive loop processes like $\bar{B} \rightarrow X_{s} \gamma$ or $B_{s} \rightarrow \mu^{+} \mu^{-}$remain in good agreement with the SM. Certain leptoquark models can accommodate such a situation.
- Perturbative calculations of $\bar{B} \rightarrow X_{s} \gamma$ require further optimization of software/hardware for the IBP reduction.
- In the case of $B_{s} \rightarrow \mu^{+} \boldsymbol{\mu}^{-}$, resolving the inclusive-exclusive tension in $\left|V_{c b}\right|$ would help a lot.
- Charm quark loops in the inclusive $\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{s} \ell^{+} \ell^{-}$decay seem to be under better control than in the corresponding exlusive decay channels.

