A Simple Method to detect spontaneous CP

 Violation in multi-Higgs modelsM. N. Rebelo CFTP/IST, U. Lisboa In memory of Maria Scalars 2017, Warsaw, Poland 30 November 2017

Work done in collaboration with 0 . M. Ogreid and P. Osland, arXiv: 1701.04768 and arXiv:1 601.04654 also with 0 . Emmanuel-Costa

> JHEP 1602 (2016) 154, Erratum: JHEP 1608 (2016) 169
> JHEP 1708 (2017) 005

In memory of Maria

Maria Krawczyk

Reception, Discrete 2016, Warsaw, 28 November 2016

Mead (Miód pitny) in the Old Town, 3 December 2016

The Red Hog, Warsaw, 5 December 2016

Portoroz, 18 April 2017

SCALARS 2011, WARSAW

SCALARS 2011, WARSAW

Corfu, September 2013

Corfu, September 2013

Scalars, Warsaw September 2013

Work Partially supported by:

FCT Fundação para a Ciência e a Tecnologia

 MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

European Union

COMPETE
PROGRAMA OPERACIONAL FACTORES DE COMPETITIVIDADE

Fundação para a Ciência e a Tecnologia
MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

Two Higgs doublet Models are very well motivated

as shown in the previous talk by G. C. Branco

and have very interesting phenomenological implications

Despite several good motivations, there is the need to suppress potentially dangerous FCNC:

Without HFCNC
NFC
Weinberg, Glashow (1977); Paschos (1977) aligned two Higgs doublet model Pich, Tuzon (2009)

With HFCNC

assume existence of suppression factors, e.g., suppression by small elements of VCKM: Minimal Flavour Violation

Branco, Grimus, Lavoura (1996)
BGL models, gBGL models

Notice that:

NFC, i.e., natural flavour conservation with MHDM, consists on imposing some extra symmetry on the Lagrangian constraining the Yukawa interactions of the neutral scalars in such a way that there are no FCNC

The only way is to ensure that only one Higgs doublet has Yukawa interactions with SM quark singlets of a given charge:
Glashow, Weinberg, Phys.Rev. D15 (1977) 1958; E.A. Paschos, Phys.Rev. D15 (1977) 1966

The case of two Higgs doublets with an exact reflection symmetry

$$
\begin{aligned}
& Z_{2}: \Phi_{1} \rightarrow \Phi_{1}, \quad \Phi_{2} \rightarrow-\Phi_{2}, \\
& V \\
& V\left(\Phi_{1}, \Phi_{2}\right)=m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2}+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2} \\
& \\
& \quad+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { h.c. }
\end{aligned}
$$

No CP violation in the scalar sector, neither explicit nor spontaneous.
At least three Higgs doublets required for CP violation in the scalar sector in the context of NFC with exact reflection symmetry

Motivation for three Higgs doublets

Three fermion generations may suggest three doublets
Interesting scenario for dark matter
Possibility of having a discrete symmetry and still having spontaneous CP violation

Rich phenomenology

Motivation for imposing discrete symmetries

Symmetries reduce the number of free parameters leading to (testable) predictions

Symmetries help to control HFCNC
Example: NFC, no HFCNC due to \mathbf{Z}_{2} symmetry(ies)
Example: MFV suppression of HFCNC, BGL models

Symmetries are needed to stabilise dark matter

Three Higgs Doublets NFC and CP Violation

Early motivation, Weinberg 1976, NFC with explicit CP violation and four quarks
Phys.Rev.Lett. 37 (1976) 657
NFC, at most two Higgs doublets couple to the quarks: one couples to the up sector only, the other to the down sector only Lagrangian invariant under separate reflections under which any one of the doublets changes sign

$$
\begin{align*}
V= & m_{1} \phi_{1}^{\dagger} \phi_{1}+m_{2} \phi_{2}^{\dagger} \phi_{2}+m_{3} \phi_{3}^{\dagger} \phi_{3}+a_{1}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+a_{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+a_{3}\left(\phi_{3}^{\dagger} \phi_{3}\right)^{2} \\
& +b_{1}\left(\phi_{2}^{\dagger} \phi_{2}\right)\left(\phi_{3}^{\dagger} \phi_{3}\right)+b_{2}\left(\phi_{3}^{\dagger} \phi_{3}\right)\left(\phi_{1}^{\dagger} \phi_{1}\right)+b_{3}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right) \\
& +c_{1}\left(\phi_{2}^{\dagger} \phi_{3}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+c_{2}\left(\phi_{3}^{\dagger} \phi_{1}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right)+c_{3}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right) \\
& +d_{1}\left[e^{i \varepsilon_{1}}\left(\phi_{2}^{\dagger} \phi_{3}\right)^{2}+e^{-i \varepsilon_{1}}\left(\phi_{3}^{\dagger} \phi_{2}\right)^{2}\right]+d_{2}\left[e^{i \varepsilon_{2}}\left(\phi_{3}^{\dagger} \phi_{1}\right)^{2}+e^{-i \varepsilon_{2}}\left(\phi_{1}^{\dagger} \phi_{3}\right)^{2}\right] \\
& +d_{3}\left[e^{i \varepsilon_{3}}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+e^{-i \varepsilon_{3}}\left(\phi_{2}^{\dagger} \phi_{1}\right)^{2}\right], \tag{22.45}
\end{align*}
$$

Three independent phases in V, two relative phases in the vevs There is explicit CP violation if the product of the three complex coefficients is not real CP violation in charged Higgs mediated flavour currents

Three Higgs Doublets NFC and CP Violation

Arbitrary number of quark generations, spontaneous CP breaking with NFC: a minimal number of three Higgs doublets required

Gustavo C. Branco Phys.Rev. D22 (1980) 2901

VCKM is real and there is no CP violation mediated by charged gauge bosons

Now we know that VCKM is complex

crucial rôle played by the angle γ
F.J. Botella, G.C. Branco, M. Nebot and MNR, Nucl.Phys. B725 (2005) 155-172

This fact rules out SCPV with NFC: whenever only one Higgs doublet gives mass to each quark sector the phase of its vev can be rotated away

Inert Higgs

Initial proposal: 2 Higgs doublets, Unbroken Z_{2} symmetry $\Phi_{2} \rightarrow-\Phi_{2}$ all other Standard Model particles are invariant under Z_{2}

E. Ma; R. Barbieri, L. J. Hall, and V. S. Rychkov, 2006
L.L. Honorez, E. Nezri, J. F. Oliver, M. H. G. Tytgat , 2006

$\Phi_{2^{-}}$, the inert Higgs, does not couple to matter and acquires no vev, NFC

Notice that this is different from going to the Higgs basis

The Z_{2} symmetry is left unbroken, as a result the lightest inert particle will be stable and will contribute to dark matter density

Inert scalars can be produced at colliders through their couplings to the EW gauge bosons subject to Z_{2} constraints and participate in cubic and quartic Higgs couplings

Many works on Dark matter with an Inert Higgs doublet

N. Darvishi, Mikael Dhen, I. F. Ginzburg, Thomas Hambye, K.A. Kanishev, M. Krawczyk,
D. Sokolowska, P. Swaczyna, B. Swiezewska, many many more authors

The Inert doublet model has been extended by several authors to include three Higgs Doublets

Possibility of having CP Violation and a stable DM candidate

B. Grzadkowski, O. M. Ogreid, P. Osland, G.M. Pruna , A. Pukhov, M. Purmohammadi
A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S.F. King, S. Moretti, D. Rojas, D. Sokołowska

How can we test whether or not there is SCPV in multiHiggs models?

Important Tool

most general CP transformation

$$
\Phi_{i} \xrightarrow{\mathrm{CP}} U_{i j} \Phi_{j}^{*}
$$

together with assumption that vacuum is invariant

$$
\mathrm{CP}|0\rangle=|0\rangle
$$

leads to the following condition

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle
$$

G. C. Branco, G. M. Gerard and W. Grimus (1984)

Very simple and powerful relation
Symmetries, if present, play a crucial role
However, in some cases construction of matrix U may not be obvious

Three Higgs doublet models with S_{3} Symmetry

 (extended to flavour)
Despite

many works aiming at explaining neutrino masses and leptonic mixing

Ma, Koide, Kubo, Mondragon, Rodriguez-Jauregui, Chen, Wolfenstein, Mohapatra, Nasri, Yu, Harrison, Scott, Frigerio, Grimus, Lavoura, Branco, Silva-Marcos...
several works addressing masses and mixing in the quark sector
Harari, Haut, Weyers, Meloni, Teshima, Melic, Canales, S Salazar, Velasco-Sevilla ,...
a lot of work already done analysing the Higgs potential
Derman, Tsao, Pakvasa, Sugawra, Wyler, Branco, Gerard, Grimus, Das, Dey, Bhattacharyya, Leser, Pas, Ivanov, Nishi...
inert dark matter candidates from S_{3} 3HDM considered
Fortes, Machado, Montano, Pleitez...

Interesting open questions still remain!

The Scalar potential

S_{3} is the permutation group involving three objects, $\phi_{1}, \phi_{2}, \phi_{3}$

$$
\begin{aligned}
V_{2}= & -\lambda \sum_{i} \phi_{i}^{\dagger} \phi_{i}+\frac{1}{2} \gamma \sum_{i<j}\left[\phi_{i}^{\dagger} \phi_{j}+\mathrm{hc}\right] \\
V_{4} & =A \sum_{i}\left(\phi_{i}^{\dagger} \phi_{i}\right)^{2}+\sum_{i<j}\left\{C\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{j}^{\dagger} \phi_{j}\right)+\bar{C}\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{j}^{\dagger} \phi_{i}\right)+\frac{1}{2} D\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)^{2}+\mathrm{hc}\right]\right\} \\
& +\frac{1}{2} E_{1} \sum_{i \neq j}\left[\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{i}^{\dagger} \phi_{j}\right)+\mathrm{hc}\right]+\sum_{i \neq j \neq k \neq i, j<k}\left\{\frac{1}{2} E_{2}\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{k}^{\dagger} \phi_{i}\right)+\mathrm{hc}\right]\right. \\
& \left.+\frac{1}{2} E_{3}\left[\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{k}^{\dagger} \phi_{j}\right)+\mathrm{hc}\right]+\frac{1}{2} E_{4}\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{i}^{\dagger} \phi_{k}\right)+\mathrm{hc}\right]\right\}
\end{aligned}
$$

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

$$
\phi_{1}+\phi_{2}+\phi_{3}
$$

remains invariant, it splits into two irreducible representations,
doublet and singlet: $\quad\binom{h_{1}}{h_{2}}, h_{S}$

Decomposition into these two irreducible representations

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{S}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

This definition does not treat equally $\phi_{1}, \phi_{2}, \phi_{3}$, they could be interchanged
Notice similarity with tribimaximal mixing:

$$
(F=)\left(\begin{array}{ccc}
-\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

The matrix F diagonalizes the democratic matrix , Δ

$$
F^{\prime T}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) F^{\prime}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right) \quad \Delta=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The democratic mass matrix can be obtained from S_{3} flavour symmetries

$$
\mathbf{S}_{\mathbf{3 L}} \mathbf{x} \mathbf{\mathbf { S } _ { 3 \mathrm { R } } : \quad M _ { l } = \lambda ^ { \prime } \Delta \quad ; \quad M _ { D } = \lambda \Delta \quad ; \quad M _ { R } = \mu (\Delta + a \mathbb { I }) , ~ () ^ { 2 })}
$$

Very interesting alternative, democratic with phases (USY)

The scalar potential in terms of fields from irreducible representations

$$
\begin{aligned}
V_{2} & =\mu_{0}^{2} h_{S}^{\dagger} h_{S}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right), \\
V_{4} & =\lambda_{8}\left(h_{S}^{\dagger} h_{S}\right)^{2}+\lambda_{5}\left(h_{S}^{\dagger} h_{S}\right)\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)+\lambda_{1}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)^{2} \\
& +\lambda_{2}\left(h_{1}^{\dagger} h_{2}-h_{2}^{\dagger} h_{1}\right)^{2}+\lambda_{3}\left[\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)^{2}+\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)^{2}\right] \\
& +\lambda_{6}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{S}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{2}^{\dagger} h_{S}\right)\right] \\
& +\lambda_{7}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{S}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{S}^{\dagger} h_{2}\right)+\text { h.c. }\right] \\
& +\lambda_{4}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\text { h.c. }\right]
\end{aligned}
$$

no symmetry under the interchange of $\quad h_{1}$ and h_{2}
however there is symmetry for $\quad h_{1} \rightarrow-h_{1}$
equivalent doublet representation $\quad\binom{\chi_{1}}{\chi_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}i & 1 \\ -i & 1\end{array}\right)\binom{h_{1}}{h_{2}}$
now there is symmetry for $\quad \chi_{1} \leftrightarrow \chi_{2}$
In the special case $\quad \lambda_{4}=0 \quad$ the potential has $\mathbf{S O}(2)$ symmetry:

$$
\binom{h_{1}^{\prime}}{h_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \text { Danger: massless scalar! }
$$

Constraining the potential by the vevs

Possibility of SCPV - real parameters

Let us start with real vacua (no CP violation)

Three minimisation conditions:

can be solved to give μ_{0}^{2} and μ_{1}^{2} in terms of the quartic coefficients:

$$
\begin{align*}
& \mu_{0}^{2}=\frac{1}{2 w_{S}}\left[\lambda_{4}\left(w_{2}^{2}-3 w_{1}^{2}\right) w_{2}-\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right)\left(w_{1}^{2}+w_{2}^{2}\right) w_{S}-2 \lambda_{8} w_{S}^{3}\right], \tag{4.2a}\\
& \mu_{1}^{2}=-\frac{1}{2}\left[2\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)+6 \lambda_{4} w_{2} w_{S}+\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right) w_{S}^{2}\right], \tag{4.2b}\\
& \mu_{1}^{2}=-\frac{1}{2}\left[2\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)-3 \lambda_{4}\left(w_{2}^{2}-w_{1}^{2}\right) \frac{w_{S}}{w_{2}}+\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right) w_{S}^{2}\right] . \tag{4.2c}
\end{align*}
$$

Eqs (4.2b) and (4.2c) obtained dividing by w_{1} and w_{2} respectively
Consistency requires:

$$
\lambda_{4}=4 A-2(C+\bar{C}+D)-E_{1}-E_{2}+E_{4}=0
$$

- for $w_{1}=0$ the corresponding derivative is zero - no clash
- or else $\quad \lambda_{4}\left(3 w_{2}^{2}-w_{1}^{2}\right) w_{S}=0 \quad$ i. e., $\quad \lambda_{4}=0 \quad$ or $w_{1}= \pm \sqrt{3} w_{2}$ or $w_{S}=0$.
- for $w_{S}=0$. special condition: $\lambda_{4} w_{2}\left(3 w_{1}^{2}-w_{2}^{2}\right)=0$, i. e., in addition:

$$
\lambda_{4}=0 \text { or } w_{2}= \pm \sqrt{3} w_{1}, \text { or else } w_{2}=0
$$

SSB, real vacua, residual symmetries

Derman, Tsao Phys. Rev. D20 (1979) 1207:
($\mathrm{x}, \mathrm{x}, \mathrm{x}$) S_{3};
($\mathrm{x}, \mathrm{x}, \mathrm{y}$) S_{2};
$(x, y, z)=(x,-x, 0) S_{2}$
$\lambda_{4} \neq 0$

Translation into doublet singlet notation

$$
\begin{aligned}
& \left.(\mathrm{x}, \mathrm{x}, \mathrm{x}) \quad \rightarrow \quad\left(0,0, \omega_{S}\right) \quad w_{1}=0 \text { (also verifies } w_{1}= \pm \sqrt{3} w_{2}\right) \\
& (\mathrm{x},-\mathrm{x}, 0) \rightarrow\left(\omega_{1}, 0,0\right) \quad w_{S}=0 \text { together with } w_{2}=0 \text {. } \\
& (x, 0,-\mathrm{x}) \rightarrow\left(\omega_{1}, \omega_{2}, 0\right) \quad w_{S}=0 \text { together } w_{2}=\sqrt{3} w_{1} \\
& (0, \mathrm{x},-\mathrm{x}) \quad \rightarrow \quad\left(\omega_{1}, \omega_{2}, 0\right) \quad w_{S}=0 \text { together with } w_{2}=-\sqrt{3} w_{1}
\end{aligned}
$$

(x, x, y) translates into $\left(0, w_{2}, w_{S}\right)$; consistency condition: $w_{1}=0$.
(x, y, x) translates into $\left(w_{1},-\frac{1}{\sqrt{3}} w_{1}, w_{S}\right)$; consistency condition: $w_{1}=-\sqrt{3} w_{2}$
(y, x, x) translates into $\left(w_{1}, \frac{1}{\sqrt{3}} w_{1}, w_{S}\right)$; consistency condition: $w_{1}=\sqrt{3} w_{2}$

For $\quad \lambda_{4}=0 \quad \mathrm{SO}(2)$ symmetry implies $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ possible solution

$$
\begin{aligned}
& \lambda_{a}=\lambda_{5}+\lambda_{6}+2 \lambda_{7}, \\
& \lambda_{b}=\lambda_{5}+\lambda_{6}-2 \lambda_{7} .
\end{aligned}
$$

Complex vacua

Table 2: Complex vacua. Notation: $\epsilon=1$ and -1 for C-III-d and C-III-e, respectively; $\xi=\sqrt{-3 \sin 2 \rho_{1} / \sin 2 \rho_{2}}, \psi=\sqrt{\left[3+3 \cos \left(\rho_{2}-2 \rho_{1}\right)\right] /\left(2 \cos \rho_{2}\right)}$. With the constraints of Table 4 the vacua labelled with an asterisk $\left(^{*}\right)$ are in fact real.

	IRF (Irreducible Rep.)	RRF (Reducible Rep.)
	w_{1}, w_{2}, w_{S}	$\rho_{1}, \rho_{2}, \rho_{3}$
C-I-a	$\hat{w}_{1}, \pm i \hat{w}_{1}, 0$	$x, x e^{ \pm \frac{2 \pi i}{3}}, x e^{\mp \frac{2 \pi i}{3}}$
C-III-a	$0, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$y, y, x e^{i \tau}$
C-III-b	$\pm i \hat{w}_{1}, 0, \hat{w}_{S}$	$x+i y, x-i y, x$
C-III-c	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0$	$x e^{i \rho}-\frac{y}{2},-x e^{i \rho}-\frac{y}{2}, y$
C-III-d, e	$\pm i \hat{w}_{1}, \epsilon \hat{w}_{2}, \hat{w}_{S}$	$x e^{i \tau}, x e^{-i \tau}, y$
C-III-f	$\pm i \hat{w}_{1}, i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho} \pm i x, r e^{i \rho} \mp i x, \frac{3}{2} r e^{-i \rho}-\frac{1}{2} r e^{i \rho}$
C-III-g	$\pm i \hat{w}_{1},-i \hat{w}_{2}, \hat{w}_{S}$	$r e^{-i \rho} \pm i x, r e^{-i \rho} \mp i x, \frac{3}{2} r e^{i \rho}-\frac{1}{2} r e^{-i \rho}$
C-III-h	$\sqrt{3} \hat{w}_{2} e^{i \sigma_{2}}, \pm \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$\begin{aligned} & x e^{i \tau}, y, y \\ & y, x e^{i \tau}, y \end{aligned}$
C-III-i	$\begin{aligned} & \sqrt{\frac{3\left(1+\tan ^{2} \sigma_{1}\right)}{1+9 \tan ^{2} \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \pm & \hat{w}_{2} e^{-i \arctan \left(3 \tan \sigma_{1}\right)}, \hat{w}_{S} \end{aligned}$	$\begin{aligned} & x, y e^{i \tau}, y e^{-i \tau} \\ & y e^{i \tau}, x, y e^{-i \tau} \end{aligned}$
C-IV-a*	$\hat{w}_{1} e^{i \sigma_{1}}, 0, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{i \rho}+x, x$
C-IV-b	$\hat{w}_{1}, \pm i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{-i \rho}+x,-r e^{i \rho}+r e^{-i \rho}+x$
C-IV-c	$\begin{gathered} \sqrt{1+2 \cos ^{2} \sigma_{2}} \hat{w}_{2} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho}+r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x \\ r e^{i \rho}-r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x,-2 r e^{i \rho}+x \end{gathered}$
C-IV-d*	$\hat{w}_{1} e^{i \sigma_{1}}, \pm \hat{w}_{2} e^{i \sigma_{1}}, \hat{w}_{S}$	$r_{1} e^{i \rho}+x,\left(r_{2}-r_{1}\right) e^{i \rho}+x,-r_{2} e^{i \rho}+x$
C-IV-e	$\begin{gathered} \sqrt{-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{2}}+r e^{i \rho_{1}} \xi+x, r e^{i \rho_{2}}-r e^{i \rho_{1}} \xi+x \\ -2 r e^{i \rho_{2}}+x \end{gathered}$
C-IV-f	$\begin{gathered} \sqrt{2+\frac{\cos \left(\sigma_{1}-2 \sigma_{2}\right)}{\cos \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{1}}+r e^{i \rho_{2}} \psi+x \\ r e^{i \rho_{1}}-r e^{i \rho_{2}} \psi+x,-2 r e^{i \rho_{1}}+x \end{gathered}$
C-V*	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$x e^{i \tau_{1}}, y e^{i \tau_{2}}, z$

Constraints

Vacuum	Constraints
C-I-a	$\mu_{1}^{2}=-2\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{1}^{2}$
C-III-a	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=\frac{4 \cos \sigma_{2} \hat{w}_{S}}{\omega_{7}} \lambda_{7} \end{gathered}$
C-III-b	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \\ \lambda_{4}=0 \end{gathered}$
C-III-c	$\begin{gathered} \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right), \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0 \end{gathered}$
C-III-d,e	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{S}^{2}}-\epsilon \lambda_{4} \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)\left(\hat{w}_{1}^{2}-3 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2}^{2}} \\ -\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\epsilon \lambda_{4} \frac{\hat{w}_{S}\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)}{4 \hat{w}_{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{7}=\frac{\hat{w}_{1}^{2}-\hat{w}_{2}^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right)-\epsilon \frac{\left(\hat{w}_{1}^{2}-5 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2} \hat{w}_{S}} \lambda_{4} \end{gathered}$
C-III-f,g	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b}\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \lambda_{4}=0 \end{gathered}$
C-III-h	$\begin{gathered} \mu_{0}^{2}=-2 \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-4\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2} \\ \lambda_{4}=\mp \frac{2 \cos \sigma_{2} \hat{w}_{S}}{\hat{w}_{2}} \lambda_{7} \end{gathered}$
C-III-i	

Vacuum	Constraints
C-IV-a*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$
C-IV-b	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{S}^{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=-\frac{\left(\hat{w}_{1}^{2} \hat{w}_{2}^{2}\right)}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-c	$\begin{gathered} \mu_{0}^{2}=2 \cos ^{2} \sigma_{2}\left(1+\cos ^{2} \sigma_{2}\right)\left(\lambda_{2}+\lambda_{3}\right) \frac{\hat{w}_{2}^{4}}{\hat{w}_{S}^{2}} \\ -\left(1+\cos ^{2} \sigma_{2}\right)\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{\lambda} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left[2\left(1+\cos ^{2} \sigma_{2}\right) \lambda_{1}-\left(2+3 \cos ^{2} \sigma_{2}\right) \lambda_{2}-\cos ^{2} \sigma_{2} \lambda_{3}\right] \hat{w}_{2}^{2} \\ \left.\lambda_{4}=-\frac{2 \cos _{2} \sigma_{2} \hat{w}_{2}}{\hat{w}_{S}}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2} \lambda_{3}\right), \lambda_{7}=\frac{\cos ^{2} \sigma_{2} \hat{w}_{2}^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-d*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$
C-IV-e	$\begin{gathered} \mu_{0}^{2}=\frac{\sin ^{2}\left(2\left(2 \sigma_{1}-\sigma_{2}\right)\right)}{\sin 2\left(\sigma_{1}\right)}\left(\lambda_{2}+\lambda_{3} \frac{\hat{w}_{2}^{4}}{\hat{w}_{S}^{2}}\right. \\ -\frac{1}{2}\left(1-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{2}}\right)\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(1-\frac{\sin 2 \sigma_{1}}{\sin 2 \sigma_{1}}\right)\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=-\frac{\sin \left(2\left(\sigma_{2}-\sigma_{2}\right) \hat{w}_{2}^{2}\right.}{\sin 2 \sigma_{1} \hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-f	
C-V*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$

The case of $\lambda_{4}=0$

Potential has additional continuous $\mathbf{S O (2)}$ symmetry

$$
\lambda_{4}=4 A-2(C+\bar{C}+D)-E_{1}-E_{2}+E_{4}=0
$$

Derman (1979), "unnatural"
Spontaneous breaking of this SO(2) symmetry leads to massless particles

Possible solution: break the symmetry softly, the most general quadratic potential can be written:

$$
\begin{aligned}
V & =\mu_{0}^{2} h_{S}^{\dagger} h_{S}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)+\mu_{2}^{2}\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\frac{1}{2} \nu^{2}\left(h_{2}^{\dagger} h_{1}+h_{1}^{\dagger} h_{2}\right) \\
& +\mu_{3}^{2}\left(h_{S}^{\dagger} h_{1}+h_{1}^{\dagger} h_{S}\right)+\mu_{4}^{2}\left(h_{S}^{\dagger} h_{2}+h_{2}^{\dagger} h_{S}\right)
\end{aligned}
$$

Complex vacua, Spontaneous CP Violation

Table 1: Spontaneous CP violation

Vacuum	λ_{4}	SCPV	Vacuum	λ_{4}	SCPV	Vacuum	λ_{4}	SCPV
C-I-a	X	no	C-III-f,g	0	no	C-IV-c	X	yes
C-III-a	X	yes	C-III-h	X	yes	C-IV-d	0	no
C-III-b	0	no	C-III-i	X	no	C-IV-e	0	no
C-III-c	0	no	C-IV-a	0	no	C-IV-f	X	yes
C-III-d,e	X	no	C-IV-b	0	no	C-V	0	no

Next we present a few illustrative examples. Important tool:
most general CP transformation

$$
\Phi_{i} \xrightarrow{\mathrm{CP}} U_{i j} \Phi_{j}^{*}
$$

together with assumption that vacuum is invariant

$$
\mathrm{CP}|0\rangle=|0\rangle
$$

leads to the following condition
$\mathcal{L}(U \phi)=\mathcal{L}(\phi)$

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle
$$

Vacuum C-I-a

$$
x, x e^{\frac{2 \pi i}{3}}, x e^{-\frac{2 \pi i}{3}}
$$

geometrical phases
calculable non-trivial phases, fixed by symmetry of \mathbf{V}, no explicit dependence on parameters of the potential

$$
\begin{gathered}
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle \\
U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

CP is conserved
For new models with geometrical phases and the possibility of having CP violation with geometrical phases see Ivo de Medeiros Varzielas, JHEP 1208 (2012) 055

Vacuum C-III-c

$\hat{w}_{1} e^{\imath \sigma_{1}}, \hat{w}_{2} e^{\imath \sigma_{2}}, 0 \quad \lambda_{4}=0$
$\mathrm{SO}(2)$ rotation

$$
\begin{gathered}
\binom{h_{1}^{\prime}}{h_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \tan 2 \theta=\frac{\hat{w}_{1}^{2}-\hat{w}_{2}^{2}}{2 \hat{w}_{1} \hat{w}_{2} \cos \sigma} . \\
\left(a e^{i \delta_{1}}, a e^{i \delta_{2}}, 0\right)
\end{gathered}
$$

followed by overall phase rotation

$$
\left(a e^{i \delta}, a e^{-i \delta}, 0\right)
$$

symmetry for interchange: $\quad h_{1}^{\prime} \leftrightarrow h_{2}^{\prime}$

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle
$$

$$
\begin{aligned}
&\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a e^{i \delta} \\
a e^{-i \delta} \\
0
\end{array}\right)=\left(\begin{array}{c}
a e^{i \delta} \\
a e^{-i \delta} \\
0
\end{array}\right) \quad \text { CP is conserved } \\
& U=e^{i\left(\delta_{1}+\delta_{2}\right)}\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle
$$

Very simple and powerful relation. However, in some cases construction of matrix U may not be obvious

Simple Alternative Test

- Go to a basis where only one Higgs field acquires a vev different from zer and real
- If the coefficients of scalar potential can be made real by rephasing the fields with zero vev, there is no CP violation

Inspect the potential

$$
\begin{aligned}
& \text { C-III-C vaccum } \\
& \left(\begin{array}{c}
h_{1}^{\prime} \\
h_{2}^{\prime} \\
h_{S}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{N_{1}}\left(\hat{w}_{1}\right. & \hat{w}_{2} & \left.\hat{w}_{S}\right) \\
\frac{1}{N_{2}} & \hat{w}_{2} & -\hat{w}_{1} \\
N_{3} & 0 \\
\left(w_{1}\right. & w_{2} & X
\end{array}\right)\left(\begin{array}{ccc}
e^{-i \sigma_{1}} & 0 & 0 \\
0 & e^{-i \sigma_{2}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{S}
\end{array}\right)
\end{aligned}
$$

Example T. D. Lee Model, 2HDM

$$
\begin{aligned}
V(\phi) & =-\lambda_{1} \phi_{1}^{\dagger} \phi_{1}-\lambda_{2} \phi_{2}^{\dagger} \phi_{2} \\
& +A\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+B\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+C\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\bar{C}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right) \\
& +\frac{1}{2}\left[\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(D \phi_{1}^{\dagger} \phi_{2}+E \phi_{1}^{\dagger} \phi_{1}+F \phi_{2}^{\dagger} \phi_{2}\right)+\text { h.c. }\right] .
\end{aligned}
$$

CP is violated spontaneously by vevs of the form $\left(\rho_{1} e^{i \theta}, \rho_{2}\right)$,
in the region of parameters
of the potential where ρ_{1} and ρ_{2} are different from zero and $e^{i \theta} \neq 1$
Change of basis:

$$
\binom{\phi_{1}^{\prime}}{\phi_{2}^{\prime}}=\frac{1}{v}\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \chi}
\end{array}\right)\left(\begin{array}{cc}
\rho_{1} & \rho_{2} \\
-\rho_{2} & \rho_{1}
\end{array}\right)\left(\begin{array}{cc}
e^{-i \theta} & 0 \\
0 & 1
\end{array}\right)\binom{\phi_{1}}{\phi_{2}} \quad v^{2}=\rho_{1}^{2}+\rho_{2}^{2}
$$

bilinear part of the potential is only real if $\sin \chi=0$ or $\lambda_{1}=\lambda_{2}$.
in either case requiring the quartic part of the potential to be real leads to special conditions on the parameters and therefore does not hold in general

Models with Two Higgs doublets

$$
\left(\begin{array}{cc}
\rho_{1} & \rho_{2} \\
-\rho_{2} & \rho_{1}
\end{array}\right)\left(\begin{array}{cc}
e^{-i \theta} & 0 \\
0 & 1
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}
$$

"the Higgs basis" (up to a sign ambiguity)

Models with more than two Higgs doublets (n)

$$
\left(\begin{array}{c}
h_{1}^{\prime} \\
h_{2}^{\prime} \\
h_{S}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{N_{1}}\left(\hat{w}_{1}\right. & \hat{w}_{2} & \left.\hat{w}_{S}\right) \\
\frac{1}{N_{2}}\left(\hat{w}_{2}\right. & -\hat{w}_{1} & 0) \\
\frac{1}{N_{3}}\left(\hat{w}_{1}\right. & \hat{w}_{2} & X)
\end{array}\right)\left(\begin{array}{ccc}
e^{-i \sigma_{1}} & 0 & 0 \\
0 & e^{-i \sigma_{2}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{S}
\end{array}\right)
$$

there are infinite bases where only one doublet acquires vev different from zero, freedom associated to a U matrix ($\mathrm{n}-1$) $\mathrm{x}(\mathrm{n}-1)$
each choice is "a" different Higgs basis

- an SMA basis
(SMA - standard model aligned)

Final Remarks

Models with three Higgs doublets have rich phenomenology

Aims and challenges

Exploit possible dark matter candidates in this context, beyond cases where the singlet plays the role of the SM Higgs doublet

Study how to generate realistic fermion masses and mixing with the fermions transforming non trivially under S_{3}

Look for viable models in the context of spontaneous CP violation

Look for interesting scenarios with the potential of being tested at the LHC

