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Two Higgs doublet Models are very well motivated 
as shown in the previous talk by G. C. Branco

and have very interesting phenomenological implications
Despite several good motivations,

there is the need to suppress potentially dangerous FCNC: 

NFC

Without HFCNC

Weinberg, Glashow (1977);  Paschos (1977)

With HFCNC

aligned two Higgs doublet model Pich, Tuzon (2009)

assume existence of suppression factors, e.g., suppression by small elements 
of VCKM: Minimal Flavour Violation 

Branco, Grimus, Lavoura (1996)

BGL models, gBGL models



Notice that:
NFC, i.e., natural flavour conservation with MHDM, consists on
imposing some extra symmetry on the Lagrangian constraining the Yukawa 
interactions of the neutral scalars in such a way that there are no FCNC

The only way is to ensure that only one Higgs doublet has Yukawa 
interactions with SM quark singlets of a given charge:
Glashow, Weinberg , Phys.Rev. D15 (1977) 1958; E.A. Paschos, Phys.Rev. D15 (1977) 1966

The case of two Higgs doublets with an exact reflection symmetry

No CP violation in the scalar sector, neither explicit nor spontaneous. 
At least three Higgs doublets required for CP violation in the scalar sector in 
the context of NFC with exact reflection symmetry

52 G.C. Branco et al. / Physics Reports 516 (2012) 1–102

5.6.1. Higgs family symmetries
Higgs Family symmetries have a long history in the 2HDM. Glashow and Weinberg [27] and, separately, Paschos [28]

have introduced the discrete Z2 symmetry

Z2 : �1 ! �1, �2 ! ��2, (157)

and extended it to the quark sector in order to avoid flavour-changing neutral currents. This symmetry enforces m2
12 = 0

and �6 = �7 = 0.
We may consider the Z2 symmetry in a different scalar basis,

� 0

1 = 2�1/2 (�1 + �2) ,

� 0

2 = 2�1/2 (�1 � �2)
(158)

obtaining the interchange symmetry

⇧2 : � 0

1 $ � 0

2. (159)

This is equivalent to applying Eq. (148) in the form

1
2

✓
1 1
1 �1

◆ ✓
1 0
0 �1

◆ ✓
1 1
1 �1

◆
=

✓
0 1
1 0

◆
. (160)

The ⇧2 symmetry enforcesm2
22 = m2

11, Im
�
m2

12
�

= 0, �2 = �1, �7 = �⇤

6, and Im (�5) = 0. Thus,

• the constraints obtained by applying Z2 are apparently different from those obtained by applying ⇧2;
• however, the two symmetries are equivalent, since applying Z2 in a given basis is the same as applying ⇧2 in a basis

obtained from the first one through the transformation (158);
• the Z2-symmetric and ⇧2-symmetric potentials must lead to exactly the same physical predictions – we say that they

are in the same class – because physical observables cannot depend on the basis in which we choose to write the Higgs
doublets.

Eq. (148) constitutes a conjugacy relation within the group U(2). Thus, HF symmetries associated with matrices S and
S 0 which are in the same conjugacy class of U(2) correspond to the same model. Moreover, symmetries S and S 0 related by
an overall phase transformation (S 0

= ei⇠ S) also lead to the same physics, since that overall phase transformation does not
affect the bilinears �

Ñ
a�b.

Ferreira and Silva [404] have shown that there are only two classes of HF symmetries generated by one single generator
in the scalar potential of the 2HDM: the discrete Z2 symmetry and a continuous U(1) symmetry

�1 ! e�i✓�1, �2 ! ei✓�2, (161)

for an arbitrary ✓ . This U(1) symmetry (suitably extended to the quark sector) was first introduced by Peccei and Quinn [12]
in connection with the strong-CP problem. The Higgs potential invariant under U(1) has m2

12 = 0 and �5 = �6 = �7 = 0
and is therefore also invariant under Z2.

It is important to note that, for instance, a potential invariant under

S2/3 =

✓
e�i2⇡/3 0

0 ei2⇡/3

◆
(162)

is automatically invariant under the full Peccei–Quinn U(1) group. Even though we only want to enforce a symmetry group
Z3 = {S2/3, S22/3, S32/3 = 1}, we automatically obtain a potential with full U(1) symmetry. In fact, invariance under any Zn
group, with n > 2, will lead us to a U(1)-invariant potential. Another possibility of obtaining the same result is to choose
an irrational multiple of ⇡ for the angle ✓ in Eq. (161). This is an important point because continuous symmetries, when
broken, may lead to massless scalars (Goldstone bosons). An innocent-looking discrete symmetry may have the same effect
on the scalar potential as a continuous symmetry and therefrom arises the possibility of undesired massless scalars.

We must however point out two caveats to the discussion in the preceding paragraph. The first caveat is that we are
assuming a renormalizable theory, from which we exclude all terms in the potential with dimension larger than four. If,
however, we take the reasonable view that the 2HDM is just the low-energy limit of a larger theory, and decide to include
effective operators of dimensions five, six, or above, then the equivalence between different symmetries (such as the Zn
with n > 2, all of them leading to the same U(1)-invariant scalar potential) might no longer be verified. The second caveat
pertains to the fermionic sector: given a specific symmetry of the scalar sector, there are in general many ways of extending
that symmetry to the fermion sector, often with completely different effects on the Yukawa terms. We shall return to this
issue in more detail in Section 5.12.

One may also impose a symmetry with multiple generators on the scalar potential. For example, the scalar potential
invariant under both Z2 and ⇧2 in the same basis has m2

11 = m2
22, m

2
12 = 0, �1 = �2, and �6 = �7 = Im (�5) = 0. Thus,
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Motivation for three Higgs doublets
Three fermion generations may suggest three doublets
Interesting scenario for dark matter

Rich phenomenology

       Possibility of having a discrete symmetry and still having
spontaneous CP violation  

Motivation for imposing discrete symmetries
Symmetries reduce the number of free parameters 

leading to (testable) predictions 

Symmetries are needed to stabilise dark matter

Symmetries help to control HFCNC

Example: NFC, no HFCNC due to Z2 symmetry(ies)

Example: MFV suppression of HFCNC, BGL models



Three Higgs Doublets NFC and CP Violation
Early motivation, Weinberg 1976, NFC with explicit CP violation and four quarks

Phys.Rev.Lett. 37 (1976) 657

NFC, at most two Higgs doublets couple to the quarks: one 
couples to the up sector only, the other to the down sector only 
Lagrangian invariant under separate reflections under which any 
one of the doublets changes sign  

There is explicit CP violation if the product of the three complex coefficients is not real

Three independent phases in V, two relative phases in the vevs

CP violation in charged Higgs mediated flavour currents



Three Higgs Doublets NFC and CP Violation

Now we  know that VCKM is complex

Arbitrary number of quark generations, spontaneous CP breaking 
with NFC: a minimal number of three Higgs doublets required

Gustavo C. Branco  Phys.Rev. D22 (1980) 2901

VCKM is real and there is no CP violation mediated by charged 
gauge bosons 

This fact rules out SCPV with NFC: whenever only one Higgs doublet 
gives mass to each quark sector the phase of its vev can be rotated away 
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Abstract

We carefully analyse the present experimental evidence for a com-
plex CKM matrix, even allowing for New Physics contributions to
ϵK , aJ/ΨKS

, ∆MBd
, ∆MBs

, and the ∆I = 1/2 piece of B → ρρ and
B → ρπ. We emphasize the crucial rôle played by the angle γ in
both providing irrefutable evidence for a complex CKM matrix and
placing constraints on the size of NP contributions. It is shown that
even if one allows for New Physics a real CKM matrix is excluded at a
99.92% C.L., and the probability for the phase γ to be in the interval
[−170◦;−10◦] ∪ [10◦; 170◦] is 99.7%.

1 Introduction

At present, the Cabibbo–Kobayashi–Maskawa (CKM) [1] mechanism for
flavour mixing and CP violation is in agreement with all available experimen-
tal data. This is a remarkable success, since it is achieved with a relatively
small number of parameters. Once the experimental values of |Vus| , |Vcb| and
|Vub| are used to fix the angles θ12, θ23 and θ13 of the standard parametriza-
tion, one has to fit, with a single parameter δ13, the experimental values of
a large number of quantities, including ϵK , sin (2β) , ∆MBd

, as well as the
bound on ∆MBs

. This impressive result is nicely represented in the usual
unitarity triangle fits [2]. In view of the remarkable success of the Standard
Model, it is plausible that the CKM mechanism gives the dominant contri-
bution to mixing and CP violation at low energies, although there is still
significant room for New Physics (NP).

1On leave of absence from Departamento de F́ısica and Centro de F́ısica Teórica de
Part́ıculas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa,
Portugal.
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, the inert Higgs, does not couple to matter and acquires no vev, NFC

Detection is difficult, but possible, and is summarized in Ref. [24].
In the general 2HDM, one has the same processes as in the MSSM, but there is now

a much larger parameter space. The quark-annihilation process has precisely the same
form as in the MSSM, but now one need no longer have a small cos(α− β), and thus the
ZhA coupling can be larger than in the MSSM. This is encouraging and leads to some
interesting possibilities. For example, in the lepton-specific model and for tan β > 2,
the dominant decay of the A is into τ+τ−, and for much of parameter space the decay
of the light Higgs is also into τ+τ−. Thus one might have four-τ events with branching
ratios as high as tens of femtobarns. This signature needs further investigation. A study
of pair production of the lightest Higgs bosons in the type II model was carried out in
Refs. [157, 158, 159]. They showed that while pair production in the Standard Model is
very difficult to observe at the LHC, it can be bigger in the type II model, and they also
show that there can be sensitivity to the quartic couplings, which could help distinguish
the model from the MSSM.

For the gluon-initiated process, triangle diagrams produce a single h/H/A, real or
virtual, which then converts into a pair of scalars. Alas, this process is proportional to
trilinear scalar couplings and, while these are known in the MSSM, they are unknown
in the general 2HDM. The box diagrams which give gluon fusion into two scalars will
be similar to those of the MSSM. Thus all one can really say is that the rate could be
substantially larger than in the MSSM, but accurate predictions are impossible.

2.3 The inert Higgs model

The inert Higgs model is a 2HDM with an unbroken Z2 symmetry under which one of the
doublets transforms non-trivially, viz. Φ2 → −Φ2, and all other SM fields are invariant.
This ‘parity’ imposes natural flavour conservation. Initially a similar model [160] was
introduced to explain neutrino masses. More recently such a model was proposed in the
context of radiative neutrino masses [161] and also to attack the naturalness problem
of the SM by allowing for a larger mass (between 400 and 600 GeV) for the SM Higgs
while keeping full consistency with electroweak precision tests [162], thus solving the ‘little
hierarchy’ problem [163]. Even more recently, an inert doublet was introduced to allow
for the possibility of several mirror families of fermions [164].

In the inert Higgs model the Higgs doublet Φ2—the inert doublet—does not couple
to matter and acquires no vacuum expectation value, leaving the Z2 symmetry unbroken.
The scalar spectrum consists of the SM-like Higgs obtained from Φ1 and one charged and
two neutral states from Φ2. Since the Z2 is unbroken the lightest inert particle will be
stable and will contribute to the dark matter density [161, 162]. This possibility has been
analysed by several authors [165, 166, 167, 168, 169, 170, 171, 172]. The early cosmological
evolution of the model has been discussed by Ginzburg et all in [173].

The scalar potential is the one in eq. (2) but with m2
12 = 0. The asymmetric phase,

where 〈
φ0
1

〉
=

v√
2

and
〈
φ0
2

〉
= 0, (25)

corresponds to a sizeable region of parameter space [161, 162] and the scalar masses are
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The Z2 symmetry is left unbroken, as a result the lightest inert particle will be 
stable and will contribute to dark matter density

Notice that this is different from going to the Higgs basis

Inert scalars can be produced at colliders through their couplings to the EW 
gauge bosons subject to Z2 constraints and participate in cubic and quartic 

Higgs couplings

E. Ma;
L.L. Honorez, E. Nezri, J. F. Oliver, M. H. G. Tytgat , 2006   



The Inert doublet model has been extended by several 
authors to include three Higgs Doublets 

B. Grzadkowski, O. M. Ogreid, P. Osland, G.M. Pruna , A. Pukhov, M. Purmohammadi

 Possibility of having  CP Violation and a stable DM candidate 

A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S.F. King, S. Moretti, D. Rojas, D. 
Sokołowska

Many works on Dark matter with an Inert Higgs doublet

N. Darvishi, Mikael Dhen, I. F. Ginzburg, Thomas Hambye, K.A. Kanishev, M. Krawczyk, 
D. Sokolowska, P. Swaczyna, B. Swiezewska, many many more authors



How can we test whether or not there is SCPV in multi-
Higgs models?

Important Tool
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
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the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:
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with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:
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implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =
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£(Uc~) = £(q~), (3) 

then that would be a sure indication that there is spon- 
taneous T violation. 

It  has been emphasized some time ago [ 1 ] that in 
the framework of an SU(2) X U(1) gauge theory with 
scalar doublets, a minimum of two scalar multiplets 
are required in order to obtain spontaneous T viola- 
tion. In the case of  two scalar doublets, the most gen- 
eral Higgs potential can be written 

V(~I, ~2) = VO + [;kl ( ~ q ~ 2 ) ( ~ 2 )  + ~ 2 ( ~  ~ 2 ) ( ~  ~1) 

+ X3(¢I~2)(~t24~2) + h .c . l ,  (4) 

where V 0 denotes the part of the potential without 
any phase dependence. Since we are interested in 
spontaneously broken T invariance, we will always 
assume real coupling constants. For an appropriate 
finite range of  the parameters of  the scalar potential, 
the minimum is at: 

COS 0 = --(4XlOlO2)-l()t202 + X302), (5) 

where (014~010) --- v i =Ioil exp(i0i) and 0 = 02 - 01. 
In eq. (5), the above mentioned dependence of 0 on 
the coupling constants of  the scalar potential is illu- 
strated. In this case, it is easily seen that Tis  sponta- 
neously broken. Indeed in this example, there is no 
matrix satisfying simultaneously eqs. (2), (3). This is 
clearly the simplest example of spontaneous T viola- 
tion. However, the phase 0 is not a "calculable" quan- 
tity. In this note a "calculable phase" refers to a 
phase whose value is independent of  the coupling 
constants of  the scalar potential and therefore stable 
against radiative corrections [5]. In the case of  two 
Higgs doublets, the only way of  having a calculable 
phase in the sense defined above, is by setting X 2 = X 3 
= 0, thus implying 0 = rr/2. Assuming these coupling 
constants equal to zero is natural in the technical 
sense, since then the potential acquires an extra sym- 
metry under which: 

(ki ~ Gi/c~l" , (6) 

where 

o:(; 2) 
This transformation G, needed in order to implement 
a calculable 0 phase, supplies us with the T transfor- 

mation defined in eq. (4) * 1 : 

( l  i([011 ( [o  11 

- 1  !\1o21 exp(irr/2)) = \1o21 exp(irr/2) ) '  (8) 

and therefore implies a T-conserving solution. From 
the previous considerations, we conclude that more 
than two scalar doublets have to be introduced in 
order to achieve both calculability and spontaneous 
T violation * 1. It is also clear that calculability re- 
quires the presence of an extra symmetry in the scalar 
potential. This requirement was necessary in the case 
of  two scalar doublets and it applies a for t ior i  to the 
case of  more than two scalar doublets. 

Let us consider first the case where the scalar po- 
tential is invariant under an abelian group. We will 
show that then calculable phases always correspond 
to T conservation. In the case of  an abelian group, we 
can always choose a special basis where each scalar 
doublet ~j (] = 1 ... . .  n) transforms as a one-dimension- 
al representation of  the group. Then the unitary matrix 

fexp(-2i01) )/  
U = " . .  , (9) 

exp( -2 i0  n 

obviously satisfies eq. (2) and, as we will see, it corre- 
sponds to a symmetry of the potential. In order to 
achieve calculability, each individual term I s of  the 
scalar potential, together with its hermitian conjugate, 
has to be minimized separately with respect to the 
0 i phases. The minimization of  each function .2 
cos [0(Io)], where 0(I~) denotes the linear combina- 
tion of Oi's associated with the fields occurring in I s, 
trivially gives O(Ic~ ) -- 0, 7. In this case the transforma- 
tion (9) corresponds to a symmetry of the scalar po- 
tential and the vacuum is Tinvariant. 

In view of the previous result, we consider next the 
case of  non-abelian symmetries. In the following, we 
will confine ourselves to three Higgs doublets and for 
simplicity we first analyse the case of an S 3 symmetry,  
with the scalar doublets transforming as a three-dimen- 
sional reducible representation. The most  general re- 
normalizable scalar potential can be written [6] as, 

,1 We assume that the scalar potential has no (discrete or 
continuous) accidental symmetries. 

,2 The fact that only functions of this type appear is a conse- 
quence of having assumed real coupling constants. 
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G. C. Branco, G. M. Gerard and W. Grimus (1984)

Symmetries, if present, play a crucial role

However, in some cases construction of matrix U may not be obvious

Very simple and powerful relation



Three Higgs doublet models with S3 Symmetry
(extended to flavour)

many works aiming at explaining neutrino masses and  
leptonic mixing

a lot of work already done analysing the Higgs potential

inert dark matter candidates from S3 3HDM considered 

 Interesting open questions still remain!

Despite

Ma, Koide, Kubo, Mondragon, Rodriguez-Jauregui, Chen, Wolfenstein, Mohapatra, Nasri,
Yu, Harrison, Scott, Frigerio, Grimus, Lavoura, Branco, Silva-Marcos…  

Derman, Tsao, Pakvasa, Sugawra, Wyler, Branco, Gerard, Grimus, Das, Dey, Bhattacharyya, Leser, 
Pas, Ivanov, Nishi…  

Fortes, Machado, Montano, Pleitez…  

Harari, Haut, Weyers, Meloni, Teshima, Melic, Canales, S Salazar, Velasco-Sevilla ,…  

several works addressing masses and mixing in the quark sector 



The Scalar potential
S3 is the permutation group involving three objects, 

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

remains invariant, it splits into two irreducible representations, 

Derman, 1979
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doublet and singlet:
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Decomposition into these two irreducible representations
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Harrison, Perkins and Scott, 1999

-

(F =)

The matrix F diagonalizes the democratic matrix , �

� =

0

@
1 1 1
1 1 1
1 1 1

1

A

The democratic mass matrix can be obtained from S3 flavour symmetries

S3L x S3R: Ml = �0 � ; MD = � � ; MR = µ (�+ a 1I)

F 0T

0

@
1 1 1
1 1 1
1 1 1

1

AF 0 =

0

@
0 0 0
0 0 0
0 0 3

1

A

This definition does not treat equally  �1,�2,�3 , they could be interchanged

Very interesting alternative, democratic with phases (USY)



The scalar potential in terms of fields from irreducible representations
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2.3 The potential in terms of the S3 singlet and doublet

In terms of the S
3

singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]
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The vacuum conditions give µ2

0

and µ2

1

in terms of the quartic coe�cients:
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2ṽS

⇥

�2�
8
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+ ṽ2
2
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1

)ṽ
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The two equations (2.21b) and (2.21c) are not automatically consistent.
For the charged sector, the mass-squared matrix is given by
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ṽ
2
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For the CP-odd sector, the mass-squared matrix is given by
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5

no symmetry under the interchange of 

however there is symmetry for  

equivalent doublet representation

Das and Dey

h1 and h2

h1 ! �h1

2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :

1 : �3 =
1p
3
(�a + �b + �c) , (1a)

2 :

✓
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6
(�a + �b � 2�c)

!
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The elements of S3 for this particular doublet representation are given by :
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� sin ✓ cos ✓

◆

,
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◆
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◆

. (2)

The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:

V (�) = V2(�) + V4(�) , (3a)
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In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :

�1 > 0 , (4a)

�8 > 0 , (4b)

�1 + �3 > 0 , (4c)
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has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:
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now there is symmetry for 

In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 
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The second charged Higgs (H+
2 ) along with the massless Goldstone (!+), which will appear as the longitudinal

component of the W -boson, can be obtained by diagonalizing the remaining 2⇥ 2 block :
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with, w0+
2 = sin � w+

1 + cos � w+
2 . (14)

The mass of the second charged Higgs is given by :
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where, the pseudoscalar state (A1) with mass eigenvalue mA1 is defined as :
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2
3 . (19d)

The massless state (h0), as also noted in [36], is given by :
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Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
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= Danger: massless scalar!



Constraining the potential by the vevs

Possibility of SCPV - real parameters

Let us start with real vacua (no CP violation)

Three minimisation conditions:
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(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.
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For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:
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Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2
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See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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i. e., 

NOT FOR DISTRIBUTION JHEP_223P_0116 v1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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respectively

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0



SSB, real vacua, residual symmetries
Derman, Tsao Phys. Rev. D20 (1979) 1207:

(x, x, y) S2 ; (x, y, z) = (x, -x, 0) S2 �4 6= 0

Translation into doublet singlet notation
(x, x, x) S3 ; 

(x, x, x)  ! (0,0,  

!
!
!

!
!
!

!S ) !1 =
p
3!2

!1 =
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �
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was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �
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three possible real solutions [46]:
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on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
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letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �

4

= 0 corresponds to 4A�2(C+C+D)�E
1

+E
2

+E
3

+E
4

= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �

4

6= 0 there were only
three possible real solutions [46]:

• (x, x, x) leaving S
3

unbroken and translating into the doublet-singlet notation as (0, 0, wS);
consistency condition: w

1

= 0 (also verifies w
1

= ±
p
3w

2

).

• (x, x, y) leaving a residual S
2

symmetry. In terms of the reducible representation any
ordering of the vevs is equivalent, however, in the definition of the doublet of S

3

a special
direction is chosen. As a result, di↵erent orderings correspond to di↵erent translations:
(x, x, y) translates into (0, w

2

, wS); consistency condition: w
1

= 0.
(x, y, x) translates into (w

1

,� 1p
3

w
1

, wS); consistency condition: w
1

= �
p
3w

2

.

(y, x, x) translates into (w
1

, 1p
3

w
1

, wS); consistency condition: w
1

=
p
3w

2

.

• (x, y, z) = (x,�x, 0) leaving a residual S
2

symmetry. This is the only possible real solution
with all three vevs di↵erent from each other, unless one imposes 4A� 2(C +C +D)�E

1

+
E

2

+ E
3

+ E
4

= 0 (�
4

= 0). The translation into the irreducible representation is now:
(x,�x, 0) translates into (w

1

=
p
2x, 0, 0): consistency conditions: wS = 0 together with

w
2

= 0.
(x, 0,�x) translates into (w

1

= 1p
2

x,w
2

=
p
3p
2

x, 0); consistency conditions: wS = 0 together

with w
2

=
p
3w

1

.
(0, x,�x) translates into (w

1

= � 1p
2

x,w
2

=
p
3p
2

x, 0); consistency conditions: wS = 0

Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Table 1 summarises all the possible real solutions together with the constraints imposed on the
parameters of the potential. The following abbreviation was introduced:

�a = �
5

+ �
6

+ 2�
7

. (11)

Table 2. Complex vacua. Notation: ✏ = 1 and �1 for C-III-d and C-III-e, respectively;
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, ŵS rei⇢ ± ix, rei⇢ ⌥ ix, 3
2

re�i⇢ � 1

2

rei⇢

C-III-g ±iŵ
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, ŵS rei⇢ + x,�re�i⇢ + x,�rei⇢ + re�i⇢ + x

C-IV-c
p
1 + 2 cos2 �

2

ŵ
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1

ei�1 , ŵ
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2.3. Complex vacuum solutions

In the discussion of possible complex vacua we now adopt a convention where wS is real and
non-negative and take

w
1

= ŵ
1

ei�1 , w
2

= ŵ
2

ei�2 , (12)

with the ŵi also real and non-negative. With this convention wS is also denoted by ŵS . A
systematic analysis of possible solutions was performed in [35]. The results are summarised in
Table 2. The list of the constraints on the potential that are consistent with each solution is not
given here, it can be found in Ref. [35].

Several solutions require �
4

= 0. This is not a new feature, it also happened in the context
of real solutions. For �

4

= 0 the potential acquires a continuous SO(2) symmetry which can be

Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �
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= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �

4

6= 0 there were only
three possible real solutions [46]:
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).
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symmetry. In terms of the reducible representation any
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direction is chosen. As a result, di↵erent orderings correspond to di↵erent translations:
(x, x, y) translates into (0, w

2

, wS); consistency condition: w
1

= 0.
(x, y, x) translates into (w

1

,� 1p
3

w
1

, wS); consistency condition: w
1

= �
p
3w

2

.

(y, x, x) translates into (w
1

, 1p
3

w
1

, wS); consistency condition: w
1

=
p
3w

2

.

• (x, y, z) = (x,�x, 0) leaving a residual S
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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SSB, real vacua, residual symmetries
Derman, Tsao Phys. Rev. D20 (1979) 1207:

(x, x, y) S2 ; (x, y, z) = (x, -x, 0) S2 �4 6= 0

Translation into doublet singlet notation
(x, x, x) S3 ; 

(x, x, x)  ! (0,0,  

!
!
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!
!
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!1 = �
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3!2
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(!1,�

p
3!1,!S)

(!1,
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(x, 0, -x)
(0,x, -x)

(o, w2, wS)(x, x, y)

(x, y, x)

(y, x, x)

For �4 = 0 SO(2) symmetry implies (x, y, z) possible solution
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The different solutions can be summarised as given in Table 1, where the descriptions
in terms of both the reducible- and irreducible-representation frameworks are given. For
the purpose of making this table as well as the corresponding one for complex vacua more
compact, we introduce the abbreviations

λa = λ5 + λ6 + 2λ7, (4.5a)

λb = λ5 + λ6 − 2λ7. (4.5b)

Table 1: Possible real vacua (partly after Derman and Tsao [21]). The classification of
vacua uses the notation R-X-y, where R means that the vacuum is real. The roman
numeral X is the number of constraints on the parameters of the potential that arise from
solving the stationary-point equations. The letter y is used for distinguishing different
vev’s that have the same X, and λa is defined in Eq. (4.5).

Vacuum ρ1, ρ2, ρ3 w1, w2, wS Comment

R-0 0, 0, 0 0, 0, 0 Not interesting

R-I-1 x, x, x 0, 0, wS µ2
0 = −λ8w2

S

R-I-2a x,−x, 0 w, 0, 0 µ2
1 = − (λ1 + λ3)w2

1

R-I-2b x, 0,−x w,
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-I-2c 0, x,−x w,−
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-II-1a x, x, y 0, w, wS µ2
0 =

1
2λ4

w3
2

wS
− 1

2λaw
2
2 − λ8w2

S,
µ2
1 = − (λ1 + λ3)w2

2 +
3
2λ4w2wS − 1

2λaw
2
S

R-II-1b x, y, x w,−w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
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S,
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2 − 3λ4w2wS − 1
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R-II-2 x, x,−2x 0, w, 0 µ2
1 = − (λ1 + λ3)w2

2, λ4 = 0
R-II-3 x, y,−x− y w1, w2, 0 µ2

1 = − (λ1 + λ3) (w2
1 + w2

2),λ4 = 0

R-III ρ1, ρ2, ρ3 w1, w2, wS µ2
0 = −1

2λa(w
2
1 + w2

2)− λ8w2
S,

µ2
1 = − (λ1 + λ3) (w2

1 + w2
2)− 1

2λaw
2
S,

λ4 = 0

One should note that

• Vacuum R-I-1 is a special case of Vacuum R-II-1. In this case, the vacuum value x
is determined by

λ− γ = x2[A+ C + C +D + 2E1 + E2 + E3 + E4]. (4.6)

• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)
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−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.
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w1, w2, wS ρ1, ρ2, ρ3
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C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
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S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Table 3: Constraints on complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e,
respectively. Where two possible signs (± or ∓) are given, they correspond to those of
Table 2. Here, λb is defined in Eq. (4.5).

Vacuum Constraints

C-I-a µ2
1 = −2 (λ1 − λ2) ŵ2

1

C-III-a µ2
0 = −1

2λbŵ
2
2 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 =

4 cosσ2ŵS

ŵ2
λ7

C-III-b µ2
0 = −1

2λbŵ
2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2λbŵ

2
S,

λ4 = 0
C-III-c µ2

1 = −(λ1 + λ3)(ŵ2
1 + ŵ2

2),
λ2 + λ3 = 0,λ4 = 0

C-III-d,e µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2
)2

ŵ2
S

− ϵλ4
(ŵ2

1
−ŵ2

2
)(ŵ2

1
−3ŵ2

2
)

4ŵ2ŵS

−1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− ϵλ4

ŵS(ŵ2
1
−ŵ2

2
)

4ŵ2
− 1

2 (λ5 + λ6) ŵ2
S,

λ7 =
ŵ2

1
−ŵ2

2

ŵ2
S

(λ2 + λ3)− ϵ (ŵ
2
1
−5ŵ2

2
)

4ŵ2ŵS
λ4

C-III-f,g µ2
0 = −1

2λb (ŵ
2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2λbŵ
2
S,λ4 = 0

C-III-h µ2
0 = −2λbŵ2

2 − λ8ŵ2
S,

µ2
1 = −4 (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 = ∓2 cosσ2ŵS

ŵ2
λ7

C-III-i µ2
0 =

16(1−3 tan2 σ1)2
(1+9 tan2 σ1)2

(λ2 + λ3)
ŵ4

2

ŵ2
S

± 6(1−tan2 σ1)(1−3 tan2 σ1)

(1+9 tan2 σ1)
3
2

λ4
ŵ3

2

ŵS

−2(1+3 tan2 σ1)
1+9 tan2 σ1

(λ5 + λ6)ŵ2
2 − λ8ŵ2

S,

µ2
1 = −4(1+3 tan2 σ1)

1+9 tan2 σ1
(λ1 − λ2)ŵ2

2 ∓
(1−3 tan2 σ1)
2
√

1+9 tan2 σ1

λ4ŵ2ŵS

−1
2(λ5 + λ6)ŵ2

S,

λ7 = −4(1−3 tan2 σ1)ŵ2
2

(1+9 tan2 σ1)ŵ2
S

(λ2 + λ3)∓
(5−3 tan2 σ1)ŵ2

2
√

1+9 tan2 σ1ŵS

λ4

h2 would allow to remove the phase of λ7, rendering all coefficients of the potential real.
Another way of achieving the same result would be by rephasing hS alone. Neither of
these transformations alters the specifications of the vacuum corresponding to this case.

Cases C-IV-a, C-IV-d and C-V are listed in Table 2 for completeness and to allow
for an enlightening discussion. Once one takes into consideration the constraints given in
Table 4 they become real.

Solution C-IV-d is more general than solution C-IV-a and reduces to C-IV-a once we
fix w2 = 0, so it suffices to discuss C-IV-d. Both of these require λ4 = 0 and λ7 = 0,
and as a result the potential acquires symmetry for the transformation of h1, h2 and hS

under a unitary transformation of the form U = diag(eiτ , eiτ , 1) which allows to remove
the phase σ1 from the vacuum, making it real.

At first glance case C-V looks like the most general case, however we are assuming
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Table 4: Constraints on complex vacua, continued. The vacua labelled with an asterisk
(∗) are in fact real.

Vacuum Constraints

C-IV-a∗ µ2
0 = −1

2 (λ5 + λ6) ŵ2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2 (λ5 + λ6) ŵ2

S,
λ4 = 0,λ7 = 0

C-IV-b µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2)2
ŵ2

S

− 1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = −(ŵ2
1
−ŵ2

2)
ŵ2

S

(λ2 + λ3)

C-IV-c µ2
0 = 2 cos2 σ2 (1 + cos2 σ2) (λ2 + λ3)

ŵ4
2

ŵ2
S

− (1 + cos2 σ2) (λ5 + λ6) ŵ2
2 − λ8ŵ2

S,
µ2
1 = − [2 (1 + cos2 σ2)λ1 − (2 + 3 cos2 σ2)λ2 − cos2 σ2λ3] ŵ2

2

−1
2 (λ5 + λ6) ŵ2

S,

λ4 = −2 cosσ2ŵ2

ŵS
(λ2 + λ3) ,λ7 =

cos2 σ2ŵ2
2

ŵ2
S

(λ2 + λ3)

C-IV-d∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = 0

C-IV-e µ2
0 =

sin2(2(σ1−σ2))
sin2(2σ1)

(λ2 + λ3)
ŵ4

2

ŵ2
S

−1
2

(

1− sin 2σ2

sin 2σ1

)

(λ5 + λ6) ŵ2
2 − λ8ŵ2

S,

µ2
1 = −

(

1− sin 2σ2

sin 2σ1

)

(λ1 − λ2) ŵ2
2 − 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = − sin(2(σ1−σ2))ŵ2
2

sin 2σ1ŵ2
S

(λ2 + λ3)

C-IV-f µ2
0 = − (cos(σ1−2σ2)+3 cosσ1) cos(σ2−σ1)

2 cos2 σ1
λ4

ŵ3
2

ŵS

− cos(σ1−2σ2)+3 cosσ1

2 cosσ1
(λ5 + λ6) ŵ2

2 − λ8ŵ2
S,

µ2
1 = − cos(σ1−2σ2)+3 cosσ1

cosσ1
(λ1 + λ3) ŵ2

2

−3 cos 2σ1+2 cos(2(σ1−σ2))+cos 2σ2+4
4 cos(σ1−σ2) cosσ1

λ4ŵ2ŵS − 1
2 (λ5 + λ6) ŵ2

S,

λ2 + λ3 = − cosσ1ŵS

2 cos(σ2−σ1)ŵ2
λ4,λ7 = − cos(σ2−σ1)ŵ2

2 cosσ1ŵS
λ4

C-V∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ2 + λ3 = 0,λ4 = 0,λ7 = 0

that it does not fall into any of the previous cases, so, as a result, full generality requires
λ2 + λ3 = 0, λ4 = 0 and λ7 = 0 and there is no term in the potential sensitive to
independent rephasing of each of the h fields. As a result any phase in the vevs can be
rotated away. Under these circumstances, it is equivalent to a real set of vacua.

There are, in particular, two possible complex vacua that have been discussed previ-
ously in the literature. One of them is:

ŵeiσ, ŵe−iσ, ŵS, (5.10)

by Pakvasa and Sugawara [18]. We shall refer to this as the PS vacuum, assuming ŵ ̸= 0
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The question of relating complex vacua to real ones is relevant for the discussion of global
minima [28, 29] as well as to understand the possible correlations of different parameters
of the potential.

7 The case of λ4 = 0

As mentioned in section 2.3, in the case of λ4 = 0 the potential has an additional,
continuous SO(2) symmetry. This case was dismissed by Derman [20], as being “un-
natural”. This was due to the fact that this condition, when expressed in terms of the
parameters of the potential written by Derman, given by Eqs. (2.9), acquires the form
given by Eq. (4.10), which is not instructive and the resulting symmetry is not apparent.
Spontaneous breaking of this SO(2) symmetry leads to massless particles. In this case,
one way to promote this to a viable model is to break this symmetry softly, by adding a
term to the bilinear part of the potential:

V = V2 + V ′
2 + V4, (7.1)

with V2 and V4 as defined by equations (2.10), and

V ′
2 =

1

2
ν2(h†

2h1 + h†
1h2). (7.2)

The minimisation conditions (3.3)–(3.5) will now become

∂V

∂w∗
S

=
1

2
wSµ

2
0 +

1

4
wS(|w1|2 + |w2|2)(λ5 + λ6)

+
1

4
w∗

S(w
2
1 + w2

2)λ7 +
1

2
w∗

Sw
2
Sλ8 = 0, (7.3)

∂V

∂w∗
1

=
1

2
w1µ

2
1 +

1

2
w2ν

2 +
1

2
w1(|w1|2 + |w2|2)λ1 +

1

2
w2(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

1(w
2
1 + w2

2)λ3 +
1

4
w1|wS|2(λ5 + λ6) +

1

2
w∗

1w
2
Sλ7 = 0, (7.4)

∂V

∂w∗
2

=
1

2
w2µ

2
1 +

1

2
w1ν

2 +
1

2
w2(|w1|2 + |w2|2)λ1 −

1

2
w1(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

2(w
2
1 + w2

2)λ3 +
1

4
w2|wS|2(λ5 + λ6) +

1

2
w∗

2w
2
Sλ7 = 0. (7.5)

With these new conditions there will be some changes in the solutions. In particular,
the new term will bring new sources of CP violation, and spontaneous CP violation may
be easier to achieve. Notice that such a term also softly breaks some types of discrete
symmetries of the S3 doublet h1 and h2 that might otherwise be present. This feature
was exploited long ago in the context of two-Higgs-doublet models [30]. Soft breaking
of the S3 symmetry of the scalar potential has been applied in [31] in order to obtain a
special relation among the vevs of the three doublets that would allow to account for the
observed charged lepton masses.

An important implication of the type of vacuum solution and of the corresponding
allowed region of parameter space is the resulting different possible spectra for the physical
scalars.
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Potential has additional continuous SO(2) symmetry

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

Derman (1979), “unnatural”

Spontaneous breaking of this SO(2) symmetry leads to massless 
particles

Possible solution: break the symmetry softly, the 
most general quadratic potential can be written:

Consider the following quadratic potential:

V = µ2
0h

†
ShS + µ2

1(h
†
1h1 + h†

2h2) + µ2
2(h

†
1h1 � h†

2h2) +
1

2
⌫2(h†

2h1 + h†
1h2)

+ µ2
3(h

†
Sh1 + h†

1hS) + µ2
4(h

†
Sh2 + h†

2hS) (0.1)

along with the vacuum (w1ei�, w2, 0). The quartic part of the potential has the most
general form with S3 symmetry. We need to treat the cases of � = ±⇡/2 and/or w1 = w2

separately. Working out the minimization conditions for the four distinct cases, we find:

1 Four distinct possible VEVs

1.1 (±iw1, w1, 0)

⌫2 = 0,

µ2
1 = �v2(�1 � �2),

µ2
2 = 0,

µ2
3 = 0,

µ2
4 = 0. (1.2)

1.2 (±iw1, w2, 0)

⌫2 = 0,

µ2
1 = �v2(�1 � �2),

µ2
2 = �(w2

1 � w2
2)(�2 + �3),

µ2
3 = 0,

µ2
4 = �1

2
(w2

1 � w2
2)�4. (1.3)

1.3 (w1ei�, w1, 0)

⌫2 = �2v2 cos �(�2 + �3),

µ2
1 = �v2(�1 � �2),

µ2
2 = 0,

µ2
3 = �1

2
v2 cos ��4,

µ2
4 = 0. (1.4)

1.4 (w1ei�, w2, 0)

⌫2 = �4w1w2 cos �(�2 + �3),

µ2
1 = �v2(�1 � �2),

1
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝
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The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
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and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
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leads to the following condition [32]:
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implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
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of the reducible representation [32]. It was pointed out that it has complex vacuum
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£(Uc~) = £(q~), (3) 

then that would be a sure indication that there is spon- 
taneous T violation. 

It  has been emphasized some time ago [ 1 ] that in 
the framework of an SU(2) X U(1) gauge theory with 
scalar doublets, a minimum of two scalar multiplets 
are required in order to obtain spontaneous T viola- 
tion. In the case of  two scalar doublets, the most gen- 
eral Higgs potential can be written 

V(~I, ~2) = VO + [;kl ( ~ q ~ 2 ) ( ~ 2 )  + ~ 2 ( ~  ~ 2 ) ( ~  ~1) 

+ X3(¢I~2)(~t24~2) + h .c . l ,  (4) 

where V 0 denotes the part of the potential without 
any phase dependence. Since we are interested in 
spontaneously broken T invariance, we will always 
assume real coupling constants. For an appropriate 
finite range of  the parameters of  the scalar potential, 
the minimum is at: 

COS 0 = --(4XlOlO2)-l()t202 + X302), (5) 

where (014~010) --- v i =Ioil exp(i0i) and 0 = 02 - 01. 
In eq. (5), the above mentioned dependence of 0 on 
the coupling constants of  the scalar potential is illu- 
strated. In this case, it is easily seen that Tis  sponta- 
neously broken. Indeed in this example, there is no 
matrix satisfying simultaneously eqs. (2), (3). This is 
clearly the simplest example of spontaneous T viola- 
tion. However, the phase 0 is not a "calculable" quan- 
tity. In this note a "calculable phase" refers to a 
phase whose value is independent of  the coupling 
constants of  the scalar potential and therefore stable 
against radiative corrections [5]. In the case of  two 
Higgs doublets, the only way of  having a calculable 
phase in the sense defined above, is by setting X 2 = X 3 
= 0, thus implying 0 = rr/2. Assuming these coupling 
constants equal to zero is natural in the technical 
sense, since then the potential acquires an extra sym- 
metry under which: 

(ki ~ Gi/c~l" , (6) 

where 

o:(; 2) 
This transformation G, needed in order to implement 
a calculable 0 phase, supplies us with the T transfor- 

mation defined in eq. (4) * 1 : 

( l  i([011 ( [o  11 

- 1  !\1o21 exp(irr/2)) = \1o21 exp(irr/2) ) '  (8) 

and therefore implies a T-conserving solution. From 
the previous considerations, we conclude that more 
than two scalar doublets have to be introduced in 
order to achieve both calculability and spontaneous 
T violation * 1. It is also clear that calculability re- 
quires the presence of an extra symmetry in the scalar 
potential. This requirement was necessary in the case 
of  two scalar doublets and it applies a for t ior i  to the 
case of  more than two scalar doublets. 

Let us consider first the case where the scalar po- 
tential is invariant under an abelian group. We will 
show that then calculable phases always correspond 
to T conservation. In the case of  an abelian group, we 
can always choose a special basis where each scalar 
doublet ~j (] = 1 ... . .  n) transforms as a one-dimension- 
al representation of  the group. Then the unitary matrix 

fexp(-2i01) )/  
U = " . .  , (9) 

exp( -2 i0  n 

obviously satisfies eq. (2) and, as we will see, it corre- 
sponds to a symmetry of the potential. In order to 
achieve calculability, each individual term I s of  the 
scalar potential, together with its hermitian conjugate, 
has to be minimized separately with respect to the 
0 i phases. The minimization of  each function .2 
cos [0(Io)], where 0(I~) denotes the linear combina- 
tion of Oi's associated with the fields occurring in I s, 
trivially gives O(Ic~ ) -- 0, 7. In this case the transforma- 
tion (9) corresponds to a symmetry of the scalar po- 
tential and the vacuum is Tinvariant. 

In view of the previous result, we consider next the 
case of  non-abelian symmetries. In the following, we 
will confine ourselves to three Higgs doublets and for 
simplicity we first analyse the case of an S 3 symmetry,  
with the scalar doublets transforming as a three-dimen- 
sional reducible representation. The most  general re- 
normalizable scalar potential can be written [6] as, 

,1 We assume that the scalar potential has no (discrete or 
continuous) accidental symmetries. 

,2 The fact that only functions of this type appear is a conse- 
quence of having assumed real coupling constants. 
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Table 1: Spontaneous CP violation

Vacuum �4 SCPV Vacuum �4 SCPV Vacuum �4 SCPV

C-I-a X no C-III-f,g 0 no C-IV-c X yes

C-III-a X yes C-III-h X yes C-IV-d 0 no

C-III-b 0 no C-III-i X no C-IV-e 0 no

C-III-c 0 no C-IV-a 0 no C-IV-f X yes

C-III-d,e X no C-IV-b 0 no C-V 0 no

C-I-a

h2 $ �h2

�2 $ �3

h1 $ �h1

ej HjZZ, HjHjZ

qj HjH
+H�

(w1, w2, wS) = (v, 0, 0) (6)

Uijh0|�j|0i⇤ = h0|�i|0i, (7)

(ŵ1e
i�1 , ŵ2e

i�2 , wS) ! (aei�, ae�i�, wS) (8)

h1 $ h2 (9)

(ŵ1e
i�1 , ŵ2e

i�2 , 0) ! (aei�1 , aei�2 , 0) (10)

(aei�1 , aei�2 , 0) ! (aei�, ae�i�, 0) (11)

U =

0

@
0 1 0

1 0 0

0 0 1

1

A
(12)

5



Vacuum C-I-a
�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

x, xe

2⇡i
3
, xe

� 2⇡i
3 geometrical phases

CP is conserved

calculable non-trivial phases,  fixed by symmetry of V, 
no explicit dependence on parameters of the potential 

Spontaneous CP Violation
Models with more than one Higgs doublet allow for the possibility of having spontaneous
CP violation. The idea of spontaneous T (hence CP) violation was first proposed by T. D.
Lee [1] in the context of two-Higgs-doublet models. CP can only be spontaneously violated
if the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation leaving both the Lagrangian and the
vacuum invariant. In the Standard Model there is only one Higgs doublet and the scalar
potential necessarily conserves CP.

Under a CP transformation a single Higgs doublet, Φ, transforms into its complex
conjugate. In the presence of more than one doublet the most general CP transformation
[2] allows for mixing of the scalar doublets under an arbitrary unitary matrix, U :

Φi
CP
−→ UijΦ

∗
j (1)

This transformation combines the CP transformation of each Higgs doublet with a Higgs
basis transformation. Higgs basis transformations do not change the physical content of
the model. If the potential is invariant under such a transformation there is explicit CP
conservation. At this stage U applied to the Φj fields is not required to be a symmetry of
the Lagrangian. It is trivial to see that when all the coefficients of the potential are real
the above condition is verified by a matrix U equal to the identity and CP is not violated
explicitly.

In multi-Higgs models it may not be trivial to check whether CP is violated explicitly
or not in the scalar sector due to the freedom one has to make Higgs basis transformations.
These transformations change the quadratic and quartic couplings and in particular cou-
plings that are complex in one basis may become real in another, and vice versa. This fact
has motivated the study of conditions for CP invariance expressed in terms of CP-odd
Higgs-basis invariants [3, 4].

Once it is established that the potential does not violate CP explicitly the question
remains of whether or not there is spontaneous CP violation. It has been shown [5]
that the vacuum is CP invariant if the following relation is verified with a matrix U
corresponding to a symmetry of the Lagrangian:

Uij⟨0|Φj|0⟩
∗ = ⟨0|Φi|0⟩ (2)

This is a very powerful relation. It is stated in Ref. [5] that: given a particular set of
vacuum expectation values (vevs) the simplest way of proving that they do not break CP
is to construct a unitary matrix U which satisfies Eq. (2) and which corresponds at the
same time to a symmetry of the Lagrangian. This prescription is rigorous but in some
cases the construction of this matrix may not be obvious.

If such a difficulty arises we propose a simple test which proves useful in identifying
CP-conserving cases. Once the set of vevs is determined, we go to the so-called “Higgs
basis” defined as the basis where only one of the Higgs doublets acquires a vev different
from zero and chosen to be real [6, 7]. It is straightforward to build the transformation
that takes the fields to this special basis. If the coefficients of the scalar potential in this
particular basis can be made real by means of the rephasing freedom that is still left for
the doublets with zero vevs, we may conclude that CP is not spontaneously broken. Ob-
viously, in this case, once in the Higgs basis, we may define a CP transformation given by

1

Eq. (1) that verifies the relation given by Eq. (2) by simply choosing the matrix U to be
diagonal. If on the contrary it proves impossible to make the scalar potential real in the
Higgs basis by rephasing the doublets with zero vev we must make sure that we are not
in one of the special cases of CP conservation with irremovable complex coefficients [8]
before concluding that CP is violated. On the other hand, this procedure complemented
with the use of CP-odd invariant conditions [3, 4, 9] may also prove useful to confirm the
existence of CP violation since in this case it must be possible to find CP-odd invariants
that are non-zero.

Special cases in the framework of three-Higgs-doublet models with S3 symmetry.
CP conserving scalar potentials with irremovable phases are very special and rare. Im-
posing explicit CP conservation in the S3-symmetric three-Higgs-doublet model by taking
all parameters of the potential real does not lead to loss of generality [8] and was adopted
in Ref. [10] where a detailed study of the possible vacua of the S3-symmetric three-Higgs-
doublet potential is performed with emphasis on the cases in which the CP symmetry can
be spontaneously broken. Different vacuum solutions correspond to different regions of
parameter space which are identified in Ref. [10].

First, we illustrate some of the features of the Higgs basis by analysing a special
complex solution for the vevs of the scalar potential written in terms of the S3 defining
representation, i.e., three Higgs doublets such that the potential is invariant under any
permutation of these fields. This representation is known to be reducible. The scalar
potential (V = V2 + V4) acquires the following form [11]:

V2 = −λ
∑

i

φ†
iφi +

1

2
γ
∑

i<j

[φ†
iφj + h.c.], (3a)

V4 = A
∑

i

(φ†
iφi)

2 +
∑

i<j

{C(φ†
iφi)(φ

†
jφj) + C(φ†

iφj)(φ
†
jφi) +

1

2
D[(φ†

iφj)
2 + h.c.]}

+
1

2
E1

∑

i ̸=j

[(φ†
iφi)(φ

†
iφj) + h.c.] +

∑

i ̸=j ̸=k ̸=i,j<k

{
1

2
E2[(φ

†
iφj)(φ

†
kφi) + h.c.]

+
1

2
E3[(φ

†
iφi)(φ

†
kφj) + h.c.] +

1

2
E4[(φ

†
iφj)(φ

†
iφk) + h.c.]}. (3b)

It was pointed out long ago [12] that a possible complex vacuum solution is given by
(x, xe±

2πi

3 , xe∓
2πi

3 ). This solution was discussed in [5]. It has the remarkable feature of
corresponding to a set of vevs with calculable non-trivial phases assuming geometrical
values, i.e., fixed values that are not expressed as functions of the parameters of the
potential, and which are entirely determined by the symmetry of the scalar potential.
These phases cannot be removed by a simple rephasing of the Higgs fields, while at the
same time keeping the coefficients of the Higgs potential real. However they do not lead to
spontaneous CP violation [5] since there is a matrix U satisfying the constraint of Eq. (2),
namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (4)

which is at the same time a symmetry of the potential. It looks, in fact, as if we are in
the presence of irremovable CP conserving phases. However, there is a nontrivial unitary

2
For new models with geometrical phases and the possibility 
of having CP violation with geometrical phases see
Ivo de Medeiros Varzielas, JHEP 1208 (2012) 055 

NOT FOR DISTRIBUTION JHEP_223P_0116 v1

[31] Y. Koide, Permutation symmetry S(3) and VEV structure of flavor-triplet Higgs
scalars, Phys. Rev. D 73 (2006) 057901 [hep-ph/0509214].

[32] G. C. Branco, J. M. Gerard and W. Grimus, Geometrical T Violation, Phys. Lett. B
136, 383 (1984).

[33] I. de Medeiros Varzielas and D. Emmanuel-Costa, Geometrical CP Violation, Phys.
Rev. D 84 (2011) 117901 [arXiv:1106.5477 [hep-ph]].

[34] I. de Medeiros Varzielas, D. Emmanuel-Costa and P. Leser, Geometrical CP Vio-
lation from Non-Renormalisable Scalar Potentials, Phys. Lett. B 716 (2012) 193
[arXiv:1204.3633 [hep-ph]].

[35] I. de Medeiros Varzielas, Geometrical CP violation in multi-Higgs models, JHEP
1208 (2012) 055 [arXiv:1205.3780 [hep-ph]].

[36] G. Bhattacharyya, I. de Medeiros Varzielas and P. Leser, A common origin of fermion
mixing and geometrical CP violation, and its test through Higgs physics at the LHC,
Phys. Rev. Lett. 109 (2012) 241603 [arXiv:1210.0545 [hep-ph]].

[37] I. P. Ivanov and L. Lavoura, Geometrical CP violation in the N-Higgs-doublet model,
Eur. Phys. J. C 73 (2013) 4, 2416 [arXiv:1302.3656 [hep-ph]].

[38] I. de Medeiros Varzielas and D. Pidt, Geometrical CP violation with a complete
fermion sector, JHEP 1311 (2013) 206 [arXiv:1307.6545 [hep-ph]].

[39] M. Fallbacher and A. Trautner, Symmetries of symmetries and geometrical CP vio-
lation, Nucl. Phys. B 894 (2015) 136 [arXiv:1502.01829 [hep-ph]].

[40] E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter,
Phys. Rev. D 73 (2006) 077301 [arXiv:hep-ph/0601225].

[41] E. Ma, Common origin of neutrino mass, dark matter, and baryogenesis, Mod. Phys.
Lett. A 21 (2006) 1777 [arXiv:hep-ph/0605180].

[42] D. Majumdar and A. Ghosal, Dark Matter candidate in a Heavy Higgs Model - Direct
Detection Rates, Mod. Phys. Lett. A 23 (2008) 2011 [arXiv:hep-ph/0607067].

[43] L. Lopez Honorez, E. Nezri, J. F. Oliver and M. H. G. Tytgat, The Inert Dou-
blet Model: An Archetype for Dark Matter, JCAP 0702 (2007) 028 [arXiv:hep-
ph/0612275].

[44] N. Sahu and U. Sarkar, Predictive model for dark matter, dark energy, neutrino
masses and leptogenesis at the TeV scale, Phys. Rev. D 76 (2007) 045014 [arXiv:hep-
ph/0701062].

[45] M. Gustafsson, E. Lundström, L. Bergström and J. Edsjö, Significant Gamma Lines
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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The question of relating complex vacua to real ones is relevant for the discussion of global
minima [28, 29] as well as to understand the possible correlations of different parameters
of the potential.

7 The case of λ4 = 0

As mentioned in section 2.3, in the case of λ4 = 0 the potential has an additional,
continuous SO(2) symmetry. This case was dismissed by Derman [20], as being “un-
natural”. This was due to the fact that this condition, when expressed in terms of the
parameters of the potential written by Derman, given by Eqs. (2.9), acquires the form
given by Eq. (4.10), which is not instructive and the resulting symmetry is not apparent.
Spontaneous breaking of this SO(2) symmetry leads to massless particles. In this case,
one way to promote this to a viable model is to break this symmetry softly, by adding a
term to the bilinear part of the potential:

V = V2 + V ′
2 + V4, (7.1)

with V2 and V4 as defined by equations (2.10), and

V ′
2 =

1

2
ν2(h†

2h1 + h†
1h2). (7.2)

The minimisation conditions (3.3)–(3.5) will now become

∂V

∂w∗
S

=
1

2
wSµ

2
0 +

1

4
wS(|w1|2 + |w2|2)(λ5 + λ6)

+
1

4
w∗

S(w
2
1 + w2

2)λ7 +
1

2
w∗

Sw
2
Sλ8 = 0, (7.3)

∂V

∂w∗
1

=
1

2
w1µ

2
1 +

1

2
w2ν

2 +
1

2
w1(|w1|2 + |w2|2)λ1 +

1

2
w2(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

1(w
2
1 + w2

2)λ3 +
1

4
w1|wS|2(λ5 + λ6) +

1

2
w∗

1w
2
Sλ7 = 0, (7.4)

∂V

∂w∗
2

=
1

2
w2µ

2
1 +

1

2
w1ν

2 +
1

2
w2(|w1|2 + |w2|2)λ1 −

1

2
w1(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

2(w
2
1 + w2

2)λ3 +
1

4
w2|wS|2(λ5 + λ6) +

1

2
w∗

2w
2
Sλ7 = 0. (7.5)

With these new conditions there will be some changes in the solutions. In particular,
the new term will bring new sources of CP violation, and spontaneous CP violation may
be easier to achieve. Notice that such a term also softly breaks some types of discrete
symmetries of the S3 doublet h1 and h2 that might otherwise be present. This feature
was exploited long ago in the context of two-Higgs-doublet models [30]. Soft breaking
of the S3 symmetry of the scalar potential has been applied in [31] in order to obtain a
special relation among the vevs of the three doublets that would allow to account for the
observed charged lepton masses.

An important implication of the type of vacuum solution and of the corresponding
allowed region of parameter space is the resulting different possible spectra for the physical
scalars.
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shown [32] that solutions with calculable phases whose values are independent of
the coupling constants of the scalar potential do not necessarily conserve CP. Char-
acteristic features of such solutions in models with several Higgs doublets as well as
the interplay between symmetries and geometrical CP violation have been analysed
by several authors [33–39].

• Case C-III-a allows for a nontrivial phase which can be determined as a function of
�
4
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4
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and one can choose U = diag(1,�1, 1).

• Case C-III-c is a very interesting one. At first sight it looks as if it may violate
CP spontaneously, however, this is not the case. In order to prove that case C-III-
c does not violate CP spontaneously we start from the corresponding set of vevs
(ŵ

1

ei�, ŵ
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, 0) and perform a Higgs basis transformation on the Higgs doublets h
1

and h
2

by an SO(2) rotation into:
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h0
1

h0
2

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓
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h
1
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such that the vevs of the new S
3

doublet fields now have the same modulus and are
of the form (aei�1 , aei�2 , 0). This requires
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1
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2ŵ
1
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2

cos �
. (8.6)

Obviously the Lagrangian remains invariant. Next we perform an overall phase
rotation of the three Higgs doublets with the phase factor exp[�i(�

1

+�
2

)/2], leading
now to the following vevs: (aei�, ae�i�, 0). Making use of the symmetry for the
interchange h0

1

$ h0
2

we can verify Eq. (8.3) in the following way:
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In terms of the initial vevs, this equation translates into
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ŵ
2

0

1

A
⇤

=

0

@
ŵ
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shown [32] that solutions with calculable phases whose values are independent of
the coupling constants of the scalar potential do not necessarily conserve CP. Char-
acteristic features of such solutions in models with several Higgs doublets as well as
the interplay between symmetries and geometrical CP violation have been analysed
by several authors [33–39].

• Case C-III-a allows for a nontrivial phase which can be determined as a function of
�
4

, and �
7

, as shown in Table 3. This solution violates CP spontaneously.
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ŵ
2

0

1

A . (8.9)

23

CP is conserved

A particularly interesting vacuum is the one identified as case C-III-c, which in terms
of the irreducible representations is of the form (ŵ1eiσ, ŵ2, 0). This complex vacuum
requires that three constraints among the coefficients of the potential be verified, one of
them being λ4 = 0. At first sight it looks as if it violates CP spontaneously, due to the
fact that the moduli of w1 and of w2 are different. Clearly, there is no obvious simple
form for the matrix U satisfying the constraint of Eq. (2). Therefore, the easiest and
most straightforward way of checking for CP conservation is to look at the potential in
the Higgs basis, which can be reached via the simple transformation:

⎛

⎝

h′
1

h′
2

h′
S

⎞

⎠ =
1

v

⎛
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ŵ1 ŵ2 0
ŵ2 −ŵ1 0
0 0 v

⎞

⎠

⎛
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e−iσ 0 0
0 1 0
0 0 1

⎞

⎠

⎛
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h1

h2

hS

⎞

⎠ (8)

with v2 = (ŵ1
2 + ŵ1

2) and confirming by inspection that the coefficients of the potential
remain real, while now all vevs are real. Notice that in the Higgs basis there is freedom
to rephase h′

2 and h′
S.

The construction of the matrix U satisfying the constraint of Eq. (2) was presented in
Ref. [10] and makes use of the additional SO(2) symmetry resulting from having λ4 = 0:

U = ei(δ1+δ2)

⎛
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cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞

⎠
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0 1 0
1 0 0
0 0 1
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⎠
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cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠ (9)

where the angle θ is such that the matrix on the righthand side of Eq. (9) rotates
(ŵ1eiσ, ŵ2, 0) into vevs of the form (aeiδ1 , aeiδ2 , 0), where the two nonzero entries have
the same modulus. This is possible due to the additional SO(2) symmetry and requires
tan 2θ = (ŵ2

1 − ŵ2
2)/(2ŵ1ŵ2 cosσ). An overall rotation by the phase factor exp[−i(δ1 +

δ2)/2] leads then to vevs of the form (aeiδ, ae−iδ, 0). The matrix U also makes use of the
symmetry under the interchange h′

1 ↔ h′
2, as can be seen from the matrix in the middle.

Equations (8) and (9) have in common the fact that both rotations depend on the vevs of
the Higgs doublets. Once the vevs are known a rotation to the Higgs basis can be easily
determined. However building the matrix U requires insight and therefore there is the
possibility of missing it in cases where in fact CP is conserved since there is no well-defined
prescription to build it. On the other hand, once CP conservation is established it follows
that the matrix U of Eq. (2), corresponding to a symmetry of the Lagrangian, must exist.

As mentioned above, in the case of λ4 = 0 the S3-symmetric potential acquires an ad-
ditional SO(2) symmetry. Spontaneous breaking of this symmetry leads to a massless
scalar field, which is ruled out by experiment. This problem can be avoided by adding
soft breaking terms to the potential. Soft breaking terms of the form (h†

Shi + h.c.) are
only consistent, once the minimisation conditions are imposed, if their coefficients are
proportional to λ4, therefore, in this case, we are only left with the possibility of adding
terms of the form µ2

2(h
†
1h1 − h†

2h2) +
1
2ν

2(h†
2h1 + h†

1h2). It has been checked that the
potential with these additional terms still allows for vevs of the form C-III-c and that the
transformation to the Higgs basis together with rephasing of the fields with zero vevs can
lead to a new potential with only real coefficients.

The only other complex vacuum with λ4 = 0 having non trivial phases, i.e., phases

differing from ±i is case C-IV-e which has the form (
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , ŵ2eiσ2 , ŵS). In

4

Spontaneous CP Violation
Models with more than one Higgs doublet allow for the possibility of having spontaneous
CP violation. The idea of spontaneous T (hence CP) violation was first proposed by T. D.
Lee [1] in the context of two-Higgs-doublet models. CP can only be spontaneously violated
if the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation leaving both the Lagrangian and the
vacuum invariant. In the Standard Model there is only one Higgs doublet and the scalar
potential necessarily conserves CP.

Under a CP transformation a single Higgs doublet, Φ, transforms into its complex
conjugate. In the presence of more than one doublet the most general CP transformation
[2] allows for mixing of the scalar doublets under an arbitrary unitary matrix, U :

Φi
CP
−→ UijΦ

∗
j (1)

This transformation combines the CP transformation of each Higgs doublet with a Higgs
basis transformation. Higgs basis transformations do not change the physical content of
the model. If the potential is invariant under such a transformation there is explicit CP
conservation. At this stage U applied to the Φj fields is not required to be a symmetry of
the Lagrangian. It is trivial to see that when all the coefficients of the potential are real
the above condition is verified by a matrix U equal to the identity and CP is not violated
explicitly.

In multi-Higgs models it may not be trivial to check whether CP is violated explicitly
or not in the scalar sector due to the freedom one has to make Higgs basis transformations.
These transformations change the quadratic and quartic couplings and in particular cou-
plings that are complex in one basis may become real in another, and vice versa. This fact
has motivated the study of conditions for CP invariance expressed in terms of CP-odd
Higgs-basis invariants [3, 4].

Once it is established that the potential does not violate CP explicitly the question
remains of whether or not there is spontaneous CP violation. It has been shown [5]
that the vacuum is CP invariant if the following relation is verified with a matrix U
corresponding to a symmetry of the Lagrangian:

Uij⟨0|Φj|0⟩
∗ = ⟨0|Φi|0⟩ (2)

This is a very powerful relation. It is stated in Ref. [5] that: given a particular set of
vacuum expectation values (vevs) the simplest way of proving that they do not break CP
is to construct a unitary matrix U which satisfies Eq. (2) and which corresponds at the
same time to a symmetry of the Lagrangian. This prescription is rigorous but in some
cases the construction of this matrix may not be obvious.

If such a difficulty arises we propose a simple test which proves useful in identifying
CP-conserving cases. Once the set of vevs is determined, we go to the so-called “Higgs
basis” defined as the basis where only one of the Higgs doublets acquires a vev different
from zero and chosen to be real [6, 7]. It is straightforward to build the transformation
that takes the fields to this special basis. If the coefficients of the scalar potential in this
particular basis can be made real by means of the rephasing freedom that is still left for
the doublets with zero vevs, we may conclude that CP is not spontaneously broken. Ob-
viously, in this case, once in the Higgs basis, we may define a CP transformation given by
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Very simple and powerful relation. However, in some

Simple Alternative Test

cases construction of matrix U may not be obvious

- Go to a basis where only one Higgs field acquires a vev different from zero 
and real
 - If the coefficients of scalar potential can be made real by rephasing the 
fields with zero vev, there is no CP violation

this case there is no zero vev and all vevs have different moduli. The construction of a
matrix U satisfying the constraint of Eq. (2) follows the same steps as in the case C-III-c.
However, in this case there is no freedom to apply an overall phase rotation to transform
the relative phase of w1 and w2 into two symmetric phases, since this would make wS

complex. It turns out that this vacuum is more constrained than case C-III-c, requiring
four relations among the coefficients of the potential to be obeyed. As a result, the SO(2)
rotation transforming it into (beiγ1 , beiγ2 , ŵS) automatically leads to γ1 + γ2 = 0. Once
again building the matrix U requires special insight. The necessary SO(2) rotation will
be a function of the ŵi and σi, for i = 1, 2 and is similar to the one of case C-III-c [10]
being given by tan 2θ = (ŵ2

1 − ŵ2
2)/(2ŵ1ŵ2 cos(σ1 − σ2)). The alternative procedure of

going directly to the Higgs basis is also, in this case, the easiest and most straightforward
way of checking for CP conservation where now a possible rotation is:

⎛
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h′
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2

h′
S

⎞

⎠ =
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1
N1

(ŵ1 ŵ2 ŵS)
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1
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(ŵ1 ŵ2 X)
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e−iσ1 0 0
0 e−iσ2 0
0 0 1

⎞

⎠

⎛

⎝

h1

h2

hS

⎞

⎠ (10)

where 1/Ni are normalisation factors and the X is chosen in such a way that rows 1 and
3 are also orthogonal. With this transformation only h′

1 acquires a non-zero vev and the
coefficients of the potential can all be made real using the freedom to rephase the fields
with zero vevs.

Examples C-III-c and C-IV-e show that searching for a matrix U satisfying the constraint
of Eq. (2) may not always be the easiest path to check for CP conservation. In particular,
as the complexity grows, it may be more convenient to inspect the potential directly by
going to the Higgs basis.

The T. D. Lee Model
So far we have shown how to use the Higgs basis to prove that CP is not spontaneously
broken. In T. D. Lee’s two-Higgs-doublet model [1] the potential has the most general
form with real coefficients:

V (φ) = −λ1φ
†
1φ1 − λ2φ

†
2φ2

+ A(φ†
1φ1)

2 +B(φ†
2φ2)

2 + C(φ†
1φ1)(φ

†
2φ2) + C̄(φ†

1φ2)(φ
†
2φ1)

+
1

2
[(φ†

1φ2)(Dφ†
1φ2 + Eφ†

1φ1 + Fφ†
2φ2) + h.c.]. (11)

CP is violated spontaneously by vevs of the form (ρ1eiθ, ρ2), in the region of parameters
of the potential where ρ1 and ρ2 are different from zero and eiθ ̸= 1. The transformation
to the Higgs basis is given by

(

φ′
1

φ′
2

)

=
1

v

(

1 0
0 eiχ

)(

ρ1 ρ2
−ρ2 ρ1

)(

e−iθ 0
0 1

)(

φ1

φ2

)

(12)

with v2 = ρ21 + ρ22. The potential acquires a new form under this transformation. The
bilinear part of the potential is only real if sinχ = 0 or λ1 = λ2. In either case requiring
the quartic part of the potential to be real leads to special conditions on the parameters
of the potential and therefore, does not hold in general.

5

Inspect the potential
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2)/(2ŵ1ŵ2 cos(σ1 − σ2)). The alternative procedure of

going directly to the Higgs basis is also, in this case, the easiest and most straightforward
way of checking for CP conservation where now a possible rotation is:

⎛

⎝

h′
1

h′
2

h′
S

⎞

⎠ =

⎛

⎝

1
N1
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(ŵ1 ŵ2 X)

⎞

⎠

⎛

⎝

e−iσ1 0 0
0 e−iσ2 0
0 0 1

⎞

⎠

⎛

⎝

h1

h2

hS

⎞

⎠ (10)

where 1/Ni are normalisation factors and the X is chosen in such a way that rows 1 and
3 are also orthogonal. With this transformation only h′

1 acquires a non-zero vev and the
coefficients of the potential can all be made real using the freedom to rephase the fields
with zero vevs.

Examples C-III-c and C-IV-e show that searching for a matrix U satisfying the constraint
of Eq. (2) may not always be the easiest path to check for CP conservation. In particular,
as the complexity grows, it may be more convenient to inspect the potential directly by
going to the Higgs basis.

The T. D. Lee Model
So far we have shown how to use the Higgs basis to prove that CP is not spontaneously
broken. In T. D. Lee’s two-Higgs-doublet model [1] the potential has the most general
form with real coefficients:

V (φ) = −λ1φ
†
1φ1 − λ2φ

†
2φ2

+ A(φ†
1φ1)

2 +B(φ†
2φ2)

2 + C(φ†
1φ1)(φ

†
2φ2) + C̄(φ†

1φ2)(φ
†
2φ1)

+
1

2
[(φ†

1φ2)(Dφ†
1φ2 + Eφ†

1φ1 + Fφ†
2φ2) + h.c.]. (11)

CP is violated spontaneously by vevs of the form (ρ1eiθ, ρ2), in the region of parameters
of the potential where ρ1 and ρ2 are different from zero and eiθ ̸= 1. The transformation
to the Higgs basis is given by

(

φ′
1

φ′
2

)

=
1

v

(

1 0
0 eiχ

)(

ρ1 ρ2
−ρ2 ρ1

)(

e−iθ 0
0 1

)(

φ1

φ2

)

(12)

with v2 = ρ21 + ρ22. The potential acquires a new form under this transformation. The
bilinear part of the potential is only real if sinχ = 0 or λ1 = λ2. In either case requiring
the quartic part of the potential to be real leads to special conditions on the parameters
of the potential and therefore, does not hold in general.

5

this case there is no zero vev and all vevs have different moduli. The construction of a
matrix U satisfying the constraint of Eq. (2) follows the same steps as in the case C-III-c.
However, in this case there is no freedom to apply an overall phase rotation to transform
the relative phase of w1 and w2 into two symmetric phases, since this would make wS

complex. It turns out that this vacuum is more constrained than case C-III-c, requiring
four relations among the coefficients of the potential to be obeyed. As a result, the SO(2)
rotation transforming it into (beiγ1 , beiγ2 , ŵS) automatically leads to γ1 + γ2 = 0. Once
again building the matrix U requires special insight. The necessary SO(2) rotation will
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2)/(2ŵ1ŵ2 cos(σ1 − σ2)). The alternative procedure of

going directly to the Higgs basis is also, in this case, the easiest and most straightforward
way of checking for CP conservation where now a possible rotation is:

⎛

⎝

h′
1

h′
2

h′
S

⎞

⎠ =

⎛

⎝

1
N1
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again building the matrix U requires special insight. The necessary SO(2) rotation will
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So far we have shown how to use the Higgs basis to prove that CP is not spontaneously
broken. In T. D. Lee’s two-Higgs-doublet model [1] the potential has the most general
form with real coefficients:

V (φ) = −λ1φ
†
1φ1 − λ2φ

†
2φ2

+ A(φ†
1φ1)

2 +B(φ†
2φ2)

2 + C(φ†
1φ1)(φ

†
2φ2) + C̄(φ†

1φ2)(φ
†
2φ1)

+
1

2
[(φ†

1φ2)(Dφ†
1φ2 + Eφ†

1φ1 + Fφ†
2φ2) + h.c.]. (11)

CP is violated spontaneously by vevs of the form (ρ1eiθ, ρ2), in the region of parameters
of the potential where ρ1 and ρ2 are different from zero and eiθ ̸= 1. The transformation
to the Higgs basis is given by

(

φ′
1

φ′
2

)

=
1

v

(

1 0
0 eiχ

)(

ρ1 ρ2
−ρ2 ρ1

)(

e−iθ 0
0 1

)(

φ1

φ2

)

(12)

with v2 = ρ21 + ρ22. The potential acquires a new form under this transformation. The
bilinear part of the potential is only real if sinχ = 0 or λ1 = λ2. In either case requiring
the quartic part of the potential to be real leads to special conditions on the parameters
of the potential and therefore, does not hold in general.

5

there are infinite bases where only one doublet acquires vev different 
from zero, freedom associated to a U matrix (n-1)x(n-1) 

each choice is "a" different Higgs basis

- an SMA basis (SMA - standard model aligned)



Final Remarks

Aims and challenges

Models with three Higgs doublets have rich phenomenology

Exploit possible dark matter candidates in this context, beyond cases 
where the singlet plays the role of the SM Higgs doublet

Study how to generate realistic fermion masses and mixing with the 
fermions transforming non trivially under 

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

x, xe

2⇡i
3
, xe

� 2⇡i
3

�4 = 0

S3

Look for interesting scenarios with the potential of being tested at the 
LHC 

Look for viable models in the context of spontaneous CP violation


