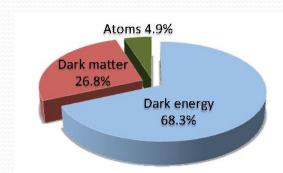
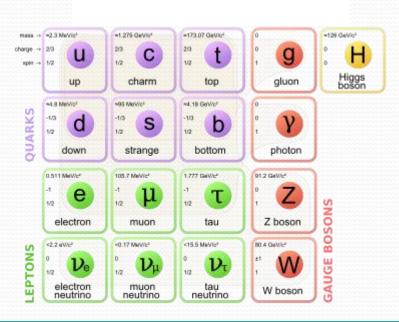

Doojin Kim Planck Conference at Warsaw, Poland May 25th, 2017

CERN

Based on DK, J.-C. Park, and S. Shin, arXiv:1612.06867 G. Giudice, DK, J.-C. Park, S. Shin, ..., in progress

Dark Matter

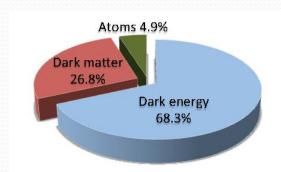

- Existence of dark matter
- □ Dark Matter (DM): ~25% of our universe, existence supported by rotation curves, gravitational lensing, cosmic microwave background etc.


Dark Matter

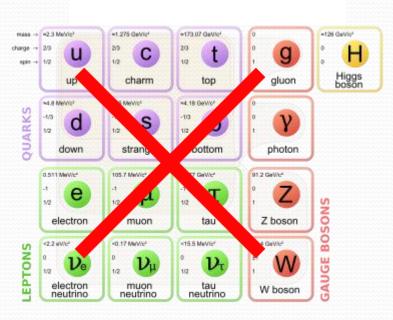
Known properties

□ Dark Matter (DM): ~25% of our universe, existence supported by rotation curves, gravitational lensing, cosmic microwave background etc.

- ☐ Known DM properties (albeit few):
 - gravitationally interacting
 - not short-lived
 - not hot
 - not baryonic
 - not electrically charged

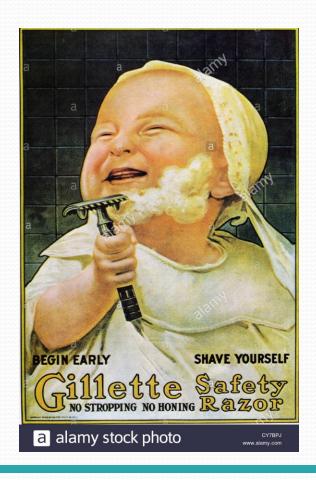


-2-


Dark Matter

Known properties

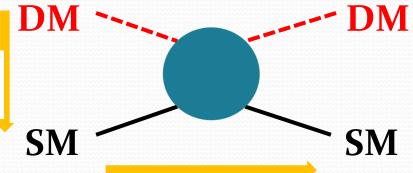
□ Dark Matter (DM): ~25% of our universe, existence supported by rotation curves, gravitational lensing, cosmic microwave background etc.


- ☐ Known DM properties (albeit few):
 - gravitationally interacting
 - not short-lived
 - not hot
 - not baryonic
 - not electrically charged
 - ⇒ Need for **new physics/particles**

"Minimal" Dark Sector

Occam's razor(?)

- ☐ Many DM simplified models or new physics models including a DM candidate proposed:
 - ✓ Positing single DM species/focusing on dominant DM (with other dark sector particles put aside)
 - ✓ Good and economical approach toward the truth in the earlier stage!
 - ✓ Concentrating on DM itself and relevant phenomenological implications



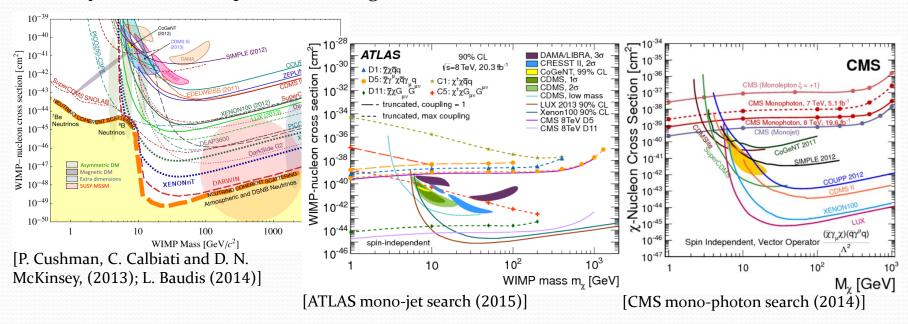
"Minimal" Dark Sector

"Minimal" phenomenological implications

- ✓ (Non-relativistic) DM annihilation/decay to γ , e^+ , \bar{p} , etc.
- $\checkmark \langle \sigma v \rangle \sim 10^{-26} \text{ cm}^3/\text{s}$

- ✓ (Non-relativistic)

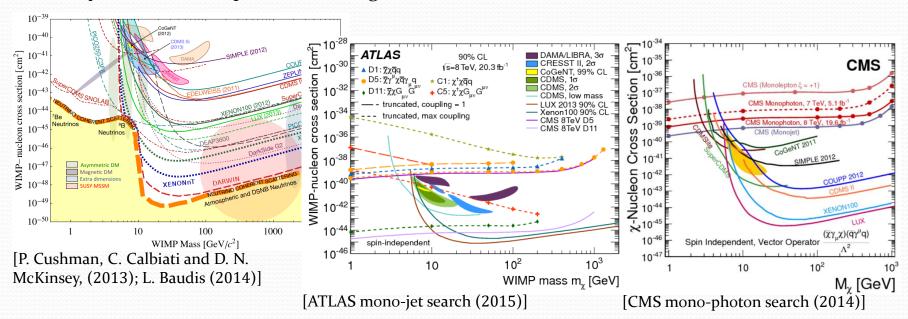
 DM scattering off target nuclei
- $\checkmark E_{\rm recoil} \sim 1 100 \text{ keV}$



- ✓ Active DM production at colliders
- ✓ Mono-X searches
- ✓ Expected rate inferred from/related to $(\sigma v) \sim 10^{-26} \text{ cm}^3/\text{s}$

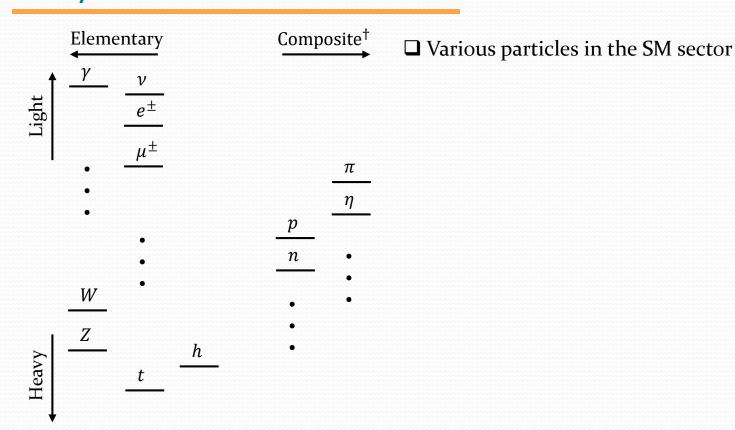
"Non-minimal" Dark Sector

Why flavorful?


■ No "unambiguous" observation of DM signatures via non-gravitational interactions (many searches/interpretations designed under minimal dark-sector scenarios)

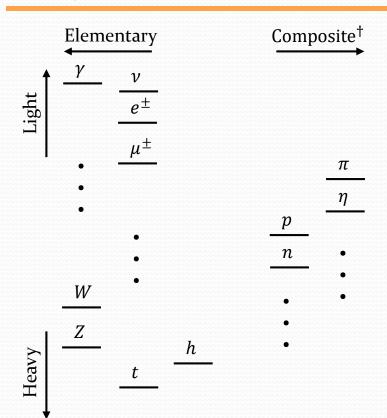
"Non-minimal" Dark Sector

Why flavorful?


■ No "unambiguous" observation of DM signatures via non-gravitational interactions (many searches/interpretations designed under minimal dark-sector scenarios)

Time to (seriously) **consider non-minimal/flavorful** dark-sector scenarios?!

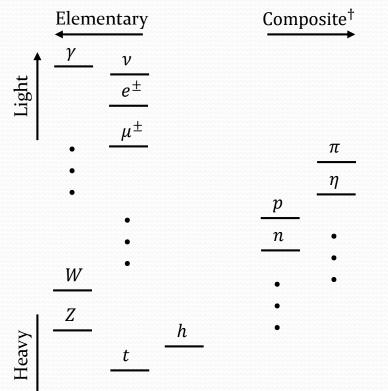
"Flavorful" Dark Sector


Why flavorful?

†: here meaning the particles made of elementary ones

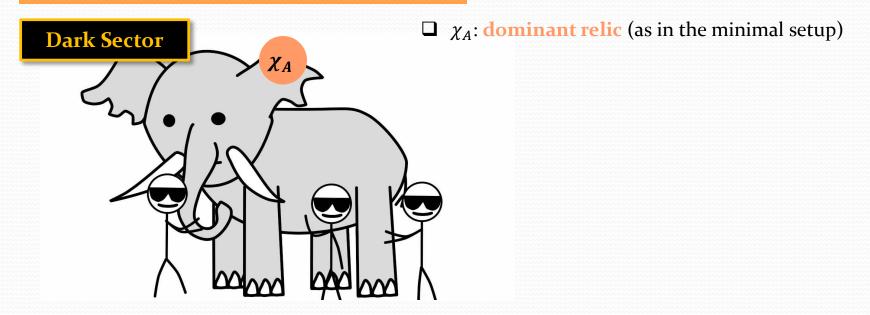
"Flavorful" Dark Sector

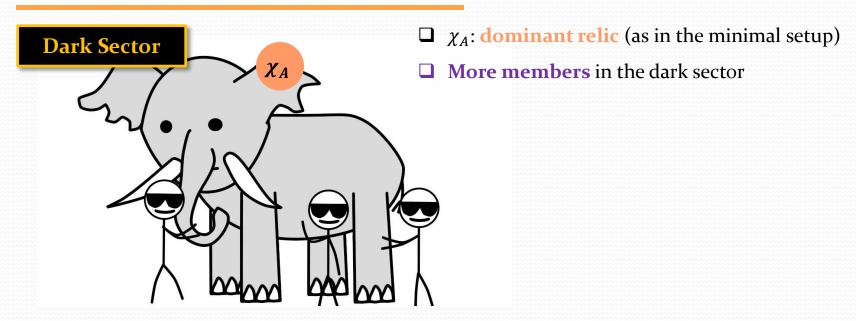
Why flavorful?

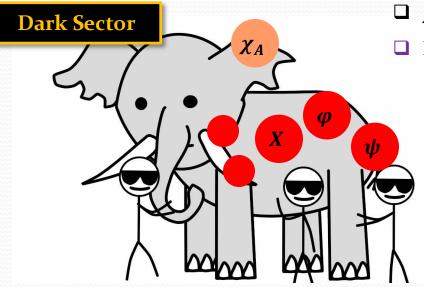


- ☐ Various particles in the SM sector
 - ✓ Multiple stable particles → interesting physics from other stable members which are not difficult to detect albeit not dominant (proton is dominant in the visible sector)

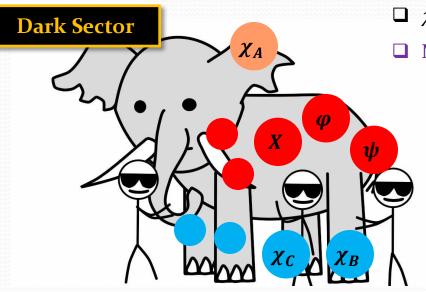
†: here meaning the particles made of elementary ones

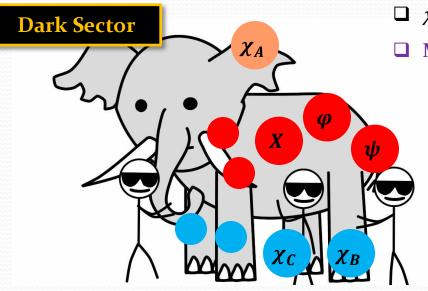

"Flavorful" Dark Sector


Why flavorful?



- ☐ Various particles in the SM sector
 - ✓ Multiple stable particles → interesting physics from other stable members which are not difficult to detect albeit not dominant (proton is dominant in the visible sector)
 - Many heavier (unstable) states → interesting signatures/phenomenology stemming from their decays (e.g., at lepton/hadron colliders)


†: here meaning the particles made of elementary ones



- \square χ_A : **dominant relic** (as in the minimal setup)
 - **More members** in the dark sector
 - ✓ Unstable members, say ψ , φ , X, ... (e.g., cosmic ray excess interpretations [DK and J.-C. Park (2015)])

- \square χ_A : dominant relic (as in the minimal setup)
- More members in the dark sector
 - ✓ Unstable members, say ψ , φ , X, ... (e.g., cosmic ray excess interpretations [DK and J.-C. Park (2015)])
 - More dark matter species, say χ_B , χ_C ... (e.g., dynamical dark matter models [K. Dienes and B. Thomas, (2011)])

- \square χ_A : **dominant relic** (as in the minimal setup)
- More members in the dark sector
 - ✓ **Unstable members**, say ψ , φ , X, ... (e.g., cosmic ray excess interpretations [**DK** and J.-C. Park (2015)])
 - ✓ More dark matter species, say χ_B , χ_B ... (e.g., dynamical dark matter models [K. Dienes and B. Thomas, (2011)])

- ☐ Rising interest
 - ❖ Boosted dark matter scenarios [K. Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park (2014)]
 - ❖ Assisted freeze-out mechanism [G. Belanger and J.-C. Park (2011)]
 - ❖ Dark matter "transporting" mechanism [DK, J.-C. Park and S. Shin (2017)]

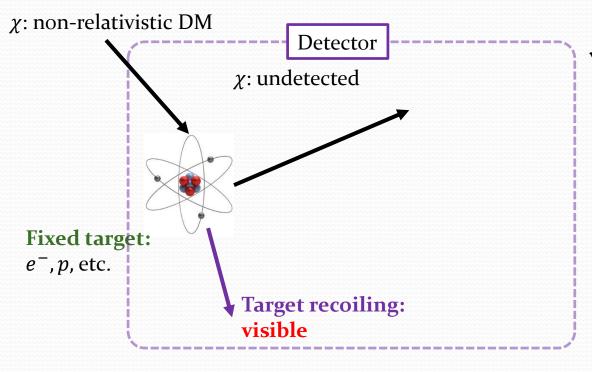
"Non-conventional" Implications?

Big question

- □ Existence of more members in the dark sector
 → are there any non-trivial/non-conventional implications not available in
 - the minimal setup?

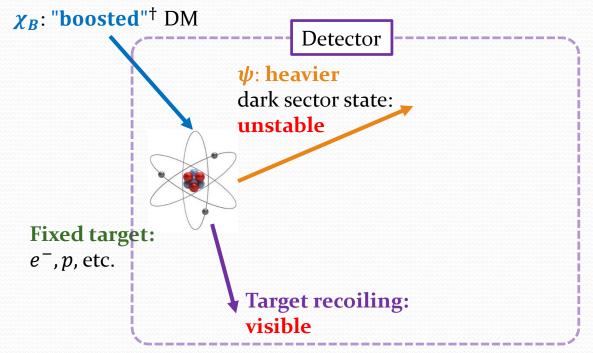
"Non-conventional" Implications!

Big question

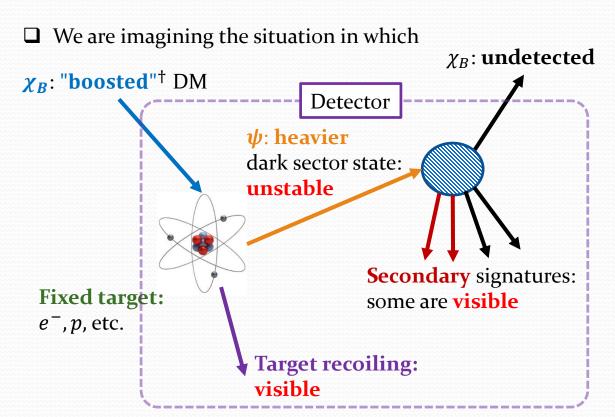

- ☐ Existence of more members in the dark sector
 - → are there any non-trivial/nonconventional implications not available in the minimal setup?

✓ New dark matter search strategies: dark matter "colliders" [DK, J.-C. Park and S. Shin (2016)]

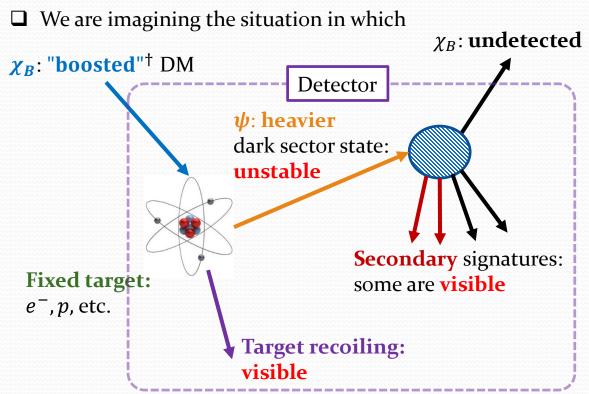
Dark Matter Direct Detection


Basic idea

☐ Conventional DM direct detection experiments are considering the situation in which

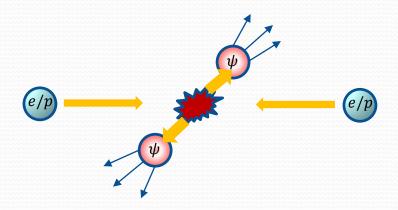

Existence of DM inferred from a target recoiling (1 – 100 keV)

- Basic idea [DK, J.-C. Park and S. Shin (2016)]
 - ☐ We are imagining the situation in which


†: Production of boosted DM will be discussed in a couple of slides.

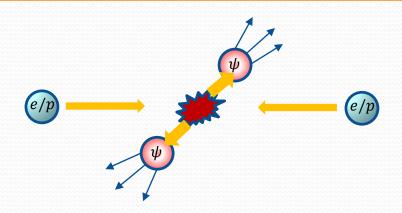
• **Basic idea** [**DK**, J.-C. Park and S. Shin (2016)]

†: Production of boosted DM will be discussed in a couple of slides.

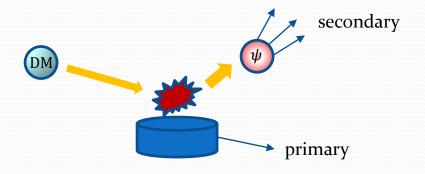

• Basic idea [DK, J.-C. Park and S. Shin (2016)]

†: Production of boosted DM will be discussed in a couple of slides.

- Probing heavier dark/hidden-sector states
- Target recoil (like in typical
 DM direct detection exp.) +
 secondary visible signatures
 ⇒ more handles, (relatively)
 background-free (no
 secondary signatures in usual
 backgrounds)
- Complementary to standardDM direct searches


Collider as a heavy-state probe

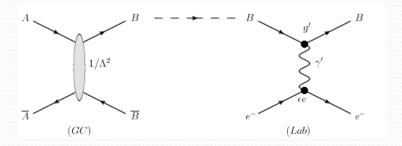
Conventional colliders


- ☐ Head-on collision of light SM-sector (stable) particles
- ☐ to produce heavier states
- □ and study resulting phenomenology

Collider as a heavy-state probe

Conventional colliders

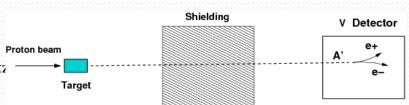
- ☐ Head-on collision of light SM-sector (stable) particles
- ☐ to produce heavier states
- □ and study resulting phenomenology


Dark matter colliders

- ☐ Collision of light hidden-sector (stable)
 particles onto a target
- □ to produce heavier hidden-sector states
- □ and study resulting phenomenology

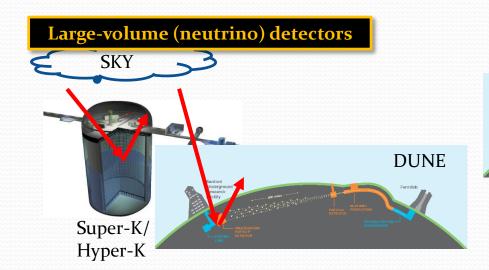
Boosted Dark Matter

Sources


- ☐ Boosted DM needed
 - ✓ The cosmic frontier: Boosted Dark Matter (BDM) scenarios (in a couple of slides) [K. Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park (2014)]

✓ The intensity frontier: fixed target

experiments [Bjorken et al. (2009); Batell, Pospelov, Ritz


(2009); Izaquirre et al. (2014)]

Signal Detection

Detection strategy

□ Null observation of DM signatures may suggest small interaction strengths between SM particles and dark-sector particles (including DM).

"Passive" searches

Intensity-frontier experiments

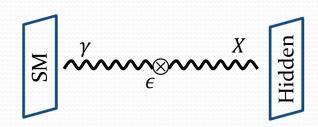
"Active" searches: more generic [G. Giudice, DK, J.-C. Park, S. Shin, ..., in progress]

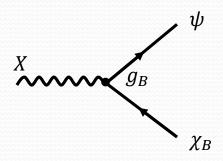
Boosted DM Source: Cosmic Frontier

Boosted DM source

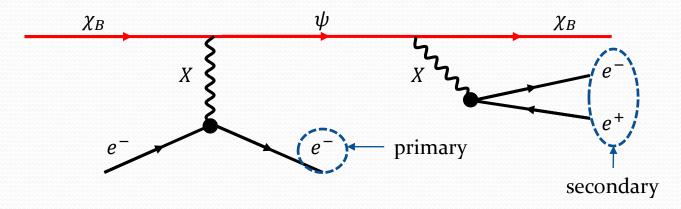
■ Boosted DM scenarios [K. Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park (2014)]

$$Z_2 \otimes Z_2', U(1) \otimes U(1)'$$
, etc.

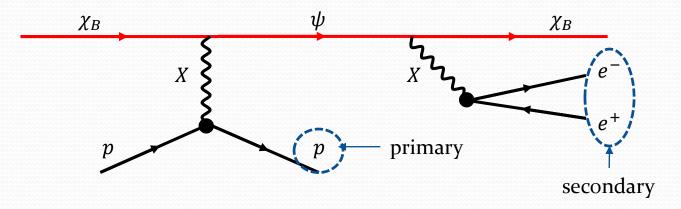

- \star χ_A : heavier DM, dominant relic, non-relativistic, **not directly** communicating with SM
- \star χ_B : lighter DM, subdominant relic, **relativistic** at the current universe (non-relativistic at the early universe), **directly** communicating with SM
- Typical flux of χ_B : ~10⁻⁷cm⁻²s⁻¹ for $\mathcal{O}(10-100)$ GeV χ_A
- ☐ (NOT the only way of having boosted DM particles)


Dark Sector Model

Vector portal


$$\mathcal{L}_{\rm int} \equiv \left(-\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu}\right) + \left(g_B \bar{\psi} \gamma^\mu \chi_B X_\mu + h.c.\right)$$

- **Vector portal** (e.g., dark "photon" scenario) [Holdom (1986)]
- □ Fermionic DM
 - Flavor-changing neutral current [e.g., J.-E. Kim, M. S. Seo, and S. Shin (2012)]
 - (Relevant models may have flavor-conserving currents as well, $\bar{\psi}\gamma^{\mu}\psi X_{\mu}$, $\bar{\chi}_{B}\gamma^{\mu}\chi_{B}X_{\mu}$)
- ☐ (NOT restricted to vector portal scenarios)



Typical signal features: e-scattering

- ☐ GeV/sub-GeV mass and sizable boost factor of hidden-sector particles preferred by kinematics
- \Box *e*-scattering preferred \leftarrow smaller threshold energy, *e*⁻ as a fundamental particle
- \Box e^+e^- from the secondary: **highly collimated** (not separable in most favored parameter region)
- \Box e^- from the primary: collimated, but separable with detectors of good angular resolution
- ☐ High chance to observe two separable charged tracks

Typical signal features: p-scattering

- ☐ GeV/sub-GeV mass and decent boost factor of hidden-sector particles preferred by kinematics
- ☐ (Typically) Larger threshold energy, *p* could be broken apart, atomic form factor
- \Box e^+e^- from the secondary: **separated**
- \Box *p* from the primary: **separated** from the secondary particles
- ☐ High chance to observe three separable charged tracks

Results and outlook

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2
SK	13.6 yr	170	7.1	3500	5200
HK	1 yr	88	3.7	1900	2800
HK	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210
DUNE	$1 \mathrm{\ yr}$	190	9.0	150	1600
DUNE	$13.6~\mathrm{yr}$	14	0.69	11	120

TABLE II: Required fluxes in unit of 10^{-7} cm⁻² s⁻¹ with which our reference points become sensitive in various experiments.

[**DK**, J.-C. Park and S. Shin (2016)]

	m_{χ_B}	m_{ψ}	m_X	γ_{χ_B}
<i>e</i> -ref1	0.4	0.5	0.06	250
e-ref2	0.1	0.14	0.03	200
<i>p</i> -ref1	0.4	0.9	0.2	15
<i>p</i> -ref2	0.1	1.0	0.5	50

- •• $\epsilon^2 = (3 \times 10^{-4})^2$ and $g_B = 0.5$ for all reference points
- γ_{χ_B} : boost factor of boosted DM χ_B
- "Zero" background assumed
- Every mass in GeV

Results and outlook

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2
SK	13.6 yr	170	7.1	3500	5200
HK	1 yr	88	3.7	1900	2800
HK	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210
DUNE	$1 \mathrm{\ yr}$	190	9.0	150	1600
DUNE	13.6 yr	14	0.69	11	120

TABLE II: Required fluxes in unit of 10^{-7} cm⁻² s⁻¹ with which our reference points become sensitive in various experiments.

		m_{χ_B}	m_{ψ}	m_X	γ_{χ_B}
~ ~ ~ ~	e-ref1	0.4	0.5	0.06	250
	e-ref2	0.1	0.14	0.03	200
	<i>p</i> -ref1	0.4	0.9	0.2	15
	p-ref2	0.1	1.0	0.5	50

- •• $\epsilon^2 = (3 \times 10^{-4})^2$ and $g_B = 0.5$ for all reference points
- γ_{χ_B} : boost factor of boosted DM χ_B
- "Zero" background assumed
- Every mass in GeV

[**DK**, J.-C. Park and S. Shin (2016)]

Remind, in a minimal boosted DM scenario, if flux over the whole sky is $\mathcal{O}(10^{-7})$ cm⁻²s⁻¹, it is **promising and achievable**!

Results and outlook

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2
SK	13.6 yr	170	7.1	3500	5200
HK	1 yr	88	3.7	1900	2800
HK	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210
DUNE	$1 \mathrm{\ yr}$	190	9.0	150	1600
DUNE	$13.6 \mathrm{\ yr}$	14	0.69	11	120

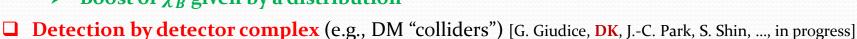
TABLE II: Required fluxes in unit of 10^{-7} cm⁻² s⁻¹ with which our reference points become sensitive in various experiments.

		m_{χ_B}	m_{ψ}	m_X	γ_{χ_B}
^ ^	e-ref1	0.4	0.5	0.06	250
	e-ref2	0.1	0.14	0.03	200
	<i>p</i> -ref1	0.4	0.9	0.2	15
	p-ref2	0.1	1.0	0.5	50

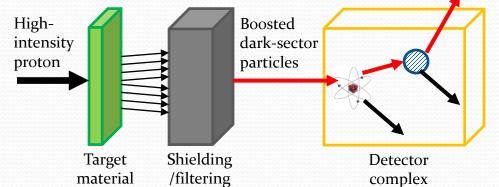

- •• $\epsilon^2 = (3 \times 10^{-4})^2$ and $g_B = 0.5$ for all reference points
- γ_{χ_B} : boost factor of boosted DM χ_B
- ❖ "Zero" background assumed
- Every mass in GeV

[**DK**, J.-C. Park and S. Shin (2016)]

- Remind, in a minimal boosted DM scenario, if flux over the whole sky is $\mathcal{O}(10^{-7})$ cm⁻²s⁻¹, it is **promising and achievable**!
- \Box *p*-scattering improved at DUNE due to smaller threshold energy

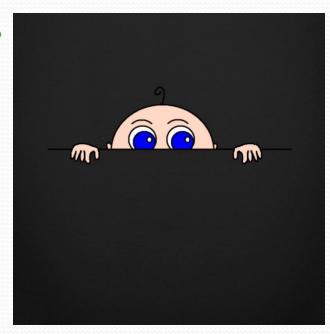

Boosted DM Source: Intensity Frontier

- Physics opportunities at fixed target exps.
 - ☐ **Production by target collision** (e.g., in vector portal scenarios)
 - Meson decay: $pp \to \pi/\eta + \text{others}$, $\pi/\eta \to X^*\gamma \to \chi_B \chi_B \gamma$; $\pi/\eta \to X^*\gamma \to \chi_B \psi \gamma$; $\pi/\eta \to X^*\gamma \to \psi \psi \gamma$
 - ightharpoonup Drell-Yan: $pp \to X^* \to \chi_B \chi_B, \chi_B \psi, \psi \psi$
 - \triangleright Boost of χ_B given by a distribution



Signal Detection

- Physics opportunities at fixed target exps.
 - □ Production by target collision (e.g., in vector portal scenarios)
 - Meson decay: $pp \to \pi/\eta + \text{others}$, $\pi/\eta \to X^*\gamma \to \chi_B \chi_B \gamma$; $\pi/\eta \to X^*\gamma \to \chi_B \psi \gamma$; $\pi/\eta \to X^*\gamma \to \psi \psi \gamma$
 - ➤ Drell-Yan: $pp \rightarrow X^* \rightarrow \chi_B \chi_B, \chi_B \psi, \psi \psi$
 - \triangleright Boost of χ_B given by a distribution

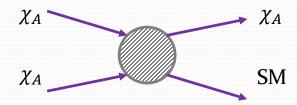

- Detector-specific strategies required
- Far/near detector system at e.g., DUNE, T2HKK: ratio of $N_{\text{near}}^{\text{signal}}$ to $N_{\text{far}}^{\text{signal}}$ available/useful for further DM signal confirmation
- Signal events with displaced secondary vertex: better signal identification (e.g., SHiP)

Take-home Messages

Summary and lessons

- □ The more, the messier? The more, the merrier! ⇒ Peeping into the hidden sector through flavorful scenarios
- ☐ Rising interest in "flavorful" dark sector physics
- ☐ Physics opportunities at dark matter "colliders"
 - ❖ Orthogonal: (relatively) background-free due to secondary signatures → new direct DM search paradigm!
 - Inexpensive: exclusion limit/detection prospects at neutrino detectors such as Super/Hyper-K, DUNE, SHiP, etc. without extra apparatus

- **Complementary**: constraining parameters for various DM scenarios/models
- Interdisciplinary: if this scenario is the truth, many ideas in collider phenomenology directly apply!

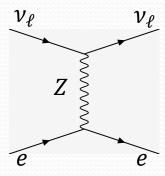


Back-up

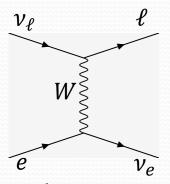
Boosted DM from the Sky

Semi-annihilation

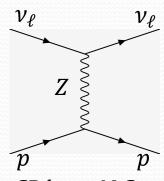
 \square In DM models where relevant DM is stabilized by e.g., Z_3 symmetry, one may have a process like

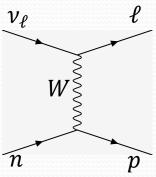

Under the circumstance in which the mass of SM here is lighter (i.e., $m_A > m_{SM}$), the outgoing χ_A can be boosted and its boost factor is given by

$$\gamma_A = \frac{5m_A^2 - m_{\rm SM}^2}{4m_A^2}$$


Background Considerations

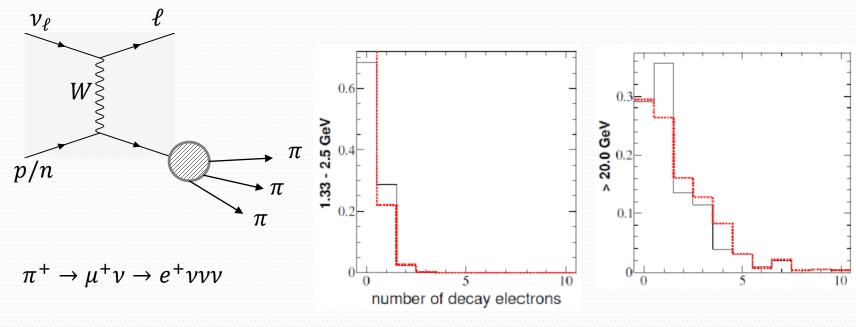
Potential sources


- ☐ Cherenkov radiation (CR) by electron/muon is distinguished from that by proton.
- ☐ Electron-preferred scenarios:


: CR by an N.C. electron

: CR by a C.C. electron/muon/tau

: CR by an N.C. proton unless broken

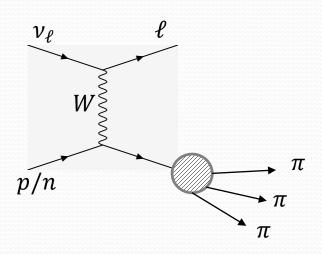


: CR by at least, a C.C. proton unless broken

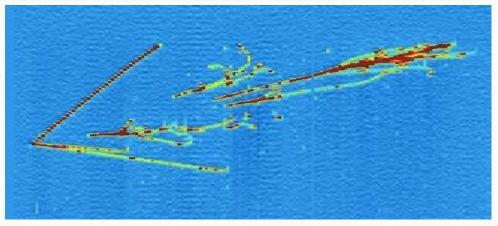
☐ Proton-preferred scenarios: opening angles among recoil proton, decayed electrons are large enough to resolve

Background Considerations

More challenging cases: broken nuclei



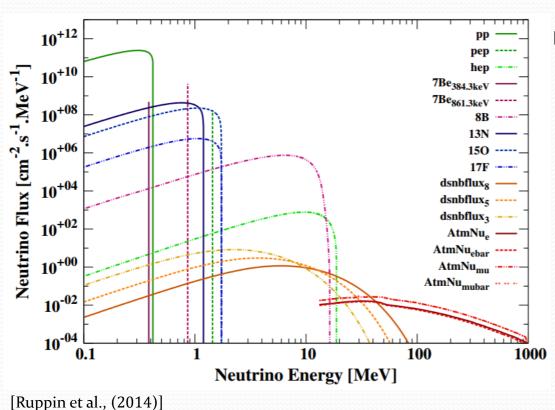
Super-K (2012)


- ☐ Similar expectations for neutral currents
- ☐ (Dedicated study in progress)

Background Considerations

More challenging cases: broken nuclei

e.g.
$$\pi^+ \rightarrow \mu^+ \nu \rightarrow e^+ \nu \nu \nu$$

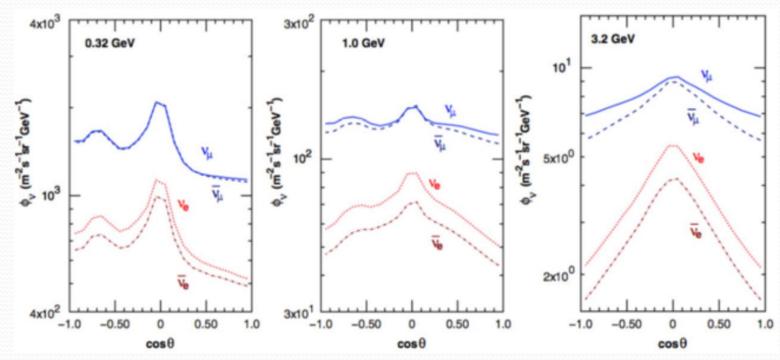


Particle tracks created by a neutrino interaction in liquid argon in the ArgoNeuT

- ☐ Expecting again that (quality) track-based particle identification allows us to distinguish multi-track background events from signal ones
- ☐ A dedicated study is needed

Flux of Neutrino

Neutrino as a background

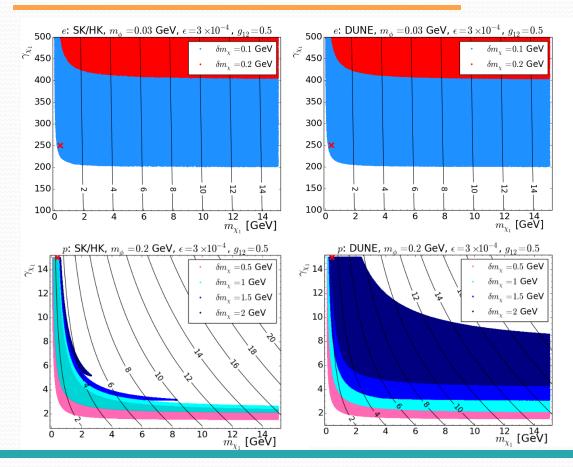


 □ Relevant neutrino fluxes to the background of direct DM detection experiments: solar, atmospheric, and diffuse supernovae

CERN Theory Department

Flux of Atmospheric Neutrino

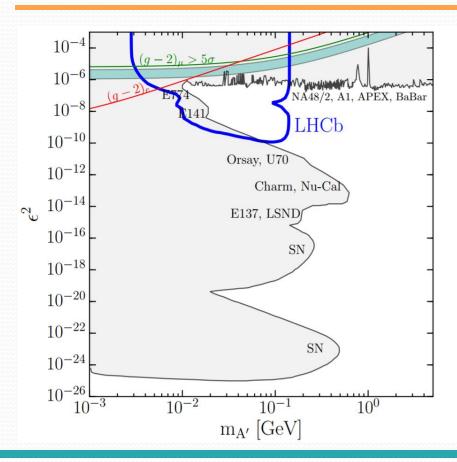
Neutrino as a background

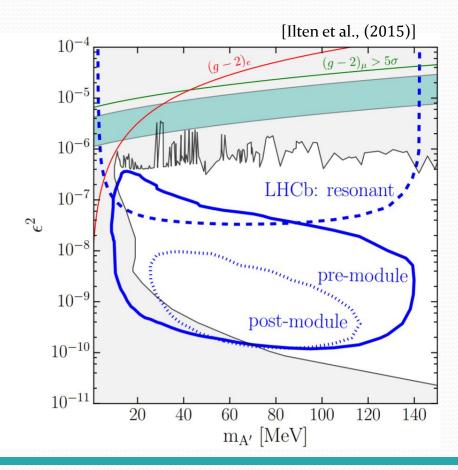


 θ : zenith angle

Energetic neutrino flux $\sim 10^{-4} \text{cm}^{-2} \text{s}^{-1}$

Accessible Parameter Region


Parameter scanning



- □ *e*-scattering (upper panels)and *p*-scattering (lower panels)
- ☐ Black solid lines: kinematically allowed maximum mass of heavier hidden-sector states
- \square m_{χ_1} : mass of incident boosted DM, γ_{χ_1} : boost factor of incident boosted DM, δm_{χ} : mass gap between the DM and the heavier state

Current Status of Dark Photon Searches

Kinetic mixing parameter choice

Comparison among Neutrino Detectors

Exp.	DUNE	SHiP [†]	SK/HK [‡]
Near-far detector	Yes	Yes	(Yes)
Distance b/w detectors	1,300 km	50 m	(700 – 1,000) km
Volume*	8 t/ <mark>40</mark> kt	9.6 t/NA	(190/190) kt
			22.5 kt for S K
Detector type	LArTPC	Emulsion/Calorimeter	Cherenkov
Particle identification	Very good	Very good	Good
Beam energy	120 GeV	400 GeV	30 GeV
PoT	11×10^{20} /year	0.4×10^{20} /year	48×10^{20} /year
Power	1.2 MW	(> 0.15 MW)	1.3 MW
Angular resolution (e/p)	1°/5°	(Good)	3°/3°
Threshold energy (e/p)	30/50 MeV	(Equally small)	0.1/1 GeV*
Position resolution	1 – 2 cm	0.1 – 1 mm	Not good

^{†:} Numbers in parentheses are our estimation.

□ DUNE/SHiP/Kamiokande ideal for sub-GeV to GeV hidden sector particle searches: different experiments require different strategies optimized to the associated detectors.

^{‡:} Numbers in parentheses are relevant to T2HKK.

^{*:} Red-font numbers are fiducial volume.

^{*:} Threshold energy for the "good" angular resolution above