Automatizing validation of Higgs sectors - the case study of 95 GeV resonance

Scalars 2023

Wojciech Kotlarski, Jan Kalinowski

FlexibleSUSY in a nutshell

- There are codes like 2HDMC, SPheno, SOFTSUSY or SuSpect that calculate mass spectra and various observables for a predefined model (THDM in case of 2 HDMC and MSSM/NMSSM in remaining cases).
- FlexibleSUSY is a spectrumgenerator generator - creates a code analogue to abovementioned programs but for an arbitrary BSM model.

- Use known results for a generic QFT. Don't recalculate what you don't have to from the ground.
■ Streamlining study of BSM phenomenology, reducing time needed to study a new model from years to weeks. No hand written code, less place for errors.

What you get (singlet+SM example)

Block DCINFO
1 FlexibleSUSY
2 2.6.1
5 SSMMhInput
94.14 .3

DECAY 25	3.20846016E-03	\# hh(1) decays
$5.82089643 \mathrm{E}-01$	$2-5$	5 \# BR(hh(1) -> barFd(3) Fd(3))
$2.10479150 \mathrm{E}-01$	$2-24$	24 \# BR(hh(1) -> conjVWp VWp)
8.56684916E-02	21	21 \# BR(hh(1) -> VG VG)
$6.19432803 \mathrm{E}-02$	$2-15$	15 \# BR(hh(1) $->\operatorname{barFe}(3) \mathrm{Fe}(3))$
$2.87673651 \mathrm{E}-02$	$2-4$	4 \# BR(hh(1) -> barFu(2) $\mathrm{Fu}(2)$)
$2.67950080 \mathrm{E}-02$	223	23 \# BR(hh(1) -> VZ VZ)
$2.29059815 \mathrm{E}-03$	222	22 \# BR(hh(1) -> VP VP)
$1.48172847 \mathrm{E}-03$	222	23 \# BR(hh(1) -> VP VZ)
$2.64726402 \mathrm{E}-04$	$2-3$	3 \# BR(hh(1) -> barFd(2) Fd(2))
2.19292886E-04	$2-13$	13 \# BR(hh(1) -> barFe(2) Fe(2))
DECAY 35	8.56617420E-01	\# hh(2) decays

HiggsTools

- Succesor of HiggsBounds and HiggsSignals
- Consists of two parts:
- HiggsSignals: checks SM-like Higgs
- HiggsBounds: checks BSM Higgses

E Example: SM-like Higgs with perturbed coupling to charm quarks

- Some care needed in interpreting χ^{2} from HiggSignals
cP-odd

Bahl, Biekötter, Heinemeyer, Li, Paasch, Weiglein, Wittbrod

CP-even

HiggsTools interface

- Using HiggsTools from FlexibleSUSY is totally transparent to the user
- Howto:
- install HiggsTools
- point FlexibleSUSY to it's location during configuration
- you're good to go

Block HIGGSSIGNALS

1	$1.59000000 \mathrm{E}+02$	\# number of degrees of freedom
2	$1.57662766 \mathrm{E}+02$	\# χ^{2}
3	$1.51551655 \mathrm{E}+02$	\# SM χ^{2} for $\mathrm{mh}=125.250000 \mathrm{GeV}$
4	4.70965484E-02	\# p-value
k HIGGSBOUNDS		
1	$2.38307377 \mathrm{E}-01$	\# LHC13 [vbfH, HW, Htt, H, HZ] $>$ [gamgam] from 1811.08459
2	$5.84526557 \mathrm{E}-01$	\# expRatio
1	$7.11468251 \mathrm{E}-01$	\# LHC8 [vbfH, HW, Htt, H, HZ] > [bb, tautau, WW, ZZ, gamgam]
2	$3.57914871 \mathrm{E}+00$	\# expRatio

LEP hints of a 95 GeV scalar

■ Higgsstrahlung excess in the $b \bar{b}$ channel [arXiv:0306033]

- Can be accommodate by a intermediate state H [arXiv:1612.08522]
$\mu_{b \bar{b}}^{\mathrm{LEP}}=\frac{\sigma^{e x p}\left(e^{+} e^{-} \rightarrow Z \phi \rightarrow Z b \bar{b}\right)}{\sigma^{\operatorname{SM}}\left(e^{+-} \rightarrow Z H \rightarrow Z \bar{b}\right)}=0.117 \pm 0.057$

LHC hints of a 95 GeV scalar

- Recent ATLAS result based on the full Run 2 data set

$$
\mu_{\gamma \gamma}^{\mathrm{ATLAS}}=\frac{\sigma^{\exp }(p p \rightarrow \phi \rightarrow \gamma \gamma)}{\sigma^{\mathrm{SM}}(p p \rightarrow H \rightarrow \gamma \gamma)}=0.18_{-0.10}^{+0.10}
$$

- Consistent with the already existing CMS excess

$$
\mu_{\gamma \gamma}^{\mathrm{CMS}}=\frac{\sigma^{\mathrm{epx}}(p p \rightarrow \phi \rightarrow \gamma \gamma)}{\sigma^{\mathrm{SM}}(p p \rightarrow H \rightarrow \gamma \gamma)}=0.33_{-0.12}^{+0.19}
$$

- Combined (Biekotter, Heinemeyer, Weiglein [arXiv:2306.03889])

$$
\mu_{\gamma \gamma}^{\mathrm{ATLAS}}+\mathrm{CMS}=0.24_{-0.08}^{+0.09}
$$

Generic setup

\square Mostly gauge singlet state

$$
h_{1}^{2}=\frac{1}{10} s^{2}+\ldots
$$

with mass 95.4 GeV . Such composition solves this

$$
\mu_{b \bar{b}}^{\mathrm{LEP}}=\frac{\sigma^{\mathrm{BMS}}\left(e^{+} e^{-} \rightarrow Z h_{1} \rightarrow Z b \bar{b}\right)}{\sigma^{\mathrm{SM}}\left(e^{+} e^{-} \rightarrow Z H \rightarrow Z b \bar{b}\right)} \approx 0.1
$$

\square But it equally (by a factor $1 / 10$) suppreses

$$
\mu_{\gamma \gamma}=\frac{\sigma^{\mathrm{BSM}}\left(p p \rightarrow h_{1} \rightarrow \gamma \gamma\right)}{\sigma^{\mathrm{SM}}(p p \rightarrow H \rightarrow \gamma \gamma)} \approx 0.1
$$

- You need a way to enhance

$$
\mathrm{BR}(\phi \rightarrow \gamma \gamma) \approx(2-2.5) \mathrm{BR}(H \rightarrow \gamma \gamma)
$$

R-symmetry

- R-symmetry is an additional symmetry of the SUSY algebra allowed by the Haag Łopuszański - Sohnius theorem
- For $\mathrm{N}=1$ SUSY it is a global $\mathrm{U}(1)_{\mathrm{R}}$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged

$$
Q_{R}(\theta)=1, \theta \rightarrow e^{\imath \alpha} \theta
$$

- Lagrangian invariance
- Kähler potential K term is automatically invariant
- R-charge of the superpotential W must be 2

$$
\mathrm{Q}_{\mathrm{R}}(\mathcal{L})=0 \longrightarrow \mathcal{L} \ni \int d^{2} \theta W \mathrm{Q}_{\mathrm{Q}_{\mathrm{R}}(W)=+2}^{\mathrm{Q}_{\mathrm{R}}\left(\mathrm{~d}^{2} \theta\right)=-2}
$$

- soft-breaking terms must have R-charge 0

Particle content summary: MSSM vs. MRSSM

different number of physical state completely new states

	Higgs					R-Higgs	
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	$2+2$	2	2	2

	neutrali no	
MSluino		
MRSS M	4	1
	4	1

Majorana fermions
Dirac fermions

Light singlet setup

■ Two lightest Higgses are a mixture of H_{u} and S

$$
\mathcal{M}_{u, S}^{\phi}=\left(\begin{array}{cc}
m_{Z}^{2}+\Delta m_{r a d}^{2} & v_{u}\left(\sqrt{2} \lambda_{u} \mu_{u}^{\mathrm{eff},-}+g_{1} M_{B}^{D}\right) \\
v_{u}\left(\sqrt{2} \lambda_{u} \mu_{u}^{\mathrm{eff},-}+g_{1} M_{B}^{D}\right) & 4\left(M_{B}^{D}\right)^{2}+m_{S}^{2}+\frac{\lambda_{u}^{2} v_{u}^{2}}{2}
\end{array}\right)
$$

- Obvious constraints:
- mixing has to be small
- $4\left(M_{B}^{D}\right)^{2}+m_{S}^{2} \approx(95 \mathrm{GeV})^{2} \Rightarrow$ this setup enforces light DM candidate
- $|\lambda|_{u} \ll 1$

Example solution

- Reminder: we've identified

$$
\lambda_{d} \hat{S} \hat{R}_{d} \hat{H}_{d}
$$

as a crucial term to enhance $\operatorname{BR}\left(h_{1} \rightarrow \gamma \gamma\right)$

- Parameters: $\mathrm{M}_{1}=40 \mathrm{GeV}, \mathrm{m}_{\mathrm{s}}=45 \mathrm{GeV}, \lambda_{\mathrm{d}}=-1$
- Masses: $\mathrm{h}_{1}=95.4 \mathrm{GeV}, \mathrm{h}_{2}=125.25 \mathrm{GeV}, \mathrm{A}_{1}=38 \mathrm{GeV}$
- Properties:

$$
\begin{aligned}
\mu_{b \bar{b}}^{\mathrm{LEP}} & =0.117 \\
\frac{\sigma\left(g g \rightarrow h_{1}\right)}{\sigma^{\mathrm{SM}}(g g \rightarrow H)}=0.102 \quad & \times \quad \frac{\mathrm{BR}\left(h_{1} \rightarrow \gamma \gamma\right)}{\mathrm{BR}(H \rightarrow \gamma \gamma)}=2.354 \quad=0.24
\end{aligned}
$$

- both CP-even Higgses follow typical SM-like decay patters with small invisible decay widths. SM Higgs p-value 0.283 .
■ A_{1} is extreamly narrow $\left(10^{-10} \mathrm{GeV}\right)$ pseudoscalar A_{1} with almost 100% BR to $\gamma \gamma$

Numerics

DM constraints

■ Including DM as a contraint worsens the fit. You can get point with

$$
\Omega h^{2}=0.128
$$

and allowed by direct detection

- with LEP \& CMS excess strengths of

$$
\mu_{\gamma \gamma}=0.217 \quad \mu_{b \bar{b}}=0.077
$$

- but with a SM-like Higgs p-value of 0.05
- There seems to be a trade off in this setup between

Conclusions and outlook

- Streamlining comparison of Higgs sector of your favourite model with experimental data
Example aplication: fitted MRSSM to the 95 GeV excess
There's no publication for the associated code but it is public. You can grab it from here.

Norway
grants

R-symmetry vs. matter parity

- Consider R-symmetric transformation of a generic supermultiplet

$$
R: \Phi(x, \theta, \bar{\theta}) \rightarrow \Phi^{\prime}\left(x, e^{\imath \varphi} \theta, e^{-\imath \varphi} \bar{\theta}\right)=e^{\imath \varphi R_{\Phi}} \Phi(x, \theta, \bar{\theta})
$$

- In the MSSM one imposes the so-called matter parity

$$
M_{p}=(-1)^{3(B-L)}
$$

- this is eauivalent to R-pairity which is defined on components of a supermultiplet as $P_{R}=(-1)^{3(\mathrm{~B}-\mathrm{L})+2 s}$
- This is also equivalent to R-symmetry $R=e^{\imath \varphi R_{\Phi}}$ with $\varphi=\pi$ and $R_{\Phi}=3(B-L)$

■ R-charges

- MSSM: $\quad R_{\Phi}=0,1$
- MRSSM: $R_{\Phi}=0,1,2$
$\square \mathrm{R}$-symmetry is more restrictive than matter parity

Program flow

\square Analytic calculation: particle content + Lagrangian \Rightarrow tadpole equations, selfenergies, mass matrices, RGEs, vertices etc.

- Creates code for numerical evaluation of various observables
- 1-loop pole masses and mixing matrices (in specific models higher corrections are available)
- observables: muon ($\mathrm{g}-2)_{\mu}$, lepton's EDMs, $\mathrm{l} \rightarrow \mathrm{l}$ ' $\mathrm{y}, \mathrm{b} \longrightarrow \mathrm{sy}$, scalar decays
- soon: $1 \rightarrow$ l' conversion in nuclei, $1 \rightarrow 31$

Low-energy R-symmetry realization

- Charges of component fields

$e^{\imath \alpha Q_{R}}$	
Φ	$=\quad e^{\imath \alpha Q_{R}}$
$\phi(y)+\sqrt{2 \alpha\left(Q_{R}-1\right)}$	
	$+\sqrt{2} \theta(y)+\theta \theta F(y)$

\square "Natural" choice
Higgs
$Q_{R}=1$
$Q_{R}=1$
$Q_{R}=0$
leptons and quarks $Q_{R}=0$
$Q_{R}=0$
$Q_{R}=-1$

- Good: no barion and lepton number violating terms
- Bad: No Majorana masses for higgsinos and gauginos

$$
\begin{aligned}
W= & \mu_{d} \hat{R}_{d} \hat{H}_{d}+\mu_{u} \hat{R}_{u} \hat{H}_{u} \\
& +\Lambda_{d} \hat{R}_{d} \hat{T} \hat{H}_{d}+\Lambda_{u} \hat{R}_{u} \hat{T} \hat{H}_{u}+\lambda_{d} \hat{S} \hat{R}_{d} \hat{H}_{d}+\lambda_{u} \hat{S} \hat{R}_{u} \hat{H}_{u} \\
& -Y_{d} \hat{d} \hat{q} \hat{H}_{d}-Y_{e} \hat{e} \hat{l} \hat{H}_{d}+Y_{u} \hat{u} \hat{q} \hat{H}_{u}
\end{aligned}
$$

Kribisetalal ariliv:0712.2039						
Additional fields:		SU(3) c		$S U(2)_{L}$	$U(1)_{Y}$	$U(1)_{R}$
	Singlet	S	1	1	0	0
	Triplet	\hat{T}	1	3	0	0
	Octet	O	8	1	0	0
	R-Higgses	\hat{R}_{u}	1	2	-1/2	2
		\hat{R}_{d}	1	2	1/2	2

MSSM vs. MRSSM

■ MSSM superpotencial

$$
\mu \hat{H}_{u} \hat{H}_{d}
$$

$-Y_{d} \hat{d} \hat{q} \hat{H}_{d}-Y_{e} \hat{e} \hat{l} \hat{H}_{d}+Y_{u} \hat{u} \hat{q} \hat{H}_{u}$

- MSSM soft-SUSY breaking terms
- B_{μ} - term
- soft scalar masses
- Majorana gaugino masses
- A - terms

MRSSM superpotencial

